CN111594282A - 一种聚酯酯化蒸汽余热综合利用*** - Google Patents

一种聚酯酯化蒸汽余热综合利用*** Download PDF

Info

Publication number
CN111594282A
CN111594282A CN202010581293.2A CN202010581293A CN111594282A CN 111594282 A CN111594282 A CN 111594282A CN 202010581293 A CN202010581293 A CN 202010581293A CN 111594282 A CN111594282 A CN 111594282A
Authority
CN
China
Prior art keywords
steam
power generation
rankine cycle
organic rankine
cycle power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010581293.2A
Other languages
English (en)
Inventor
李健
梁龙辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tianheating Technology Co Ltd
Original Assignee
Nanjing Tianheating Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tianheating Technology Co Ltd filed Critical Nanjing Tianheating Technology Co Ltd
Priority to CN202010581293.2A priority Critical patent/CN111594282A/zh
Publication of CN111594282A publication Critical patent/CN111594282A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种聚酯酯化蒸汽余热综合利用***,包括酯化蒸汽分离塔、冷却回路、有机朗肯循环发电***以及凝结水处理***;冷却回路的输入端与有机朗肯循环发电***的输入端均与酯化蒸汽分离塔的气相出口管道相连;有机朗肯循环发电***的热源输出口与冷却回路的输出口均与凝结水处理***的入口管道相连;凝结水处理***的输出口管道连接至酯化蒸汽分离塔的回流口。本发明的有益效果:能够实现全年运行,提高酯化蒸汽余热的综合利用效率,经济效益高。

Description

一种聚酯酯化蒸汽余热综合利用***
技术领域
本发明涉及聚酯酯化蒸汽余热利用技术领域领域,具体涉及一种聚酯酯化蒸汽余热综合利用***。
背景技术
聚酯合成工艺中,在酯化阶段会产生103℃左右的酯化蒸汽,这部分蒸汽携带着大量的低品位热量。以600t/d的聚酯生产装置为例,理论上,该装置每天会产生约220t的蒸汽,在液化过程中会释放约5.4*108 kJ的潜热(相当于18.4 t标准煤)。传统的工艺中,酯化蒸汽一般通过空气冷却器冷却,空气冷却器风扇消耗大量的电能,能源浪费巨大。为了提高酯化蒸汽余热的利用效率,部分聚酯生产企业采用溴化锂制冷机组对酯化蒸汽的余热回收利用,但是溴化锂制冷机组仅供夏季使用,冬季和春秋季时,酯化蒸汽仍采用空气冷却器冷却,因此采用溴化锂制冷机组的综合热能利用效率低。
有机朗肯循环发电装置利用有机工质(如R134a、R245fa等)低沸点特性,在低温条件(80-300℃)下可以获得较高的蒸气压力,推动膨胀机做功,驱动发电机发电,从而实现低品位热能到高品位电能的转换。
现有技术专利申请号为:CN201510655482.9发明名称为:一种煤制油工艺凝液余热高效利用***公开了提出的煤制油工艺凝液余热高效利用***,实现了凝液冷却方式由耗能型到产能型的转变,凝液能源综合利用效率大大提高,节能减排效果明显。但是并不适用于聚酯酯化过程的余热收取。因此需要一种方法能够高效对聚酯酯化蒸汽的余热进行综合利用。
发明内容
1.所要解决的技术问题:
针对上述技术问题,本发明提供一种聚酯酯化蒸汽余热综合利用***,分离塔出来的酯化蒸汽可根据实际情况选择性地进入空气冷却器、溴化锂制冷机组和有机朗肯循环发电装置,不仅能实现低品位热能的有效回收利用,还保证了聚酯生产线的稳定。
2.技术方案:
一种聚酯酯化蒸汽余热综合利用***,其特征在于:包括酯化蒸汽分离塔、冷却回路、有机朗肯循环发电***以及凝结水处理***;所述冷却回路的入口与有机朗肯循环发电***的热源入口均与酯化蒸汽分离塔的气相出口管道相连;所述有机朗肯循环发电***的热源出口与冷却回路的出口均与凝结水处理***的入口管道相连;所述凝结水处理***的出口管道连接至酯化蒸汽分离塔的回流口。
所述冷却回路为空气冷却器冷却回路、溴化锂制冷机组冷却回路与有机朗肯循环发电冷却回路中的一路或者多路;每路冷却回路均包括蒸汽调节阀以及与之管道相连的冷却装置。
所述有机朗肯循环发电***包括蒸汽阀、带预热段蒸发器、有机朗肯循环发电装置,其中蒸汽阀与预热段蒸发器的蒸汽入口管道相连;所述预热段蒸发器的工质出入口并联有机朗肯循环发电装置。
所述凝结水处理***包括依次管道相连的凝结水冷却器、凝结水储罐、回流泵。
进一步地,所述有机朗肯循环发电装置包括透平发电连接回路与透平旁通发电连接回路;具体连接为:预热段蒸发器的工质出口依次管道连接透平阀门、透平发电机、冷凝器、工质泵、蒸发器的工质入口;所述透平阀门与透平发电机所在的管路两端并联透平旁通阀门。
进一步地,所述空气冷却器冷却回路包括第一蒸汽调节阀与空气冷却器;酯化蒸汽分离塔的气相出口的蒸汽通过第一蒸汽调节阀进入空气冷却器;空气冷却器输出管道与凝结水处理***入口管道相连。
进一步地,所述溴化锂制冷机组冷却回路包括第二蒸汽调节阀与溴化锂制冷机组;酯化蒸汽分离塔的气相出口的蒸汽通过第二蒸汽调节阀进入溴化锂制冷机组;溴化锂制冷机组热源出口与凝结水处理***入口管道相连。
进一步地,所述有机朗肯循环发电冷却回路包括第三蒸汽调节阀与至少一组的有机朗肯循环发电装置;酯化蒸汽分离塔的气相出口的蒸汽通过第三蒸汽调节阀进入有机朗肯循环发电冷却组;有机朗肯循环发电装置的热源输出管道与凝结水处理***入口管道相连。
3.有益效果:
(1)本发明提供的聚酯酯化蒸汽余热综合发电***能够实现全年运行,提高酯化蒸汽余热的综合利用效率,经济效益高。
(2)本发明中能够将从分离塔内的酯化蒸汽分为三路,每一路都可以由处于动态调节的蒸汽调节阀控制蒸汽流量,实现调节流量波动下,聚酯生产线稳定运行。
(3)本发明中的有机朗肯循环发电装置内预热器能够提高发电机组的热电转换效率,还能够进一步降低凝结水的温度,可以有效降低凝结水冷却器的热负荷。
(4)本发明中的透平旁通模式使有机朗肯循环发电装置在不输出电力的情况下,也能保持有机朗肯循环的运行,持续冷却酯化蒸汽,进一步保证了聚酯生产线的稳定运行。
附图说明
图1为本发明的具体实施例1的连接图;
图2为本发明的具体实施例2的连接图;
图3为本发明的具体实施例3的连接图。
具体实施方式
下面结合附图对本发明进行具体的说明。
一种聚酯酯化蒸汽余热综合利用***,其特征在于:包括酯化蒸汽分离塔1、冷却回路、有机朗肯循环发电***以及凝结水处理***;所述冷却回路的入口与有机朗肯循环发电***的热源入口均与酯化蒸汽分离塔的气相出口管道相连;所述有机朗肯循环发电***的热源出口与冷却回路的出口均与凝结水处理***的入口管道相连;所述凝结水处理***的出口管道连接至酯化蒸汽分离塔的回流口。
所述冷却回路为空气冷却器冷却回路、溴化锂制冷机组冷却回路与有机朗肯循环发电冷却回路中的一路或者多路;每路冷却回路均包括蒸汽调节阀以及与之管道相连的冷却装置。
所述有机朗肯循环发电***包括蒸汽阀2-4、带预热段蒸发器3、有机朗肯循环发电装置,其中蒸汽阀与预热段蒸发器的蒸汽入口管道相连;所述预热段蒸发器的工质出入口并联有机朗肯循环发电装置。
所述凝结水处理***包括依次管道相连的凝结水冷却器10、凝结水储11、回流泵12。
进一步地,所述有机朗肯循环发电装置包括透平发电连接回路与透平旁通发电连接回路;具体连接为:预热段蒸发器的工质出口依次管道连接透平阀门5、透平发电机6、冷凝器7、工质泵8、蒸发器的工质入口;所述透平阀门5与透平发电6机所在的管路两端并联透平旁通阀门4。
进一步地,所述空气冷却器冷却回路包括第一蒸汽调节阀与空气冷却器;酯化蒸汽分离塔的气相出口的蒸汽通过第一蒸汽调节阀2-1进入空气冷却器13;空气冷却器输出管道与凝结水处理***入口管道相连。
进一步地,所述溴化锂制冷机组冷却回路包括第二蒸汽调节阀2-2与溴化锂制冷机组9-1;酯化蒸汽分离塔的气相出口的蒸汽通过第二蒸汽调节阀进入溴化锂制冷机组;溴化锂制冷机组热源出口与凝结水处理***入口管道相连。
进一步地,所述有机朗肯循环发电冷却回路包括第三蒸汽调节阀2-3与至少一组的有机朗肯循环发电装置9-2;酯化蒸汽分离塔的气相出口的蒸汽通过第三蒸汽调节阀进入有机朗肯循环发电装置;有机朗肯循环发电装置的热源输出管道与凝结水处理***入口管道相连。
具体实施例1:
如附图1所示,本实施例中的冷却回路为空气冷却器冷却回路与溴化锂制冷机组冷却回路并联。具体工作过程为:
分离塔出来的的酯化蒸汽可以通过三个不同的蒸汽调节阀来分配进入有机朗肯循环发电装置、溴化锂制冷机组和空气冷却器的蒸汽量。其中空冷器是利用空气与酯化蒸汽换热冷却,导致大量热能浪费,溴化锂机组能够利用酯化蒸汽的热量进行制冷。但是仅限于夏季,其他季节不适合使用。有机朗肯循环发电装置是可以全年将蒸汽热量转化为电能。在具体工作时,三个蒸汽调节阀启闭的优先级如下:夏季时,优先开启第二蒸汽调节2-2阀,溴化锂制冷机组开始工作,为厂区办公区域制冷;其次开启调节阀2-3,多余的蒸汽量进入有机朗肯循环装置将热能转化为电能;最后开启第一蒸汽调节阀2-1,溴化锂制冷机组和有机朗肯循环装置达到满负荷运行时,多余的蒸汽进入空气冷却器进行冷凝。春秋冬季时,优先开启第三蒸汽调节阀2-3,酯化蒸汽进入有机朗肯循环发电装置,低品位热能转化为电能,并冷凝蒸汽;其次开启第一蒸汽调节阀2-1,多余的蒸汽量进入空气冷却器进行冷凝;第二蒸汽调节阀始2-2终处于关闭状态。
从上述可以看出,本实施例中的三路的蒸汽调节阀门布置不仅能变换酯化蒸汽热量的利用方式,还能够满足多种工况运行,保证聚酯生产线的稳定运行和聚酯酯化蒸汽余热的充分利用。
如附图1所示,有机朗肯循环发电装置中的透平阀门和透平旁通阀门的启闭能够实现有机朗肯循环发电装置的旁通/透平发电模式的转换。当透平旁通阀门4关闭,透平阀门5开启时,有机朗肯循环发电装置进入透平发电模式,透平-发电机开始工作,输出电力。当透平旁通阀门4开启,透平阀门5关闭时,有机朗肯循环发电装置进入旁通模式,有机工质经过透平-发电机,不再输出电力,但可以冷凝聚酯蒸汽,保证***冷却能力。即当有机朗肯循环发电装置处于旁通模式即无电力输出,也能够持续吸收酯化蒸汽的热量,完成酯化蒸汽的冷凝。
酯化蒸汽进入带预热段蒸发器3加热有机工质,有机工质被加热为高压蒸气。有机朗肯循环发电装置可以根据实际情况开启或者关闭透平旁通阀门4和透平阀门5,进入透平旁通模式或者透平发电模式。
透平发电模式:打开透平阀门5,关闭透平旁通阀门4;高压工质蒸气进入透平膨胀做功,进而带动发电机产生电能;膨胀后的低压蒸气进入冷凝器7,被冷却为低温低压的工质液体;工质液体通过工质泵8升压后再次进入带预热段蒸发器3维持循环。
透平旁通模式:关闭透平阀门5,打开透平旁通阀门4;高压工质蒸气通过旁通管路,此时有机朗肯循环发电装置无电能输出,但可以冷凝聚酯蒸汽,保证***冷却能力。通过旁通模式降温降压的工质液体通过工质泵8升压后再次进入带预热段蒸发器3维持循环。
具体实施例2:
如附图2所示,本实施例中的冷却回路为溴化锂制冷机组冷却回路。具体工作过程为:分离塔出来的的酯化蒸汽可以通过两个不同的蒸汽调节阀来分配进入有机朗肯循环发电装置和溴化锂制冷机组的蒸汽量。蒸汽调节阀启闭的优先级如下:夏季时,优先开启第二蒸汽调节阀2-2,溴化锂制冷机组开始工作,为厂区办公区域制冷;其次开启第三蒸汽调节阀2-3,多余的蒸汽量进入有机朗肯循环装置将热能转化为电能。春秋冬季时,优先开启第三蒸汽调节阀2-3,酯化蒸汽进入有机朗肯循环发电装置,低品位热能转化为电能,并冷凝蒸汽;第二蒸汽调节阀始2-2终处于关闭状态。
由于空气冷却器价格高,且占地面积大,在具体实施例1 的基础上,将空气冷却器去掉,以有机朗肯循环发电装置为主,溴化锂制冷机组为辅的布置方式对分离塔出来的酯化蒸汽进行冷凝。该布置不仅节省了整个***的占地面积,还大大降低了***的成本。
具体实施例3:
如附图3所示,本实施例是在具体实施例2的基础上,将溴化锂制冷机组替换为有机朗肯循环发电装置(可根据实际情况布置单台或者多台),具有以下优势:布置多台有机朗肯循环发电装置,可以实现某机组检修,其他机组照常工作,可以全年实现低品位热能转化为电能,有效提高经济效益;2、够适应聚酯生产线蒸汽量波动的情况,维持聚酯生产线稳定。
虽然本发明已以较佳实施例公开如上,但它们并不是用来限定本发明的,任何熟习此技艺者,在不脱离本发明之精神和范围内,自当可作各种变化或润饰,因此本发明的保护范围应当以本申请的权利要求保护范围所界定的为准。

Claims (5)

1.一种聚酯酯化蒸汽余热综合利用***,其特征在于:包括酯化蒸汽分离塔(1)、冷却回路、有机朗肯循环发电***以及凝结水处理***;所述冷却回路的入口与有机朗肯循环发电***的热源入口均与酯化蒸汽分离塔(1)的气相出口管道相连;所述有机朗肯循环发电***的热源出口与冷却回路的出口均与凝结水处理***的入口管道相连;所述凝结水处理***的出口管道连接至酯化蒸汽分离塔(1)的回流口;
所述冷却回路为空气冷却器冷却回路、溴化锂制冷机组冷却回路与有机朗肯循环发电冷却回路中的一路或者多路;每路冷却回路均包括蒸汽调节阀以及与之管道相连的冷却装置;
所述有机朗肯循环发电***包括第三蒸汽调节阀(2-3)、带预热段蒸发器(3)、有机朗肯循环发电装置,其中蒸汽阀与预热段蒸发器的蒸汽入口管道相连;所述预热段蒸发器的工质出入口并联有机朗肯循环发电装置;
所述凝结水处理***包括依次管道相连的凝结水冷却器(10)、凝结水储罐(11)、回流泵(12)。
2.根据权利要求1所述的一种聚酯酯化蒸汽余热综合利用***,其特征在于:所述有机朗肯循环发电装置包括透平发电连接回路与透平旁通发电连接回路;具体连接为:预热段蒸发器的工质出口依次管道连接透平阀门(5)、透平发电机(6)、冷凝器(7)、工质泵(8)、蒸发器的工质入口;所述透平阀门(5)与透平发电机(6)所在的管路两端并联透平旁通阀门(4)。
3.根据权利要求1所述的一种聚酯酯化蒸汽余热综合利用***,其特征在于:所述空气冷却器冷却回路包括第一蒸汽调节阀(2-1)与空气冷却器(13);酯化蒸汽分离塔(1)的气相出口的蒸汽通过第一蒸汽调节阀(2-1)进入空气冷却器(13);空气冷却器(13)输出管道与凝结水处理***入口管道相连。
4.根据权利要求1所述的一种聚酯酯化蒸汽余热综合利用***,其特征在于:所述溴化锂制冷机组冷却回路包括第二蒸汽调节阀(2-2)与溴化锂制冷机组(9-1);酯化蒸汽分离塔(1)的气相出口的蒸汽通过第二蒸汽调节阀(2-2)进入溴化锂制冷机组(9-1);溴化锂制冷机组(9-1)热源出口与凝结水处理***入口管道相连。
5.根据权利要求1所述的一种聚酯酯化蒸汽余热综合利用***,其特征在于:所述有机朗肯循环发电冷却回路包括第四蒸汽调节阀(2-4)与至少一组的有机朗肯循环发电装置(9-2);酯化蒸汽分离塔(1)的气相出口的蒸汽通过第三蒸汽调节阀(2-3)进入有机朗肯循环发电装置;有机朗肯循环发电装置的热源输出管道与凝结水处理***入口管道相连。
CN202010581293.2A 2020-06-23 2020-06-23 一种聚酯酯化蒸汽余热综合利用*** Pending CN111594282A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010581293.2A CN111594282A (zh) 2020-06-23 2020-06-23 一种聚酯酯化蒸汽余热综合利用***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010581293.2A CN111594282A (zh) 2020-06-23 2020-06-23 一种聚酯酯化蒸汽余热综合利用***

Publications (1)

Publication Number Publication Date
CN111594282A true CN111594282A (zh) 2020-08-28

Family

ID=72182904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010581293.2A Pending CN111594282A (zh) 2020-06-23 2020-06-23 一种聚酯酯化蒸汽余热综合利用***

Country Status (1)

Country Link
CN (1) CN111594282A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115681951A (zh) * 2022-10-25 2023-02-03 浙江镕达永能压缩机有限公司 酯化蒸汽余热回收方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201686646U (zh) * 2010-02-13 2010-12-29 桐乡中欣化纤有限公司 酯化余热回收***
US20120125002A1 (en) * 2010-11-19 2012-05-24 General Electric Company Rankine cycle integrated with organic rankine cycle and absorption chiller cycle
CN104018901A (zh) * 2014-06-12 2014-09-03 中节能工业节能有限公司 天然气压能冷能联合发电***
CN110078904A (zh) * 2019-05-23 2019-08-02 上海聚友化工有限公司 一种聚酯酯化蒸汽余热利用方法及装置
CN212563345U (zh) * 2020-06-23 2021-02-19 南京天加热能技术有限公司 一种聚酯酯化蒸汽余热综合利用***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201686646U (zh) * 2010-02-13 2010-12-29 桐乡中欣化纤有限公司 酯化余热回收***
US20120125002A1 (en) * 2010-11-19 2012-05-24 General Electric Company Rankine cycle integrated with organic rankine cycle and absorption chiller cycle
CN104018901A (zh) * 2014-06-12 2014-09-03 中节能工业节能有限公司 天然气压能冷能联合发电***
CN110078904A (zh) * 2019-05-23 2019-08-02 上海聚友化工有限公司 一种聚酯酯化蒸汽余热利用方法及装置
CN212563345U (zh) * 2020-06-23 2021-02-19 南京天加热能技术有限公司 一种聚酯酯化蒸汽余热综合利用***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115681951A (zh) * 2022-10-25 2023-02-03 浙江镕达永能压缩机有限公司 酯化蒸汽余热回收方法及***

Similar Documents

Publication Publication Date Title
WO2022027844A1 (zh) 基于压缩机中间吸气的液化空气储能调峰***和方法
CN109854320B (zh) 一种二氧化碳储能与有机朗肯循环联合发电***
CN112762424B (zh) 一种基于储热和压缩式热泵相结合的太阳能热电解耦***及其运行方法
CN111305918A (zh) 一种无冷源损失的汽驱空气储能调峰***及方法
CN110005486B (zh) 一种基于全热循环的零碳排放冷热电联产装置及工作方法
CN215762153U (zh) 一种充分利用冷热能并高效储能的低温发电综合能源***
CN209637831U (zh) 一种火电厂热压机与空分***结合的***
CN112412561B (zh) 压缩空气储能***和火力发电厂控制***耦合控制方法
CN111735237B (zh) 一种中低温热能利用功冷联供***
CN212054836U (zh) 一种发电厂空气储能灵活性调峰***
CN113048030B (zh) 一种太阳能梯级相变储热与分凝分馏型变浓度调节朗肯-热泵***及运行方法
CN212563345U (zh) 一种聚酯酯化蒸汽余热综合利用***
CN111594282A (zh) 一种聚酯酯化蒸汽余热综合利用***
CN212563346U (zh) 一种聚酯酯化蒸汽余热发电***
CN111927588A (zh) 一种实现多能互补型分布式能源***余热梯级利用的有机朗肯循环发电***及方法
CN109763869B (zh) 一种用于联合循环能量梯级利用的蓄热耦合抽汽集成***及其运行方法
CN110953069A (zh) 一种燃机电站多能耦合发电***
CN215002381U (zh) 一种高效吸收式热泵
CN212837979U (zh) 一种实现余热梯级利用的有机朗肯循环发电***
CN114934843A (zh) 一种多能源高效互补集成的双压orc联合循环发电***
CN210892819U (zh) 一种并联型冷热电三联产卡列纳循环***装置
CN114635797A (zh) 一种燃机进气温度的控制***
CN111594281A (zh) 一种聚酯酯化蒸汽余热发电***
CN112576375A (zh) 一种低热值联合循环机组煤压机间冷热量利用***及方法
CN111928525A (zh) 一种基于弃热制冷的液化空气储能调峰***和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination