CN111589880B - 改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法 - Google Patents

改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法 Download PDF

Info

Publication number
CN111589880B
CN111589880B CN202010356777.7A CN202010356777A CN111589880B CN 111589880 B CN111589880 B CN 111589880B CN 202010356777 A CN202010356777 A CN 202010356777A CN 111589880 B CN111589880 B CN 111589880B
Authority
CN
China
Prior art keywords
cooling
steel pipe
roller way
pipe
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010356777.7A
Other languages
English (en)
Other versions
CN111589880A (zh
Inventor
袁国
康健
陈冬
李振垒
王国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202010356777.7A priority Critical patent/CN111589880B/zh
Publication of CN111589880A publication Critical patent/CN111589880A/zh
Application granted granted Critical
Publication of CN111589880B publication Critical patent/CN111589880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B2045/0227Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/06Thermomechanical rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

本发明公开了一种改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法,主要目的是改善在线冷却工艺中厚壁钢管厚度方向上的组织均匀性。本发明的主要技术方案为:该方法通过传送辊道、冷却装置、翻管机构和控制***实现,该方法通过控制钢管在斜辊道上往返运行,从而实现通过冷却装置对钢管进行多次冷却,将钢管按照设定的冷却路径冷却至目标温度,实现厚度方向上温度均匀控制,从而提高了钢管厚度方向上的组织均匀性,进而保证了钢管的性能。

Description

改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法
技术领域
本发明涉及热轧无缝钢管生产技术领域,具体而言,涉及一种改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法。
背景技术
控制冷却技术作为热轧钢材组织性能在线调控的有效手段,能够充分挖掘钢材潜能、提高钢材细晶强化、析出强化、相变强化的效果,进而改善热轧产品综合性能方面,是开发高强度、高韧性钢材产品的关键工艺技术。而在热轧无缝钢管领域,长期以来在热轧无缝钢管生产过程中,定径后采用空冷方式进行冷却。无缝钢管产品组织调控基本依赖合金元素添加和离线热处理工艺(正火、离线调质等),导致热轧工艺过程除在线常化外,缺乏更为有效的组织调控工艺手段。而近年来,针对热轧无缝钢管圆形断面特征以及产线布置特点,已公开了多种形式的在线控制冷却设备及方法。
然而,对于中厚壁钢管来说,在冷却过程中,由于材料固有的冷却传热物理特性,厚度方向上存在不同程度的温度梯度,从而使得钢管厚度方向上的显微组织存在差异性,影响钢管的性能。
发明内容
有鉴于此,本发明实施例提供一种改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法,主要目的是改善在线冷却工艺中厚壁钢管厚度方向上的组织均匀性。
为达到上述目的,本发明主要提供如下技术方案:
本发明实施例提供了一种改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法,所述方法通过传送辊道、冷却装置、翻管机构和控制***实现,所述传送辊道包括设置于定径机后的直辊道和可变角度的斜辊道,所述直辊道和斜辊道上分别设置有多个高温计和热金属检测器;所述冷却装置设置于所述斜辊道上,且其包括多个平行设置的冷却喷水环;所述翻管机构位于所述直辊道和斜辊道之间;所述控制***分别与所述传送辊道、翻管机构和冷却装置电连接;所述方法包括:
S1、钢管通过定径机后,经直辊道运行至第一金属检测器时,控制***根据轧线下发的钢管规格和冷却工艺信息,计算钢管的首道次冷却规程;
S2、当所述钢管运行至第二金属检测器时,所述控制***控制翻管机构将所述钢管传送至斜辊道,并根据所述首道次冷却规程设定冷却装置中冷却喷水环的开启组态、流量和水压;
S3、当所述钢管运行至第一高温计时,所述控制***根据所述钢管的实时温度重新计算并设定当前道次冷却规程,所述钢管以设定速度正向通过所述冷却装置完成一道次冷却;
S4、当所述钢管运行至第三金属检测器时停止,空冷等待,所述控制***按照下一道次冷却规程设定冷却装置中冷却喷水环的开启组态、流量和水压,空冷结束后,所述钢管在所述斜辊道上以设定速度反向运行;
S5、当所述钢管运行至所述第二高温计时,所述控制***根据所述钢管的实时温度,重新计算并设定该道次冷却规程,所述钢管反向通过所述冷却装置,完成二道次冷却,所述钢管运行至第四金属检测器空冷,并在空冷结束后进行下一道次冷却;
S6、重复步骤S3、S4和S5,直至完成所述控制***确定的冷却道次数,冷后终冷温度、返红温度达到目标工艺要求,所述钢管被传送至冷床。
进一步地,道次间的间隔空冷时间为3-11s;
当所述钢管的壁厚为25-60mm,终冷温度为550-680℃时,所述钢管的冷却速度为5-30℃/s,并且每道次冷却过程中的温降逐次减小;
当所述钢管的壁厚小于45mm时,最后一道次温降小于或等于50℃;
当所述钢管的壁厚大于或等于45mm时,最后一道次温降小于或等于35℃。
进一步地,所述步骤S6中所述控制***确定冷却道次数包括:
所述控制***根据所述钢管的壁厚和冷却工艺,确定所述钢管的冷却道次数,所述钢管的冷却道次数为2-5。
进一步地,所述冷却装置的冷却喷水环通过水配管和调节阀组与分流集水管连通;
所述分流集水管与冷却装置平行布置,且所述分流集水管的长度大于所述冷却装置的长度至少1.5m。
进一步地,所述分流集水管连通有多个旁通管路,所述旁通管路上设置有调节阀,所述调节阀用于调节所述旁通管路的开口度大小。
借由上述技术方案,本发明至少具有以下有益效果:
本发明实施例提供的技术方案,通过控制钢管在斜辊道上往返运行,从而实现通过冷却装置对钢管进行多次冷却,将钢管按照设定的冷却路径冷却至目标温度,实现钢管厚度方向上温度均匀控制,从而提高了钢管厚度方向上的组织均匀性,进而保证了钢管的性能。
附图说明
图1为本发明实施例提供的一种在线冷却***的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的优选实施例中的附图,对本发明实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本发明一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合附图对本发明的实施例进行详细说明。
在本实施例的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实施例保护范围的限制。
本发明实施例提供了一种改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法,用于25-60mm的中厚壁钢管的在线冷却后厚度方向上组织均匀性的改善。如图1所示,该方法通过传送辊道、冷却装置3、翻管机构和控制***实现,传送辊道包括设置于定径机后的直辊道1和可变角度的斜辊道2,直辊道1和斜辊道2上分别设置有多个高温计和热金属检测器;冷却装置3设置于斜辊道2上,且其包括多个平行设置的冷却喷水环;翻管机构位于直辊道1和斜辊道2之间;控制***分别与传送辊道、翻管机构和冷却装置3电连接。
其中,多个高温计可以包括第一高温计4和第二高温计5,二者设置于斜辊道2处,且依次分别位于冷却装置3的前后;多个热金属检测器可以可包括第一热金属检测器6、第二热金属检测器7和第三热金属检测器8和第四热金属检测器9,且第一热金属检测器6和第二热金属检测器7设置于直辊道1处,第三热金属检测器8和第四热金属检测器9设置在斜辊道2处,且依次分别位于第二高温计5之后以及第一高温计4之前;翻管机构位于第二热金属检测器7处,其中,翻管机构可以包括第一翻管机构10和第二翻管机构11,而第一翻管机构10位于第二热金属检测器7处,其中,上述的钢管在线冷却***为现有技术,具体地,该***可以由圆形喷水冷却环组成的环形射流冷却喷水环构成。冷却过程中,控制***根据工艺需要,控制辊道的运行速度、圆形喷环开启数量与开启方式,并调节圆形喷环中冷却水压力和冷却水流量,使钢管以一定的冷速在线控制冷却,冷却效果比较好,且应用范围广泛。
该改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法具体可以包括如下步骤:
S1、钢管通过定径机12后,经直辊道1运行至第一热金属检测器6时,控制***根据轧线下发的钢管规格和冷却工艺信息,计算钢管的首道次冷却规程。
具体地,管坯经穿孔、轧制、定径工序后,进行在线冷却工艺,且钢管在线冷却规程可以包括冷却道次、道次温度、道次冷却速度、道次冷却喷水环开启数量、组态、流量和水压。
S2、当所述钢管运行至第二热金属检测器7时,所述控制***控制翻管机构将所述钢管传送至斜辊道2,并根据所述首道次冷却规程设定冷却装置3中冷却喷水环的开启组态、流量和水压。
S3、当所述钢管运行至第一高温计4时,所述控制***根据所述钢管的实时温度重新计算并设定当前道次冷却规程,所述钢管以设定速度正向通过所述冷却装置3完成一道次冷却。
S4、完成一次冷却后,所述钢管运行至第三热金属检测器8时停止,空冷等待,所述控制***按照下一道次冷却规程设定冷却装置3中冷却喷水环的开启组态、流量和水压,空冷结束后,所述钢管在所述斜辊道2上以设定速度反向运行。
其中,空冷是为了防止钢管的表面过冷,从而更好地改善钢管厚度方向上的组织均匀性。
S5、当所述钢管运行至所述第二高温计5时,所述控制***根据所述钢管的实时温度,重新计算并设定该道次冷却规程,所述钢管反向通过所述冷却装置3,完成二道次冷却,所述钢管运行至第四热金属检测器9空冷,并在空冷结束后进行下一道次冷却。
其中,空冷是为了防止钢管的表面过冷,从而更好地改善钢管厚度方向上的组织均匀性。
S6、重复步骤S3、S4和S5,直至完成所述控制***确定的冷却道次数,冷后终冷温度、返红温度达到目标工艺要求,所述钢管被传送至冷床,具体可以通过第二翻管机构11运送至冷床。
本发明实施例提供的改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法,通过控制钢管在斜辊道2上往返运行,从而实现通过冷却装置3对钢管进行多次冷却,将钢管按照设定的冷却路径冷却至目标温度,实现钢管厚度方向上温度均匀控制,从而提高了钢管厚度方向上的组织均匀性,进而保证了钢管的性能。
本发明中的控制***可控制冷却道次数,喷环水量、道次冷却速度、辊道速度等工艺参数进行灵活调控,使热轧无缝钢管在线控制冷却过程中温度能够得到精准控制,进一步提高冷却效果,提高产品质量。
在一些示例中,道次间的间隔空冷时间为3-11s;当所述钢管的壁厚为25-60mm,终冷温度为550-680℃时,所述钢管的冷却速度为5-30℃/s,并且每道次冷却过程中的温降逐次减小;当所述钢管的壁厚小于45mm时,最后一道次温降小于或等于50℃;当所述钢管的壁厚大于或等于45mm时,最后一道次温降小于或等于35℃,从而更好地改善中厚壁钢管厚度方向上的组织均匀性。
在一些示例中,前述步骤S6中所述控制***确定冷却道次数具体可以包括:控制***根据钢管的壁厚和冷却工艺,确定钢管的冷却道次数,钢管的冷却道次数为2-5。
在一些示例中,冷却装置3的冷却喷水环通过水配管和调节阀组与分流集水管连通;分流集水管与冷却装置3平行布置,且分流集水管的长度大于冷却装置3的长度至少1.5m。
上述实施例中,分流集水管可以为一两端具有盲板的管体结构,其可以通过设置有调节阀的供水管路与冷却喷水环的进水口连通。由于分流集水管在来水时,易在其两端的盲板处形成不稳定的湍流,如果这种湍流进入冷却喷水环内,易导致整个冷却装置3的压力不稳定,为了解决这一技术问题,本发明实施例将分流集水管的长度设置有大于冷却装置3的长度,即二者平行布置时,分流集水管的两端分别超出冷却装置3的两端,从而避免所述的湍流进入冷却喷水环7内,进而保证了冷却装置3的压力稳定性。具体地,分流集水管的长度可以大于冷却装置3的长度至少1.5m。
在一些示例中,在冷却喷水环内设置将其内腔分为进水腔和出水腔的环形隔板,该环形隔板上设置有均布的通流孔,进水腔和出水腔通过通流孔连通,这样的结构设置,能够使得从进水口进入进水腔后,可以经过各个通流孔进行缓冲后再进入出水腔,并通过出水口稳定地喷出,进一步保证了冷却装置336的水压稳定性,从而保证了冷却效果。
在一些示例中,分流集水管连通有多个旁通管路,该旁通管路上设置有调压阀,旁通管路的出口用于与轧沟连通,用于通过调节调节调压阀改变旁通管路的开口大小,以实现分流集水管冷却水压力的调整,保证冷却喷水环出水口的压力稳定。
下面通过具体实施例对本发明进行具体说明。
实施例1
S1:管坯经穿孔、轧制、定径工序后,外径457mm、壁厚30mm的Q345B无缝钢管进行在线冷却工艺,钢管运行至第一热金属检测器6时,控制***接收轧线下发的钢管规格、冷却工艺信息,计算钢管在线冷却规程:辊道速度1.4m/s,采用3道次冷却,道次冷却温降分别为150、100、50℃,冷却水压力0.5MPa,单个冷却喷环流量125m3/h,空冷时间5s;
S2:当钢管运行至第二热金属检测器7后,钢管经第一翻管机构10翻转至可变角度斜辊道2,控制冷却***按照第一道次冷却规程进行冷却喷环开启组态、流量和压力设定,通过分流集水管调整旁管路开口度,调整喷环水压至目标值并稳定控制;
S3:当钢管运行至第一高温计4时,控制冷却***根据钢管实时温度,重新计算并设定当前道次冷却规程,然后钢管按照设定速度正向通过冷却区完成一道次冷却;
S4:完成一次冷却后,钢管运行至第三热金属检测器8停止,空冷等待,控制冷却***按照下一道次冷却规程设定冷却喷环开启组态、流量,调整分流集水管旁通管路开口度,使喷环水压力稳定在目标值,空冷结束后斜辊道2按照设定速度反向运行;
S5:钢管到达第二高温计5时,控制冷却***根据实时温度,重新计算并设定该道次冷却规程。钢管逆向通过冷却区完成一道次冷却,完成二次冷却作业后钢运行至第四热金属检测器9空冷,空冷结束后进行下一道次冷却;
S6:按照控制冷却***计算的工艺规程,重复S3、4和5,直至完成3道次,冷后返红温度在630~660℃范围内,后钢管经下料翻管机构被运送至冷床。
钢管冷却后组织由铁素体珠光体组成,厚度方向由内壁到外壁硬度分别为173、179、181HB,均匀性良好。钢管屈服强度376MPa,抗拉强度552MPa,延伸率为29%。
实施例2
S1:管坯经穿孔、轧制、定径工序后,制成温度为990~1010℃、外径402mm、壁厚60mm的Q345B无缝钢管,钢管运行至第一热金属检测器6时,控制***接收轧线下发的钢管规格、冷却工艺信息,计算钢管在线冷却规程:辊道速度1.2m/s,采用5道次冷却,道次温降分别为120,100、80、60、30℃,冷却水压力0.6MPa,单个冷却喷环流量125m3/h,空冷时间8s;
S2:当钢管运行至第二热金属检测器7后,钢管经第一翻料区回转臂翻转至可变角度斜辊道2,控制冷却***按照第一道次冷却规程进行冷却喷环开启组态、流量和压力设定,通过分流集水管调整旁管路开口度,调整喷环水压至目标值并稳定控制;
S3:当钢管运行至第一高温计4时,控制冷却***根据钢管实时温度,重新计算并设定当前道次冷却规程,然后钢管按照设定速度正向通过冷却区完成一道次冷却;
S4:完成一次冷却后,钢管运行至第三热金属检测器8停止,空冷等待,控制冷却***按照下一道次冷却规程设定冷却喷环开启组态、流量,调整分流集水管旁通管路开口度,使喷环水压力稳定在目标值,空冷结束后斜辊道2按照设定速度逆向运行;
S5:钢管到达第二高温计5时,控制冷却***根据实时温度,重新计算并设定该道次冷却规程。钢管逆向通过冷却区完成一道次冷却,完成二次冷却作业后钢运行至第四热金属检测器9空冷,空冷结束后进行下一道次冷却;
S6:按照控制冷却***计算的工艺规程,重复S3、4和5,直至完成5道次,冷后返红温度在600~630℃范围内,后钢管经下料翻管机构被运送至冷床。
钢管冷却后组织由铁素体珠光体组成,厚度方向由内壁到外壁硬度分别为161、173、179HB,均匀性良好。钢管屈服强度353MPa,抗拉强度542MPa,延伸率为29%。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法,其特征在于,所述方法通过传送辊道、冷却装置、翻管机构和控制***实现,所述传送辊道包括设置于定径机后的直辊道和可变角度的斜辊道,所述直辊道和斜辊道上分别设置有多个高温计和热金属检测器;所述冷却装置设置于所述斜辊道上,且其包括多个平行设置的冷却喷水环;所述翻管机构位于所述直辊道和斜辊道之间;所述控制***分别与所述传送辊道、翻管机构和冷却装置电连接;所述方法包括:
S1、钢管通过定径机后,经直辊道运行至第一金属检测器时,控制***根据轧线下发的钢管规格和冷却工艺信息,计算钢管的首道次冷却规程;
S2、当所述钢管运行至第二金属检测器时,所述控制***控制翻管机构将所述钢管传送至斜辊道,并根据所述首道次冷却规程设定冷却装置中冷却喷水环的开启组态、流量和水压;
S3、当所述钢管运行至第一高温计时,所述控制***根据所述钢管的实时温度重新计算并设定当前道次冷却规程,所述钢管以设定速度正向通过所述冷却装置完成一道次冷却;
S4、当所述钢管运行至第三金属检测器时停止,空冷等待,所述控制***按照下一道次冷却规程设定冷却装置中冷却喷水环的开启组态、流量和水压,空冷结束后,所述钢管在所述斜辊道上以设定速度反向运行;
S5、当所述钢管运行至第二高温计时,所述控制***根据所述钢管的实时温度,重新计算并设定该道次冷却规程,所述钢管反向通过所述冷却装置,完成二道次冷却,所述钢管运行至第四金属检测器空冷,并在空冷结束后进行下一道次冷却;
S6、重复步骤S3、S4和S5,直至完成所述控制***确定的冷却道次数,冷后终冷温度、返红温度达到目标工艺要求,所述钢管被传送至冷床。
2.根据权利要求1所述的控制方法,其特征在于,
道次间的间隔空冷时间为3-11s;
当所述钢管的壁厚为25-60mm,终冷温度为550-680℃时,所述钢管的冷却速度为5-30℃/s,并且每道次冷却过程中的温降逐次减小;
当所述钢管的壁厚小于45mm时,最后一道次温降小于或等于50℃;
当所述钢管的壁厚大于或等于45mm时,最后一道次温降小于或等于35℃。
3.根据权利要求1所述的控制方法,其特征在于,所述步骤S6中所述控制***确定冷却道次数包括:
所述控制***根据所述钢管的壁厚和冷却工艺,确定所述钢管的冷却道次数,所述钢管的冷却道次数为2-5。
4.根据权利要求1所述的控制方法,其特征在于,
所述冷却装置的冷却喷水环通过水配管和调节阀组与分流集水管连通;
所述分流集水管与冷却装置平行布置,且所述分流集水管的长度大于所述冷却装置的长度至少1.5m。
5.根据权利要求4所述的控制方法,其特征在于,
所述分流集水管连通有多个旁通管路,所述旁通管路上设置有调节阀,所述调节阀用于调节所述旁通管路的开口度大小。
CN202010356777.7A 2020-04-29 2020-04-29 改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法 Active CN111589880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010356777.7A CN111589880B (zh) 2020-04-29 2020-04-29 改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010356777.7A CN111589880B (zh) 2020-04-29 2020-04-29 改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法

Publications (2)

Publication Number Publication Date
CN111589880A CN111589880A (zh) 2020-08-28
CN111589880B true CN111589880B (zh) 2021-09-28

Family

ID=72190985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010356777.7A Active CN111589880B (zh) 2020-04-29 2020-04-29 改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法

Country Status (1)

Country Link
CN (1) CN111589880B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116727462B (zh) * 2023-08-15 2023-12-05 江苏宏宝优特管业制造有限公司 一种热轧无缝钢管的冷却控制方法及***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951589A (zh) * 2006-11-21 2007-04-25 东北大学 一种无缝钢管的在线冷却方法
CN101396695A (zh) * 2008-08-26 2009-04-01 刘彦春 一种热轧无缝钢管在线加速冷却装置及方法
CN101642780A (zh) * 2009-06-05 2010-02-10 中冶赛迪工程技术股份有限公司 一种中间坯冷却***及冷却控制工艺
CN101829688A (zh) * 2010-05-28 2010-09-15 北京科技大学 一种中厚板控制轧制中间坯的冷却方法
CN104226699A (zh) * 2014-08-21 2014-12-24 南京钢铁股份有限公司 一种层流冷却正、负反馈的闭环控制方法
CN106269931A (zh) * 2016-10-25 2017-01-04 东北大学 一种热轧无缝钢管在线连续冷却的方法
CN107971345A (zh) * 2016-10-25 2018-05-01 宝山钢铁股份有限公司 钢管在线冷却的过程控制***和控制方法
CN107971351A (zh) * 2016-10-25 2018-05-01 宝山钢铁股份有限公司 用于钢管在线冷却的生产装置和生产方法
CN107971346A (zh) * 2016-10-25 2018-05-01 宝山钢铁股份有限公司 一种钢管定径机终轧后控冷方法及专用装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951589A (zh) * 2006-11-21 2007-04-25 东北大学 一种无缝钢管的在线冷却方法
CN101396695A (zh) * 2008-08-26 2009-04-01 刘彦春 一种热轧无缝钢管在线加速冷却装置及方法
CN101642780A (zh) * 2009-06-05 2010-02-10 中冶赛迪工程技术股份有限公司 一种中间坯冷却***及冷却控制工艺
CN101829688A (zh) * 2010-05-28 2010-09-15 北京科技大学 一种中厚板控制轧制中间坯的冷却方法
CN104226699A (zh) * 2014-08-21 2014-12-24 南京钢铁股份有限公司 一种层流冷却正、负反馈的闭环控制方法
CN106269931A (zh) * 2016-10-25 2017-01-04 东北大学 一种热轧无缝钢管在线连续冷却的方法
CN107971345A (zh) * 2016-10-25 2018-05-01 宝山钢铁股份有限公司 钢管在线冷却的过程控制***和控制方法
CN107971351A (zh) * 2016-10-25 2018-05-01 宝山钢铁股份有限公司 用于钢管在线冷却的生产装置和生产方法
CN107971346A (zh) * 2016-10-25 2018-05-01 宝山钢铁股份有限公司 一种钢管定径机终轧后控冷方法及专用装置

Also Published As

Publication number Publication date
CN111589880A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
CN201357174Y (zh) 一种层流分段冷却装置
CN106269931B (zh) 一种热轧无缝钢管在线连续冷却的方法
CN104884182B (zh) 热轧钢带的冷却方法及冷却装置
CN107971345B (zh) 钢管在线冷却的过程控制***和控制方法
CN106311776B (zh) 一种中间坯倾斜喷射流冷却及板形控制方法
WO2021218357A1 (zh) 热轧无缝钢管在线冷却***及冷却装置在其上的布置方法
CN112877513B (zh) 一种中厚板的在线淬火方法
CN109848221B (zh) 一种热连轧轧制全流程负荷分配方法
CN106311763A (zh) 一种热轧无缝钢管控制冷却用环形射流冷却装置
CN111589880B (zh) 改善中厚壁无缝钢管在线冷却工艺组织均匀性的控制方法
CN109174981A (zh) 一种热连轧中间坯冷却装置及其使用方法
CN111069308A (zh) 一种改善中厚板在线加速冷却均匀性方法
CN115193911A (zh) 基于变形温度协同控制的棒材短流程生产方法
CN111215447A (zh) 一种降低多切分螺纹钢切分线差的工艺方法
CN108907131B (zh) 一种降低板坯连铸头尾坯表面裂纹的二冷控制方法
CN111492071A (zh) 厚钢板的冷却装置及冷却方法以及厚钢板的制造设备及制造方法
CN111589879B (zh) 改善厚壁无缝钢管在线冷却工艺组织均匀性的控制方法
EP3825019B1 (en) Cooling device for hot-rolled steel sheet and cooling method of hot-rolled steel sheet
CN201375992Y (zh) 一种冷却装置
CN212238631U (zh) 热轧无缝钢管在线冷却***
CN101811144A (zh) 一种层流水冷却装置及控制方法
CN206153295U (zh) 一种热轧无缝钢管控制冷却用环形射流冷却装置
CN113245381B (zh) 一种无缝钢管定径后的在线冷却***及其冷却方法
JPS62130222A (ja) 熱鋼板の冷却方法及び装置
JPS6233005B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant