CN111569073A - 一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法 - Google Patents

一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法 Download PDF

Info

Publication number
CN111569073A
CN111569073A CN202010555918.8A CN202010555918A CN111569073A CN 111569073 A CN111569073 A CN 111569073A CN 202010555918 A CN202010555918 A CN 202010555918A CN 111569073 A CN111569073 A CN 111569073A
Authority
CN
China
Prior art keywords
photosensitizer
prussian blue
manganese
mesoporous prussian
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010555918.8A
Other languages
English (en)
Inventor
张良珂
张蓥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN202010555918.8A priority Critical patent/CN111569073A/zh
Publication of CN111569073A publication Critical patent/CN111569073A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/32Manganese; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种负载光敏剂的普鲁士蓝‑锰纳米粒及其制备方法。该纳米粒具有优良的光热转换率,在激光照射条件下可以产生光热治疗效果,同时激活光敏剂产生活性氧,起到光动力治疗作用,还可以释放一氧化氮,产生气体疗法效果。并且,纳米结构中引入了锰,有望改善肿瘤部位乏氧环境,增强光动力治疗效果。本次构建的负载光敏剂的普鲁士蓝‑锰纳米粒有望通过光热治疗、光动力治疗和一氧化氮治疗的联合应用,提高对肿瘤的治疗效果。

Description

一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法
技术领域
本发明属于医药技术领域,具体涉及一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法。
背景技术
目前,大部分抗癌药物体内注射后出现非靶向释放,且在肿瘤部位浓度较低,导致常规化疗产生严重的副作用,治疗效果不佳。在过去几十年中,光动力疗法(PhotodynamicTherapy,PDT)和光热治疗(Photothermal Therapy,PTT)已经逐渐成为临床研究和实践中有效的肿瘤治疗方法。PDT通过特定波长的光激活光敏剂(Photosensitizer,PS),激发后的PS将能量传递给周围的氧气分子,产生可杀伤肿瘤细胞的活性氧物质(Reactive OxygenSpecies,ROS),其中包括单线态氧(1O2)、羟基自由基(·OH)和超氧阴离子(O2 -),从而起到对肿瘤的杀灭作用。PTT主要是借助于各种靶向技术将纳米光热材料聚集在肿瘤组织处,然后利用具有较强组织穿透力的外部光源(目前研究较多的是近红外光)辐射肿瘤组织,将外部光源的光通过纳米光热材料转换为热能,从而使肿瘤组织局部温度升高,进而杀灭肿瘤细胞达到***的目的。吲哚菁绿(ICG)作为一种近红外(NIR)吸收染料,已获得美国食品及药物管理局(FDA)批准使用。其衍生物包括IR780,IR820对近红外光有强烈吸收,可用作光敏剂用于光动力疗法。
一氧化氮(NO)是一种重要的内源性气体介质,参与多种与心血管稳态相关的生理和生物途径,免疫反应,神经传递,细胞凋亡等过程。肿瘤细胞内高浓度(微摩尔浓度)的NO可抑制肿瘤细胞DNA修复,消耗肿瘤细胞内还原型谷胱甘肽,诱导组蛋白的谷胱甘肽化,抑制缺氧诱导因子(Hypoxia-induced Factors,HIF),激活p53基因表达,诱导肿瘤细胞发生凋亡,从而起到抑制肿瘤生长、诱导肿瘤细胞凋亡甚至杀伤肿瘤细胞的作用。同时研究表明,NO可以与O2 -反应生成细胞毒性更强的活性氮物质(Reactive Nitrogen Species,RNS),其中包括过氧亚硝酸盐(ONOO-),二氧化氮和亚硝基硫醇。
硝普钠(Sodium Nitroprussude,SNP)是一种在临床上用于扩张血管的降压药,化学结构中含有[Fe(CN)5NO]2-,在机体中分解释放一氧化氮,可作为NO供体。普鲁士蓝(Prussian Blue,PB)是一种六氰合铁酸的混合价铁,被用于放射性中毒的治疗。基于PB的材料具有独特的性质,如在近红外区域具有强吸收,磁性,沸石特性,半导体行为,良好的生物相容性等。由于肿瘤组织具有缺氧,低pH、高H2O2浓度的特点,在纳米粒结构中引入MnO2,可与肿瘤组织的H2O2反应产生Mn2+和O2,改善肿瘤部位乏氧环境,增强PDT效果。
我们成功制备出一种负载光敏剂的介孔普鲁士蓝-锰纳米粒,一方面在NIR激光照射下,纳米粒可以通过优异的光热转换诱导肿瘤细胞的热消融以及裂解结构中的Fe-NO配位键从而产生游离NO分子,同时被激发的光敏剂产生ROS,进而O2 -与NO分子反应生成对肿瘤细胞杀伤作用更强的ONOO-;另一方面结构中掺杂的MnO2不仅可以控制纳米粒的粒径,还能和肿瘤细胞内的H2O2反应产生氧气,提高PDT效果。相比于传统单一的PTT或PDT,本次构建的纳米粒有望通过PTT,PDT和NO疗法,提高对肿瘤的治疗效果。
发明内容
本发明的目的在于弥补传统化疗的毒副作用大、易产生耐药性等不足,实现光热治疗、光动治疗和NO疗法的联合应用。该纳米体系以普鲁士蓝-锰为载体,负载光敏剂,其纳米载体结构中通过配位键结合了NO和MnO2结构。在NIR激光照射后,该纳米粒对肿瘤细胞可产生光热治疗,光动治疗和一氧化氮治疗的效果,同时MnO2与H2O2生成的氧气可以提高肿瘤部位的氧气浓度,增强治疗作用。
本发明的目的可以通过以下技术方案实现:
步骤1:取适量的铁***、硝普钠、聚乙烯吡咯烷酮和盐酸溶液于烧瓶中,另取适量的高锰酸钾用一定量的盐酸溶液溶解后,再加入烧瓶中混合。避光室温搅拌15min后,将其置于80℃水浴锅中,避光搅拌反应,离心后将沉淀用水洗涤三次,得到介孔普鲁士蓝-锰纳米粒;
步骤2:将步骤(1)所得介孔普鲁士蓝-锰纳米粒用去离子水分散,加入一定量的光敏剂,室温下避光搅拌14h,离心后将沉淀用水洗涤三次,得到负载光敏剂的介孔普鲁士蓝-锰纳米粒。
作为本发明的进一步改进,步骤(1)具体为:取7.5~120mg铁***、61.1~977.5mg硝普钠、0.375~6g聚乙烯吡咯烷酮和4~72mL盐酸溶液(0.1mol/L)于烧瓶中,另取3.1~50mg高锰酸钾用1~8mL盐酸溶液溶解后,再加入烧瓶中混合。避光室温搅拌15min后,将其置于80℃水浴锅中,避光搅拌反应2h~24h,离心后将沉淀用水洗涤三次,得到介孔普鲁士蓝-锰纳米粒。
作为本发明的进一步改进,步骤(2)具体为:取12.5mg步骤(1)所得介孔普鲁士蓝-锰纳米粒用去离子水分散,加入1.5mg光敏剂,室温下避光搅拌14h,离心后将沉淀用水洗涤三次,得到负载光敏剂的介孔普鲁士蓝-锰纳米粒。
本发明通过“一锅法”制备出介孔普鲁士蓝-锰纳米粒,进一步成功制备了负载光敏剂的介孔普鲁士蓝-锰纳米粒,该纳米粒具有制备工艺简单、重复性好、生物相容性好以及改善肿瘤微环境的特点。
本发明的优点:本发明所制备出的介孔普鲁士蓝-锰纳米粒具有粒径小、分散性好、稳定性高以及优良的光热转换效率的优点。在激光照射后,纳米粒能通过光热转换效果和一氧化氮杀伤肿瘤细胞,同时负载的光敏剂在激光激发后产生光动治疗效果。通过普鲁士蓝-锰纳米粒结构中的MnO2与肿瘤微环境相互作用,改善肿瘤乏氧环境,进一步增强光动疗法疗效。
附图说明
图1为负载光敏剂的介孔普鲁士蓝-锰纳米粒的外观图
图2为负载光敏剂的介孔普鲁士蓝-锰纳米粒的透射电镜图
图3为负载光敏剂的介孔普鲁士蓝-锰纳米粒的粒径分布图
图4为负载光敏剂的介孔普鲁士蓝-锰纳米粒的体外光热效果图
图5为负载光敏剂的介孔普鲁士蓝-锰纳米粒的体外产生活性氧图
图6为负载光敏剂的介孔普鲁士蓝-锰纳米粒的体外释放NO图
图7为不同浓度负载光敏剂的介孔普鲁士蓝-锰纳米粒对肿瘤细胞的抑制作用图
具体实施方式
以下通过实施例对本发明进一步详细说明:
实施例1
本实施例为负载光敏剂的介孔普鲁士蓝-锰纳米粒的制备方法,包括以下步骤:
(1)取7.5mg铁***、61.1mg硝普钠、0.375g聚乙烯吡咯烷酮和4mL盐酸溶液(0.1mol/L)于烧瓶中,另取3.1mg高锰酸钾用1mL盐酸溶液(0.1mol/L)溶解后,再加入烧瓶中混合。避光室温搅拌15min后,将其置于80℃水浴锅中,避光搅拌反应2h,离心后将沉淀用水洗涤三次,得到介孔普鲁士蓝-锰纳米粒;
(2)取12.5mg步骤(1)所得介孔普鲁士蓝-锰纳米粒用去离子水分散,加入1.5mgIR820,室温下避光搅拌14h,离心后将沉淀用水洗涤三次,得到负载光敏剂的介孔普鲁士蓝-锰纳米粒。
实施例2
本实施例为负载光敏剂的介孔普鲁士蓝-锰纳米粒的制备方法,包括以下步骤:
(1)取60mg铁***、488.7mg硝普钠、3g聚乙烯吡咯烷酮和36mL盐酸溶液(0.1mol/L)于烧瓶中,另取25mg高锰酸钾用4mL盐酸溶液(0.1mol/L)溶解后,再加入烧瓶中混合。避光室温搅拌15min后,将其置于80℃水浴锅中,避光搅拌反应2h,离心后将沉淀用水洗涤三次,得到介孔普鲁士蓝-锰纳米粒;
(2)取12.5mg步骤(1)所得介孔普鲁士蓝-锰纳米粒用去离子水分散,加入1.5mgIR820,室温下避光搅拌14h,离心后将沉淀用水洗涤三次,得到负载光敏剂的介孔普鲁士蓝-锰纳米粒。
实施例3
本实施例为负载光敏剂的介孔普鲁士蓝-锰纳米粒的制备方法,包括以下步骤:
(1)取60mg铁***、488.7mg硝普钠、3g聚乙烯吡咯烷酮和36mL盐酸溶液(0.1mol/L)于烧瓶中,另取25mg高锰酸钾用4mL盐酸溶液(0.1mol/L)溶解后,再加入烧瓶中混合。避光室温搅拌15min后,将其置于80℃水浴锅中,避光搅拌反应24h,离心后将沉淀用水洗涤三次,得到介孔普鲁士蓝-锰纳米粒;
(2)取12.5mg步骤(1)所得介孔普鲁士蓝-锰纳米粒用去离子水分散,加入1.5mgIR820,室温下避光搅拌14h,离心后将沉淀用水洗涤三次,得到负载光敏剂的介孔普鲁士蓝-锰纳米粒。
实施例4
本实施例为负载光敏剂的介孔普鲁士蓝-锰纳米粒的制备方法,包括以下步骤:
(1)取120mg铁***、977.4mg硝普钠、6g聚乙烯吡咯烷酮和72mL盐酸溶液(0.1mol/L)于烧瓶中,另取50mg高锰酸钾用8mL盐酸溶液(0.1mol/L)溶解后,再加入烧瓶中混合。避光室温搅拌15min后,将其置于80℃水浴锅中,避光搅拌反应2h,离心后将沉淀用水洗涤三次,得到介孔普鲁士蓝-锰纳米粒;
(2)取12.5mg步骤(1)所得介孔普鲁士蓝-锰纳米粒用去离子水分散,加入1.5mgIR820,室温下避光搅拌14h,离心后将沉淀用水洗涤三次,得到负载光敏剂的介孔普鲁士蓝-锰纳米粒。
实施例5
本实施例为负载光敏剂的介孔普鲁士蓝-锰纳米粒的制备方法,包括以下步骤:
(1)取120mg铁***、977.4mg硝普钠、6g聚乙烯吡咯烷酮和72mL盐酸溶液(0.1mol/L)于烧瓶中,另取50mg高锰酸钾用8mL盐酸溶液(0.1mol/L)溶解后,再加入烧瓶中混合。避光室温搅拌15min后,将其置于80℃水浴锅中,避光搅拌反应24h,离心后将沉淀用水洗涤三次,得到介孔普鲁士蓝-锰纳米粒;
(2)取12.5mg步骤(1)所得介孔普鲁士蓝-锰纳米粒用去离子水分散,加入1.5mgIR820,室温下避光搅拌14h,离心后将沉淀用水洗涤三次,得到负载光敏剂的介孔普鲁士蓝-锰纳米粒。
实施例6
所制备出负载光敏剂的介孔普鲁士蓝-锰纳米粒的外观如图1所示;透射电镜照片如图2所示;粒径检测结果如图3所示。由图可知,负载光敏剂的介孔普鲁士蓝-锰纳米粒形状呈圆型,粒径较小且分布均匀,平均粒径为100nm左右。
实施例7
用功率密度为1.5W/cm2的808nm激光照射负载光敏剂的介孔普鲁士蓝-锰纳米粒混悬液(0.2mg/mL),记录照射10分钟内的温度变化。结果如图4所示,负载光敏剂的介孔普鲁士蓝-锰纳米粒混悬液随着激光照射时间的增加,温度逐渐上升,表明该纳米粒具有良好的光热转换性能。
实施例8
将负载光敏剂的介孔普鲁士蓝-锰纳米粒混悬液与1,3-二苯基异苯并呋喃(DPBF)混合,用不同的激光照射时间处理混合液,然后用紫外可见分光光度计检测DPBF在455nm处的吸光度值。结果如图5所示,通过激光照射后,混合液中的DPBF在455nm处的吸光度值明显下降,表明负载光敏剂的介孔普鲁士蓝-锰纳米粒在激光照射条件下可以产生活性氧,并且随着照射时间的延长,下降越明显,说明产生活性氧的量也在逐渐增加。
实施例9
用功率密度为2.0W/cm2的808nm激光照射负载光敏剂的介孔普鲁士蓝-锰纳米粒混悬液(1mg/mL),照射时间20分钟,再离心后取上清液,通过Griess法测量NO的释放量。结果如图6所示,负载光敏剂的介孔普鲁士蓝-锰纳米粒可以在激光照射条件下释放NO,且随着照射时间的延长,NO的释放量也逐渐增加。
实施例10
采用MTT法考察负载光敏剂的介孔普鲁士蓝-锰纳米粒在激光照射下对4T1细胞的抑制作用。将处于对数生长期的4T1细胞以每孔5×103个的数量接种于96孔板中,在37℃、5%CO2培养箱中培养18h后至细胞贴壁。空白组为不含药物的培养液,实验组为含有不同浓度负载光敏剂的介孔普鲁士蓝-锰纳米粒的细胞培养液,每组浓度设置6个复孔,培养24h后。实验组每孔给予1.0W/cm2的激光照射5分钟。每孔再重新加入MTT(1mg/mL),于细胞培养箱中孵育4h,弃去培养液,每孔加入150μL DMSO,振摇20min后,用酶标仪测定波长490nm处的吸光值。结果如图7所示,在激光照射后负载光敏剂的介孔普鲁士蓝-锰纳米粒对4T1肿瘤细胞有显著的抑制作用。

Claims (5)

1.一种负载光敏剂的介孔普鲁士蓝-锰纳米粒,其特征在于制剂中各组分重量百分比为:铁***20~40份,硝普钠300~500份,聚乙烯吡咯烷酮1000~3000份,高锰酸钾10~30份,光敏剂1~3份;
该负载光敏剂的介孔普鲁士蓝-锰纳米粒的制备方法包括,
步骤(1),取适量的铁***、硝普钠、聚乙烯吡咯烷酮和盐酸溶液于烧瓶中,另取适量的高锰酸钾用盐酸溶液溶解后,再加入烧瓶中混合,避光室温搅拌15min后,将其置于80℃水浴锅中,避光搅拌反应,离心后将沉淀用水洗涤三次,得到介孔普鲁士蓝-锰纳米粒;
步骤(2),将步骤(1)所得介孔普鲁士蓝-锰纳米粒用去离子水分散,加入光敏剂,室温下避光搅拌14小时,离心后将沉淀用水洗涤三次,得到负载光敏剂的介孔普鲁士蓝-锰纳米粒。
2.如权利要求1所述的负载光敏剂的介孔普鲁士蓝-锰纳米粒的制备方法,其特征在于,所述步骤(1)中,所述避光搅拌反应的时间为2h~24h。
3.如权利要求1所述的负载光敏剂的介孔普鲁士蓝-锰纳米粒的制备方法,其特征在于,所述步骤(1)中,所述盐酸溶液的浓度为0.01mol/L~0.2mol/L。
4.如权利要求1所述的负载光敏剂的介孔普鲁士蓝-锰纳米粒的制备方法,其特征在于,所述步骤(2)中,所述光敏剂为IR820,IR780,二氢卟吩e6(Ce6)的一种或两种以上的混合物。
5.如权利要求1所述的负载光敏剂的介孔普鲁士蓝-锰纳米粒,其特征在于,所述纳米粒平均粒径为50nm-300nm。
CN202010555918.8A 2020-06-17 2020-06-17 一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法 Pending CN111569073A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010555918.8A CN111569073A (zh) 2020-06-17 2020-06-17 一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010555918.8A CN111569073A (zh) 2020-06-17 2020-06-17 一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法

Publications (1)

Publication Number Publication Date
CN111569073A true CN111569073A (zh) 2020-08-25

Family

ID=72110029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010555918.8A Pending CN111569073A (zh) 2020-06-17 2020-06-17 一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法

Country Status (1)

Country Link
CN (1) CN111569073A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113384699A (zh) * 2021-06-13 2021-09-14 重庆医科大学 一种负载亚硝基谷胱甘肽的卟啉金属有机框架纳米粒
CN113827722A (zh) * 2021-08-04 2021-12-24 中国科学院大学温州研究院(温州生物材料与工程研究所) 一种可控制备onoo-的纳米粒子及其制备方法与应用
CN113827724A (zh) * 2021-09-29 2021-12-24 郑州大学 载药普鲁士蓝@锰纤维蛋白复合凝胶及制备方法、应用
CN114950533A (zh) * 2022-03-21 2022-08-30 湖南农业大学 普鲁士蓝纳米花的制备方法及应用、纳米花结构调节方法
CN115252775A (zh) * 2022-05-11 2022-11-01 华南师范大学 一种基于聚乙烯亚胺和普鲁士蓝的肿瘤纳米药物及其制备方法和应用
CN116421735A (zh) * 2023-06-12 2023-07-14 中南大学 硝普钠缀合的载药普鲁士蓝及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108785673A (zh) * 2018-07-06 2018-11-13 重庆医科大学 一种硝普钠缀合的载药普鲁士蓝类似物纳米光热治疗剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108785673A (zh) * 2018-07-06 2018-11-13 重庆医科大学 一种硝普钠缀合的载药普鲁士蓝类似物纳米光热治疗剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATHEER HAMEID ODDA等: ""Polydopamine Coated PB-MnO2 Nanoparticles as an Oxygen Generator Nanosystem for Imaging-Guided Single-NIR-Laser Triggered Synergistic Photodynamic/Photothermal Therapy"", 《BIOCONJUGATE CHEM.》, vol. 31, 14 April 2020 (2020-04-14), pages 1475 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113384699A (zh) * 2021-06-13 2021-09-14 重庆医科大学 一种负载亚硝基谷胱甘肽的卟啉金属有机框架纳米粒
CN113384699B (zh) * 2021-06-13 2023-08-25 重庆医科大学 一种负载亚硝基谷胱甘肽的卟啉金属有机框架纳米粒
CN113827722A (zh) * 2021-08-04 2021-12-24 中国科学院大学温州研究院(温州生物材料与工程研究所) 一种可控制备onoo-的纳米粒子及其制备方法与应用
CN113827724A (zh) * 2021-09-29 2021-12-24 郑州大学 载药普鲁士蓝@锰纤维蛋白复合凝胶及制备方法、应用
CN113827724B (zh) * 2021-09-29 2022-09-23 郑州大学 载药普鲁士蓝@锰纤维蛋白复合凝胶及制备方法、应用
CN114950533A (zh) * 2022-03-21 2022-08-30 湖南农业大学 普鲁士蓝纳米花的制备方法及应用、纳米花结构调节方法
CN114950533B (zh) * 2022-03-21 2023-10-20 湖南农业大学 普鲁士蓝纳米花的制备方法及应用、纳米花结构调节方法
CN115252775A (zh) * 2022-05-11 2022-11-01 华南师范大学 一种基于聚乙烯亚胺和普鲁士蓝的肿瘤纳米药物及其制备方法和应用
CN115252775B (zh) * 2022-05-11 2024-02-09 华南师范大学 一种基于聚乙烯亚胺和普鲁士蓝的肿瘤纳米药物及其制备方法和应用
CN116421735A (zh) * 2023-06-12 2023-07-14 中南大学 硝普钠缀合的载药普鲁士蓝及其制备方法与应用
CN116421735B (zh) * 2023-06-12 2023-09-05 中南大学 硝普钠缀合的载药普鲁士蓝及其制备方法与应用

Similar Documents

Publication Publication Date Title
Lan et al. Nanoscale metal–organic frameworks for phototherapy of cancer
CN111569073A (zh) 一种负载光敏剂的介孔普鲁士蓝-锰纳米粒及其制备方法
Gao et al. Self‐supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy
Meng et al. Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy
Guo et al. Mito‐bomb: targeting mitochondria for cancer therapy
Zhang et al. Phase‐change materials based nanoparticles for controlled hypoxia modulation and enhanced phototherapy
Wan et al. Conquering the hypoxia limitation for photodynamic therapy
Wu et al. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy
Zhou et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy
Yu et al. Porphyrin‐based Metal− organic framework compounds as promising nanomedicines in photodynamic therapy
Wang et al. Mini review of TiO2‐based multifunctional nanocomposites for near‐infrared light–responsive phototherapy
Yang et al. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy
Xiao et al. State of the art advancements in sonodynamic therapy (SDT): Metal-Organic frameworks for SDT
CN109602919B (zh) 一种核壳金属有机框架包覆的黑磷量子点及其制备方法与应用
Chen et al. A Dual‐Nanozyme‐Catalyzed Cascade Reactor for Enhanced Photodynamic Oncotherapy against Tumor Hypoxia
Jiang et al. Tumor microenvironment-responsive MnSiO3-Pt@ BSA-Ce6 nanoplatform for synergistic catalysis-enhanced sonodynamic and chemodynamic cancer therapy
Wang et al. Photo-enhanced singlet oxygen generation of prussian blue-based nanocatalyst for augmented photodynamic therapy
CN110101858B (zh) 一种铂@聚多巴胺-二氢卟吩纳米复合材料及其制备方法和应用
CN112245579B (zh) 一种缓解肿瘤乏氧的光动力治疗剂及其制备方法和应用
Xu et al. MOF-based nanomedicines inspired by structures of natural active components
Cheng et al. 4-in-1 Fe3O4/g-C3N4@ PPy-DOX nanocomposites: magnetic targeting guided trimode combinatorial chemotherapy/PDT/PTT for cancer
Wang et al. Co-delivery of enzymes and photosensitizers via metal-phenolic network capsules for enhanced photodynamic therapy
Yao et al. π–π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework
CN113384699B (zh) 一种负载亚硝基谷胱甘肽的卟啉金属有机框架纳米粒
Zhang et al. Regulation of zeolite-derived upconversion photocatalytic system for near infrared light/ultrasound dual-triggered multimodal melanoma therapy under a boosted hypoxia relief tumor microenvironment via autophagy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200825

RJ01 Rejection of invention patent application after publication