CN111567077A - 多带宽部分环境中的波束恢复 - Google Patents

多带宽部分环境中的波束恢复 Download PDF

Info

Publication number
CN111567077A
CN111567077A CN201880085682.7A CN201880085682A CN111567077A CN 111567077 A CN111567077 A CN 111567077A CN 201880085682 A CN201880085682 A CN 201880085682A CN 111567077 A CN111567077 A CN 111567077A
Authority
CN
China
Prior art keywords
bandwidth portion
carrier
random access
emergency
access procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880085682.7A
Other languages
English (en)
Inventor
程鹏
魏超
张煜
徐皓
L·何
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN111567077A publication Critical patent/CN111567077A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

描述了用于在多带宽部分环境中的无线通信的方法、***和设备。响应于活跃带宽部分中的服务波束故障,UE可确定由活跃带宽部分提供的对随机接入规程的支持水平,并且可确定支持随机接入规程的应急(例如,后备)带宽部分。在一些情形中,UE可将应急带宽标识为由UE用于先前随机接入规程的初始带宽部分。在一些情形中,基站可向UE发送对应急带宽部分的显式指示。在一些情形中,UE可基于参考信号来标识应急带宽部分。在确定应急带宽部分之际,UE可使用应急带宽部分来执行随机接入规程。

Description

多带宽部分环境中的波束恢复
背景技术
以下一般涉及无线通信,尤其涉及多带宽部分环境中的波束恢复。
无线通信***被广泛部署以提供各种类型的通信内容,诸如语音、视频、分组数据、消息接发、广播等等。这些***可以能够通过共享可用的***资源(例如,时间、频率和功率)来支持与多个用户的通信。此类多址***的示例包括***(4G)***(诸如长期演进(LTE)***、高级LTE(LTE-A)***或LTE-A Pro***)、以及可被称为新无线电(NR)***的第五代(5G)***。这些***可采用各种技术,诸如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)、或离散傅立叶变换扩展OFDM(DFT-S-OFDM)。无线多址通信***可包括数个基站或网络接入节点,每个基站或网络接入节点同时支持多个通信设备的通信,这些通信设备可另外被称为用户装备(UE)。
在一些无线通信***中,个体载波可被细分为多个部分,每个部分具有比载波带宽更小的带宽,此类部分可被称为带宽部分。一些基站和UE还可使用波束进行通信,这还可被称为定向传输。用于在多带宽部分环境中的波束恢复的***和技术是期望的。
概述
所描述的技术涉及支持在多带宽部分环境中的波束恢复的改进的方法、***、设备或装置。通常,所描述的技术提供了用户装备(UE)确定载波的应急带宽部分,在该载波的活跃带宽部分中的服务波束故障的情况下,UE可使用该应急带宽部分来执行随机接入规程。
UE可最初在第一带宽部分中与基站建立无线通信,该第一带宽部分可被称为初始带宽部分。此后,基站可将UE配置成将不同带宽部分用于与基站的无线通信。由UE在给定时间使用的带宽部分可被称为活跃带宽部分。响应于活跃带宽部分中的服务波束故障,UE可确定由活跃带宽部分提供的对随机接入规程的支持水平,并且可确定支持随机接入规程的应急(例如,后备)带宽部分。在一些情形中,UE可将应急带宽标识为初始带宽部分。在一些情形中,基站可向UE发送对应急带宽部分的显式指示。在一些情形中,UE可基于参考信号来标识应急带宽部分。在确定应急带宽部分之际,UE可使用应急带宽部分来执行随机接入规程。
描述了一种在用户装备UE处进行无线通信的方法。该方法可包括:标识由UE用于无线通信的载波的活跃带宽部分中的服务波束的故障;针对载波的活跃带宽部分,确定对随机接入规程的支持水平;至少部分地基于服务波束的故障和支持水平来确定支持随机接入规程的载波的应急带宽部分;以及使用该载波的应急带宽部分来执行随机接入规程。
描述了一种用于在用户装备UE处进行无线通信的装备。该装备可包括:用于标识由UE用于无线通信的载波的活跃带宽部分中的服务波束的故障的装置;用于针对载波的活跃带宽部分,确定对随机接入规程的支持水平的装置;用于至少部分地基于服务波束的故障和支持水平来确定支持随机接入规程的载波的应急带宽部分的装置;以及用于使用该载波的应急带宽部分来执行随机接入规程的装置。
描述了一种用于在用户装备UE处进行无线通信的另一装置。该装置可包括处理器、与该处理器处于电子通信的存储器、以及存储在该存储器中的指令。这些指令可操作用于使处理器:标识由UE用于无线通信的载波的活跃带宽部分中的服务波束的故障;针对载波的活跃带宽部分,确定对随机接入规程的支持水平;至少部分地基于服务波束的故障和支持水平来确定支持随机接入规程的载波的应急带宽部分;以及使用该载波的应急带宽部分来执行随机接入规程。
描述了一种用于在用户装备UE处进行无线通信的非瞬态计算机可读介质。该非瞬态计算机可读介质可包括可操作用于使得处理器执行以下操作的指令:标识由UE用于无线通信的载波的活跃带宽部分中的服务波束的故障;针对载波的活跃带宽部分,确定对随机接入规程的支持水平;至少部分地基于服务波束的故障和支持水平来确定支持随机接入规程的载波的应急带宽部分;以及使用该载波的应急带宽部分来执行随机接入规程。
上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于经由接收机从基站接收配置信息以及至少部分地基于该配置信息来将接收机或发射机配置成使用载波的活跃带宽部分的过程、特征、装置或指令。
上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于至少部分地基于确定载波的应急带宽部分来将接收机或发射机配置成使用该载波的应急带宽部分的过程、特征、装置或指令。
上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于至少部分基于先前随机接入规程来确定载波的应急带宽部分的过程、特征、装置或指令。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,确定载波的应急带宽部分包括标识如用于先前随机接入规程的载波的初始带宽部分。上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于将载波的应急带宽部分确定为载波的初始带宽部分的过程、特征、装置或指令。
上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于从基站接收对载波的应急带宽部分的指示的过程、特征、装置或指令。
上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于经由无线电资源控制(RRC)信令接收对载波的应急带宽部分的指示的过程、特征、装置或指令。
上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于至少部分基于在载波的活跃带宽部分中传送的参考信号来确定载波的应急带宽部分的过程、特征、装置或指令。
上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于标识参考信号与包括随机接入资源的波束之间的映射的过程、特征、装置或指令。上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于至少部分基于该映射来确定载波的应急带宽部分的过程、特征、装置或指令。
上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于经由RRC信令来接收对映射的指示的过程、特征、装置或指令。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,参考信号可与包括随机接入资源的波束准共处一地。
上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于至少部分地基于该参考信号来标识候选波束的过程、特征、装置或指令。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,参考信号包括同步信号、信道状态信息参考信号(CSI-RS)或其组合。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,使用载波的应急带宽部分来执行随机接入规程包括确定针对载波的活跃带宽部分的可行候选波束的数目。上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于至少部分基于针对载波的活跃带宽部分的可行候选波束的数目来选择随机接入规程的过程、特征、装置或指令。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,选择随机接入规程包括:如果在载波的活跃带宽部分中的可行候选波束的数目是至少一个,则将随机接入规程选择为无争用随机接入规程。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,选择随机接入规程包括:如果在载波的活跃带宽部分中的可行候选波束的数目是零,则将随机接入规程选择为基于争用的随机接入规程。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,使用载波的应急带宽部分来执行随机接入规程包括确定针对载波的应急带宽部分的可行候选波束的数目。上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于至少部分基于针对载波的应急带宽部分的可行候选波束的数目来选择随机接入规程的过程、特征、装置或指令。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,选择随机接入规程包括:如果在载波的应急带宽部分中的可行候选波束的数目是至少一个,则将随机接入规程选择为无争用随机接入规程。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,选择随机接入规程包括:如果在载波的应急带宽部分中的可行候选波束的数目是零,则将随机接入规程选择为基于争用的随机接入规程。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,载波的应急带宽部分可以是载波的活跃带宽部分。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,载波的活跃带宽部分可以是第一带宽部分,而载波的应急带宽部分可以是第二带宽部分。
描述了一种无线通信方法。该方法可包括:将用户装备(UE)配置成将载波的第一带宽部分用作载波的活跃带宽部分以供无线通信;以及向UE传送对要用于后续随机接入规程的载波的应急带宽部分的指示。
描述了一种用于无线通信的装备。该装备可包括:用于将用户装备(UE)配置成将载波的第一带宽部分用作载波的活跃带宽部分以供无线通信的装置;以及用于向UE传送对要用于后续随机接入规程的载波的应急带宽部分的指示的装置。
描述了另一种用于无线通信的装置。该装置可包括处理器、与该处理器处于电子通信的存储器、以及存储在该存储器中的指令。这些指令可操作用于使处理器:将用户装备(UE)配置成将载波的第一带宽部分用作载波的活跃带宽部分以供无线通信;以及向UE传送对要用于后续随机接入规程的载波的应急带宽部分的指示。
描述了一种用于无线通信的非瞬态计算机可读介质。该非瞬态计算机可读介质可包括可操作用于使得处理器执行以下操作的指令:将用户装备(UE)配置成将载波的第一带宽部分用作载波的活跃带宽部分以供无线通信;以及向UE传送对要用于后续随机接入规程的载波的应急带宽部分的指示。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,传送对载波的应急带宽部分的指示包括在载波的活跃带宽部分中向UE传送参考信号。上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于向UE传送包括随机接入资源的波束的过程、特征、装置或指令。上述方法、装备(装置)和非瞬态计算机可读介质的一些示例可进一步包括用于向UE传送对参考信号与包括随机接入资源的波束之间的映射的指示的过程、特征、装置或指令。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,传送对映射的指示包括经由RRC信令传送对映射的指示。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,传送对载波的应急带宽部分的指示包括经由RRC信令传送对载波的应急带宽部分的显式指示。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,传送对载波的应急带宽部分的指示包括将UE配置成至少部分地基于UE的先前随机接入规程来确定载波的应急带宽部分。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,载波的应急带宽部分可以是载波的活跃带宽部分。
在上述方法、装备(装置)和非瞬态计算机可读介质的一些示例中,载波的应急带宽部分可以是第二带宽部分。
附图简述
图1解说了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的用于无线通信的***的示例。
图2解说了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的载波配置的示例。
图3至6解说了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的过程的示例。
图7至9示出了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的设备的框图。
图10解说了根据本公开的各方面的包括支持在多带宽部分环境中的波束恢复的UE的***的框图。
图11至13示出了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的设备的框图。
图14解说了根据本公开的各方面的包括支持在多带宽部分环境中的波束恢复的基站的***的框图。
图15至16解说了根据本公开的各方面的用于在多带宽部分环境中的波束恢复的方法。
详细描述
无线通信***中的设备(诸如,基站和UE)可使用一个或多个载波进行通信。术语“载波”可指射频频谱资源集,其具有用于支持通信链路上的通信的所定义物理层结构。每个载波可具有对应带宽(例如400MHz),并且在一些情形中,不同载波可具有不同带宽。载波可被细分为多个部分,每个部分具有比载波带宽更小的带宽(例如100MHz),并且此类部分可被称为带宽部分。例如,一些设备(例如,一些UE)可能不支持载波的全部带宽,并且因此可使用一个或多个带宽部分进行通信。在一些情形中,UE可使用第一带宽部分(其可被称为初始带宽部分)与基站建立通信,并且此后UE可切换到不同的带宽部分。由UE用于无线通信的带宽部分可被称为活跃带宽部分。在一些情形中,仅载波内的一些带宽部分可支持UE的随机接入。因此,在一些情形中,活跃带宽部分可能不支持随机接入。
一些无线设备还可采用波束成形。波束成形是可在传送方设备或接收方设备(例如,基站或UE)处使用的信号处理技术,以沿着传送方设备与接收方设备之间的空间路径对天线波束(例如,发射波束或接收波束)进行成形或引导。因此,一些无线设备可经由一个或多个波束彼此进行通信。由UE用于无线通信的波束可被称为服务波束。
服务波束偶尔可能失败(例如,由于服务波束的所恶化信道状况)。如果UE正使用不支持随机接入的活跃带宽部分,并且发生服务波束故障,则基站可能无法将UE配置成使用确实支持随机接入的不同带宽部分。附加地,在一个带宽部分中可用于无线通信的波束(例如,支持低于阈值的差错率)在另一带宽部分中可能不可行。例如,因为不同带宽部分可跨越不同频率范围,所以给定波束(例如,给定波束方向中的波束)的信道状况可以跨带宽部分而不同。这些和其他问题可在多带宽部分环境中发生服务波束故障的情况下使波束恢复以及通信的重建复杂化。
如本文所描述的,无线设备(诸如基站和UE)可支持用于在多带宽部分环境中的波束恢复的技术。因此,本文的技术以及其他益处,可在多带宽部分环境中改进包括经波束成形的通信的无线通信的可靠性,并增强UE建立(例如,与基站)无线通信的能力。UE可标识活跃带宽部分中的服务波束故障,可确定由活跃带宽部分提供的对随机接入规程的支持水平,并且可确定支持随机接入规程的应急(例如,后备)带宽部分。在一些情形中,UE可基于先前随机接入规程来标识应急带宽部分(例如,应急带宽部分可以是UE先前用于建立通信的一者)。在一些情形中,基站可在服务波束故障之前向UE发送对应急带宽部分的显式指示。在一些情形中,UE可基于参考信号来标识应急带宽部分,例如,基站可传送参考信号,并且还可向UE传送对参考信号与UE可用于随机接入的波束之间的关系(例如,准共处一地)的指示。在确定应急带宽部分之际,UE可使用应急带宽部分来执行随机接入规程。
本公开的这些和其他方面最初在无线通信***的上下文中进行描述。本公开的各方面通过并参照与多带宽部分环境中的波束恢复有关的过程流、装置图、***图和流程图来进一步解说和描述。
图1解说了根据本公开的各个方面的无线通信***100的示例。无线通信***100包括基站105、UE 115和核心网130。在一些示例中,无线通信***100可以是长期演进(LTE)网络、高级LTE(LTE-A)网络、LTE-A Pro网络或者新无线电(NR)网络。在一些情形中,无线通信***100可支持增强型宽带通信、超可靠(例如,关键任务)通信、低等待时间通信、或与低成本和低复杂度设备的通信。
基站105可经由一个或多个基站天线来与UE 115进行无线通信。本文中所描述的基站105可包括或可被本领域技术人员称为基收发机站、无线电基站、接入点、无线电收发机、B节点、演进型B节点(eNB)、下一代B节点或千兆B节点(其中任何一者都可被称为gNB)、家用B节点、家用演进型B节点、或某个其他合适的术语。无线通信***100可包括不同类型的基站105(例如,宏基站或小型蜂窝小区基站)。本文中所描述的UE 115可以能够与各种类型的基站105和网络装备(包括宏eNB、小型蜂窝小区eNB、gNB、中继基站等等)进行通信。
每个基站105可与特定地理覆盖区域110相关联,在该特定地理覆盖区域110中支持与各种UE 115的通信。每个基站105可经由通信链路125来为相应地理覆盖区域110提供通信覆盖,并且基站105与UE 115之间的通信链路125可利用一个或多个载波。无线通信***100中示出的通信链路125可包括从UE115到基站105的上行链路传输、或者从基站105到UE 115的下行链路传输。下行链路传输也可被称为前向链路传输,而上行链路传输也可被称为反向链路传输。
基站105的地理覆盖区域110可被划分成仅构成该地理覆盖区域110的一部分的扇区,而每个扇区可与一蜂窝小区相关联。例如,每个基站105可提供对宏蜂窝小区、小型蜂窝小区、热点、或其他类型的蜂窝小区、或其各种组合的通信覆盖。在一些示例中,基站105可以是可移动的,并且因此提供对移动的地理覆盖区域110的通信覆盖。在一些示例中,与不同技术相关联的不同地理覆盖区域110可交叠,并且与不同技术相关联的交叠地理覆盖区域110可由相同基站105或不同基站105支持。无线通信***100可包括例如异构LTE/LTE-A/LTE-A Pro或NR网络,其中不同类型的基站105提供对各种地理覆盖区域110的覆盖。
术语“蜂窝小区”指用于与基站105(例如,在载波上)进行通信的逻辑通信实体,并且可以与标识符相关联以区分经由相同或不同载波操作的相邻蜂窝小区(例如,物理蜂窝小区标识符(PCID)、虚拟蜂窝小区标识符(VCID))。在一些示例中,载波可支持多个蜂窝小区,并且可根据可为不同类型的设备提供接入的不同协议类型(例如,机器类型通信(MTC)、窄带物联网(NB-IoT)、增强型移动宽带(eMBB)或其他)来配置不同蜂窝小区。在一些情形中,术语“蜂窝小区”可指逻辑实体在其上操作的地理覆盖区域110的一部分(例如,扇区)。
各UE 115可以分散遍及无线通信***100,并且每个UE 115可以是驻定的或移动的。UE 115还可被称为移动设备、无线设备、远程设备、手持设备、或订户设备、或者某个其他合适的术语,其中“设备”也可被称为单元、站、终端或客户端。UE 115还可以是个人电子设备,诸如蜂窝电话、个人数字助理(PDA)、平板计算机、膝上型计算机或个人计算机。在一些示例中,UE 115还可指无线本地环路(WLL)站、物联网(IoT)设备、万物联网(IoE)设备、或MTC设备等等,其可被实现在各种物品(诸如电器、交通工具、仪表等等)中。
一些UE 115(诸如MTC或IoT设备)可以是低成本或低复杂度设备,并且可提供机器之间的自动化通信(例如,经由机器到机器(M2M)通信)。M2M通信或MTC可指允许设备彼此通信或者设备与基站105进行通信而无需人类干预的数据通信技术。在一些示例中,M2M通信或MTC可包括来自集成有传感器或计量仪以测量或捕捉信息并且将该信息中继到中央服务器或应用程序的设备的通信,该中央服务器或应用程序可利用该信息或者将该信息呈现给与该程序或应用交互的人。一些UE 115可被设计成收集信息或实现机器的自动化行为。用于MTC设备的应用的示例包括:智能计量、库存监视、水位监视、装备监视、健康护理监视、野外生存监视、天气和地理事件监视、队列管理和跟踪、远程安全感测、物理接入控制、和基于交易的商业收费。
一些UE 115可被配置成采用降低功耗的操作模式,诸如半双工通信(例如,支持经由传送或接收的单向通信但不同时传送和接收的模式)。在一些示例中,可以用降低的峰值速率执行半双工通信。用于UE 115的其他功率节省技术包括在不参与活跃通信时进入功率节省“深度睡眠”模式,或者在有限带宽上操作(例如,根据窄带通信)。在一些情形中,UE115可被设计成支持关键功能(例如,关键任务功能),并且无线通信***100可被配置成为这些功能提供超可靠通信。
在一些情形中,UE 115还可以能够直接与其他UE 115通信(例如,使用对等(P2P)或设备到设备(D2D)协议)。利用D2D通信的一群UE 115中的一个或多个UE可在基站105的地理覆盖区域110内。此群中的其他UE 115可以在基站105的地理覆盖区域110之外,或者以其他方式不能够从基站105接收传输。在一些情形中,经由D2D通信进行通信的各群UE 115可利用一对多(1:M)***,其中每个UE 115向该群中的每个其他UE 115进行传送。在一些情形中,基站105促成对用于D2D通信的资源的调度。在其他情形中,D2D通信在UE 115之间执行而不涉及基站105。
各基站105可与核心网130进行通信并且彼此通信。例如,基站105可通过回程链路132(例如,经由S1或其他接口)来与核心网130对接。基站105可直接(例如,直接在各基站105之间)或间接地(例如,经由核心网130)在回程链路134(例如,经由X2或其他接口)上彼此通信。
核心网130可提供用户认证、接入授权、跟踪、网际协议(IP)连通性,以及其他接入、路由、或移动性功能。核心网130可以是演进型分组核心(EPC),EPC可包括至少一个移动性管理实体(MME)、至少一个服务网关(S-GW)、以及至少一个分组数据网络(PDN)网关(P-GW)。MME可管理非接入阶层(例如,控制面)功能,诸如由与EPC相关联的基站105服务的UE115的移动性、认证和承载管理。用户IP分组可通过S-GW来传递,S-GW自身可连接到P-GW。P-GW可提供IP地址分配以及其他功能。P-GW可连接到网络运营商IP服务。运营商IP服务可包括对因特网、(诸)内联网、IP多媒体子***(IMS)、或分组交换(PS)流送服务的接入。
至少一些网络设备(诸如基站105)可包括子组件,诸如接入网实体,其可以是接入节点控制器(ANC)的示例。每个接入网实体可通过数个其他接入网传输实体来与各UE 115进行通信,该其他接入网传输实体可被称为无线电头端、智能无线电头端、或传送/接收点(TRP)。在一些配置中,每个接入网实体或基站105的各种功能可跨各种网络设备(例如,无线电头端和接入网控制器)分布或者被合并到单个网络设备(例如,基站105)中。
无线通信***100可使用一个或多个频带来操作,通常在300MHz到300GHz的范围内。一般而言,300MHz到3GHz的区划被称为超高频(UHF)区划或分米频带,这是因为波长在从约1分米到1米长的范围内。UHF波可被建筑物和环境特征阻挡或重定向。然而,该波对于宏蜂窝小区可充分穿透各种结构以向位于室内的UE 115提供服务。与使用频谱中低于300MHz的高频(HF)或甚高频(VHF)部分的较小频率和较长波的传输相比,UHF波的传输可与较小天线和较短射程(例如,小于100km)相关联。
无线通信***100还可使用从3GHz到30GHz的频带(也被称为厘米频带)在特高频(SHF)区划中操作。SHF区划包括可由能够容忍来自其他用户的干扰的设备伺机使用的频带(诸如,5GHz工业、科学和医学(ISM)频带)。
无线通信***100还可在频谱的极高频(EHF)区划(例如,从30GHz到300GHz)中操作,该区划也被称为毫米频带。在一些示例中,无线通信***100可支持UE 115与基站105之间的毫米波(mmW)通信,并且相应设备的EHF天线可甚至比UHF天线更小并且间隔得更紧密。在一些情形中,这可促成在UE 115内使用天线阵列。然而,EHF传输的传播可能经受比SHF或UHF传输甚至更大的大气衰减和更短的射程。本文所公开的技术可跨使用一个或多个不同频率区划的传输来采用,并且跨这些频率区划所指定的频带使用可因国家或管理机构而不同。
在一些情形中,无线通信***100可利用有执照和无执照射频谱带两者。例如,无线通信***100可在无执照频带(诸如,5GHz ISM频带)中采用执照辅助接入(LAA)、LTE无执照(LTE-U)无线电接入技术、或NR技术。当在无执照射频谱带中操作时,无线设备(诸如基站105和UE 115)可采用先听后讲(LBT)规程以在传送数据之前确保频率信道是畅通的。在一些情形中,无执照频带中的操作可与在有执照频带中操作的CC相协同地基于CA配置(例如,LAA)。无执照频谱中的操作可包括下行链路传输、上行链路传输、对等传输、或这些的组合。无执照频谱中的双工可基于频分双工(FDD)、时分双工(TDD)、或这两者的组合。
在一些示例中,基站105或UE 115可装备有多个天线,其可用于采用诸如发射分集、接收分集、多输入多输出(MIMO)通信、或波束成形等技术。例如,无线通信***100可在传送方设备(例如,基站105)与接收方设备(例如,UE 115)之间使用传输方案,其中传送方设备装备有多个天线,并且接收方设备装备有一个或多个天线。MIMO通信可采用多径信号传播以通过经由不同空间层传送或接收多个信号来增加频谱效率,这可被称为空间复用。例如,传送方设备可经由不同的天线或不同的天线组合来传送多个信号。同样,接收方设备可经由不同的天线或不同的天线组合来接收多个信号。这多个信号中的每一个信号可被称为单独空间流,并且可携带与相同数据流(例如,相同码字)或不同数据流相关联的比特。不同空间层可与用于信道测量和报告的不同天线端口相关联。MIMO技术包括单用户MIMO(SU-MIMO),其中多个空间层被传送至相同的接收方设备;以及多用户MIMO(MU-MIMO),其中多个空间层被传送至多个设备。
如以上引入的,波束成形(也可被称为空间滤波、定向传输或定向接收)是可在传送方设备或接收方设备(例如,基站105或UE 115)处使用的信号处理技术,以沿着传送方设备与接收方设备之间的空间路径对天线波束(例如,发射波束或接收波束)进行成形或引导。可通过组合经由天线阵列的天线振子传达的信号来实现波束成形,使得在相对于天线阵列的特定取向上传播的信号经历相长干涉,而其他信号经历相消干涉。对经由天线振子传达的信号的调整可包括传送方设备或接收方设备向经由与该设备相关联的每个天线振子所携带的信号应用特定振幅和相移。与每个天线振子相关联的调整可由与特定取向(例如,相对于传送方设备或接收方设备的天线阵列、或者相对于某个其他取向)相关联的波束成形权重集来定义。
在一个示例中,基站105可使用多个天线或天线阵列来进行波束成形操作,以用于与UE 115进行定向通信。例如,一些信号(例如,同步信号、参考信号、波束选择信号、或其他控制信号)可由基站105在不同方向上传送多次,这可包括一信号根据与不同传输方向相关联的不同波束成形权重集来被传送。在不同波束方向上的传输可用于(例如,由基站105或接收方设备,诸如UE 115)标识由基站105用于后续传输和/或接收的波束方向。一些信号(诸如与特定接收方设备相关联的数据信号)可由基站105在单个波束方向(例如,与接收方设备(诸如UE 115)相关联的方向)上传送。在一些示例中,可至少部分地基于在不同波束方向上传送的信号来确定与沿单个波束方向的传输相关联的波束方向。例如,UE 115可接收由基站105在不同方向上传送的一个或多个信号,并且UE 115可向基站105报告对其以最高信号质量或其他可接受的信号质量接收的信号的指示。尽管参照由基站105在一个或多个方向上传送的信号来描述这些技术,但是UE 115可将类似的技术用于在不同方向上多次传送信号(例如,用于标识由UE 115用于后续传输或接收的波束方向)或用于在单个方向上传送信号(例如,用于向接收方设备传送数据)。
接收方设备(例如UE 115,其可以是mmW接收方设备的示例)可在从基站105接收各种信号(诸如,同步信号、参考信号、波束选择信号、或其他控制信号)时尝试多个接收波束。例如,接收方设备可通过以下操作来尝试多个接收方向:经由不同天线子阵列进行接收,根据不同天线子阵列来处理所接收的信号,根据应用于在天线阵列的多个天线振子处接收的信号的不同接收波束成形权重集进行接收,或根据应用于在天线阵列的多个天线振子处接收的信号的不同接收波束成形权重集来处理所接收的信号,其中任一者可被称为根据不同接收波束或接收方向进行“监听”。在一些示例中,接收方设备可使用单个接收波束来沿单个波束方向进行接收(例如,当接收到数据信号时)。单个接收波束可在至少部分地基于根据不同接收波束方向进行监听而确定的波束方向(例如,至少部分地基于根据多个波束方向进行监听而被确定为具有最高信号强度、最高信噪比、或其他可接受信号质量的波束方向)上对准。
在一些情形中,基站105或UE 115的天线可位于可支持MIMO操作或者发射或接收波束成形的一个或多个天线阵列内。例如,一个或多个基站天线或天线阵列可共处于天线组装件(诸如天线塔)处。在一些情形中,与基站105相关联的天线或天线阵列可位于不同的地理位置。基站105可具有天线阵列,该天线阵列具有基站105可用于支持与UE 115的通信的波束成形的数个行和列的天线端口。同样,UE 115可具有可支持各种MIMO或波束成形操作的一个或多个天线阵列。
在一些情形中,无线通信***100可以是根据分层协议栈来操作的基于分组的网络。在用户面,承载或分组数据汇聚协议(PDCP)层的通信可以是基于IP的。在一些情形中,无线电链路控制(RLC)层可执行分组分段和重组以在逻辑信道上通信。媒体接入控制(MAC)层可执行优先级处置以及将逻辑信道复用到传输信道中。MAC层还可使用混合自动重复请求(HARQ)以提供MAC层的重传,从而提高链路效率。在控制面中,无线电资源控制(RRC)协议层可以提供UE 115与基站105或核心网130之间支持用户面数据的无线电承载的RRC连接的建立、配置和维护。在物理(PHY)层,传输信道可被映射到物理信道。
在一些情形中,UE 115和基站105可支持数据的重传以增大数据被成功接收的可能性。HARQ反馈是一种增大在通信链路125上正确地接收数据的可能性的技术。HARQ可包括检错(例如,使用循环冗余校验(CRC))、前向纠错(FEC)、以及重传(例如,自动重复请求(ARQ))的组合。HARQ可在不良无线电状况(例如,信噪比状况)中改善MAC层的吞吐量。在一些情形中,无线设备可支持同时隙HARQ反馈,其中设备可在特定时隙中为在该时隙中的先前码元中接收的数据提供HARQ反馈。在其他情形中,设备可在后续时隙中或根据某个其他时间区间提供HARQ反馈。
LTE或NR中的时间区间可用基本时间单位(其可例如指采样周期Ts=1/30,720,000秒)的倍数来表达。通信资源的时间区间可根据各自具有10毫秒(ms)历时的无线电帧来组织,其中帧周期可被表达为Tf=307,200Ts。无线电帧可由范围从0到1023的***帧号(SFN)来标识。每个帧可包括编号从0到9的10个子帧,并且每个子帧可具有1ms的历时。子帧可进一步被划分成2个各自具有0.5ms历时的时隙,并且每个时隙可包含6或7个调制码元周期(例如,取决于每个码元周期前添加的循环前缀的长度)。排除循环前缀,每个码元周期可包含2048个采样周期。在一些情形中,子帧可以是无线通信***100的最小调度单位,并且可被称为传输时间区间(TTI)。在其他情形中,无线通信***100的最小调度单位可短于子帧或者可被动态地选择(例如,在缩短TTI(sTTI)的突发中或者在使用sTTI的所选分量载波中)。
在一些无线通信***中,时隙可被进一步划分成包含一个或多个码元的多个迷你时隙。在一些实例中,迷你时隙的码元或迷你时隙可以是最小调度单位。例如,每个码元在历时上可取决于副载波间隔或操作频带而变化。进一步地,一些无线通信***可实现时隙聚集,其中多个时隙或迷你时隙被聚集在一起并用于UE 115和基站105之间的通信。
如以上引入的,术语“载波”指的是射频频谱资源集,其具有用于支持通信链路125上的通信的所定义物理层结构。例如,通信链路125的载波可包括根据用于给定无线电接入技术的物理层信道来操作的射频谱带的一部分。每个物理层信道可携带用户数据、控制信息、或其他信令。载波可与预定义的频率信道(例如,E-UTRA绝对射频信道号(EARFCN))相关联,并且可根据信道栅格来定位以供UE 115发现。载波可以是下行链路或上行链路(例如,在FDD模式中),或者被配置成携带下行链路通信和上行链路通信(例如,在TDD模式中)。在一些示例中,在载波上传送的信号波形可包括多个副载波(例如,使用多载波调制(MCM)技术,诸如OFDM或DFT-s-OFDM)。
对于不同的无线电接入技术(例如,LTE、LTE-A、LTE-A Pro、NR等),载波的组织结构可以是不同的。例如,载波上的通信可根据TTI或时隙来组织,该TTI或时隙中的每一者可包括用户数据以及支持解码用户数据的控制信息或信令。载波还可包括专用捕获信令(例如,同步信号或***信息等)和协调载波操作的控制信令。在一些示例中(例如,在载波聚集配置中),载波还可具有协调其他载波的操作的捕获信令或控制信令。
可根据各种技术在载波上复用物理信道。物理控制信道和物理数据信道可例如使用时分复用(TDM)技术、频分复用(FDM)技术、或者混合TDM-FDM技术在下行链路载波上被复用。在一些示例中,在物理控制信道中传送的控制信息可按级联方式分布在不同控制区域之间(例如,在共用控制区域或共用搜索空间与一个或多个因UE而异的控制区域或因UE而异的搜索空间之间)。
载波可与射频频谱的特定带宽相关联,并且在一些示例中,该载波带宽可被称为载波或无线通信***100的“***带宽”。例如,载波带宽可以是特定无线电接入技术的载波的数个预定带宽(例如,1.4、3、5、10、15、20、40或80MHz等)之一。
在采用MCM技术的***中,资源元素可包括一个码元周期(例如,一个调制码元的历时)和一个副载波,其中码元周期和副载波间隔是逆相关的。由每个资源元素携带的比特数目可取决于调制方案(例如,调制方案的阶数)。由此,UE 115接收的资源元素越多并且调制方案的阶数越高,则UE 115的数据率就可以越高。在MIMO***中,无线通信资源可以是指射频频谱资源、时间资源和空间资源(例如,空间层)的组合,并且使用多个空间层可进一步提高与UE 115的通信的数据率。
无线通信***100的设备(例如,基站105或UE 115)可具有支持特定载波带宽上的通信的硬件配置,或者可以是可配置的以支持在载波带宽集中的一个载波带宽上的通信。在一些示例中,无线通信***100可包括可支持经由与不止一个不同载波带宽相关联的载波的同时通信的基站105和/或UE。
无线通信***100可支持在多个蜂窝小区或载波上与UE 115的通信,这是可被称为载波聚集(CA)或多载波操作的特征。UE 115可根据载波聚集配置而配置有多个下行链路CC以及一个或多个上行链路CC。载波聚集可与FDD和TDD分量载波两者联用。
在一些情形中,无线通信***100可利用增强型分量载波(eCC)。eCC可由包括较宽的载波或频率信道带宽、较短的码元历时、较短的TTI历时、或经修改的控制信道配置的一个或多个特征来表征。在一些情形中,eCC可以与载波聚集配置或双连通性配置相关联(例如,在多个服务蜂窝小区具有次优或非理想回程链路时)。eCC还可被配置成在无执照频谱或共享频谱(例如,其中不止一个运营商被允许使用该频谱)中使用。由宽载波带宽表征的eCC可包括一个或多个区段,其可由不能够监视整个载波带宽或者以其他方式被配置成使用有限载波带宽(例如,以节省功率)的UE 115利用。
在一些情形中,eCC可利用不同于其他CC的码元历时,这可包括使用与其他CC的码元历时相比减小的码元历时。较短的码元历时可与毗邻副载波之间增加的间隔相关联。利用eCC的设备(诸如UE 115或基站105)可以用减小的码元历时(例如,16.67微秒)来传送宽带信号(例如,根据20、40、60、80MHz的频率信道或载波带宽等)。eCC中的TTI可包括一个或多个码元周期。在一些情形中,TTI历时(即,TTI中的码元周期数目)可以是可变的。
无线通信***(诸如,NR***)可利用有执照、共享、以及无执照谱带等的任何组合。eCC码元历时和副载波间隔的灵活性可允许跨多个频谱使用eCC。在一些示例中,NR共享频谱可增加频谱利用率和频谱效率,特别是通过对资源的动态垂直(例如,跨频率)和水平(例如,跨时间)共享。
在一些示例中,每个被服务的UE 115可被配置成用于在部分或全部载波带宽上进行操作。如以上引入的,载波带宽的一部分可被称为带宽部分,而由UE在给定的时间点活跃地用于无线通信的带宽部分可被称为活跃带宽部分。基站105和UE 115可支持本文描述的用于波束恢复的技术,其可包括在活跃带宽部分中的服务波束故障之后经由随机接入规程建立通信。
图2解说了根据本公开的各个方面的包括多带宽部分环境的载波配置200的示例。在一些示例中,载波配置200可由无线通信***100的各方面实现。例如,基站105可实现载波配置200。
载波配置200包括多个载波205,每个载波包括多个带宽部分210。载波205可具有相对较大带宽(例如,400MHz),而带宽部分210可具有相对较小带宽(例如,100MHz)。载波205-a包括带宽部分210-a,带宽部分210-b,带宽部分210-c和带宽部分210-d。载波205-b包括带宽部分210-e,带宽部分210-f,带宽部分210-g和带宽部分210-h。载波205-c包括带宽部分210-i,带宽部分210-j,带宽部分210-k和带宽部分210-l。
尽管载波配置200的示例包括三个载波205,每个载波包括四个带宽部分210,但是要理解,无线通信***100可支持任何数目的载波205和任何数目的带宽部分210,包括每载波205任何数目的带宽部分210,并且每载波205的带宽部分210的数目可跨载波205而变化。此外,尽管在载波配置200的示例中每个载波205具有相同的载波带宽,但是要理解,不同的载波205可以具有不同的带宽。同样,不同的带宽部分210可以具有不同的带宽。
带宽部分210可在频率上被分开缓冲频率范围(例如,载波205-a内的带宽部分210-a和带宽部分210-b),或者可在频率上相邻(例如,载波205-b内的带宽部分210-e和带宽部分210-f)。在一些情形中,带宽部分210可在频率上交叠(例如,载波205-c内的带宽部分210-j和带宽部分210-i)。频率上交叠的带宽部分210可被称为交叠,而频率上不重叠的带宽部分210可被称为正交。
一些UE 115可能不支持载波205的整个带宽(例如,由于UE 115的成本、复杂性或功率约束)。因此,基站105可将UE 115配置成使用一个或多个带宽部分210,每个带宽部分具有由UE 115支持的带宽。例如,基站105可经由RRC信令(例如,使用RRC协议)将UE 115配置成使用一个或多个带宽部分210。
在一些情形中,UE 115可同时具有被配置用于下行链路通信的一个活跃带宽部分210和被配置用于上行链路通信的另一活跃带宽部分210。一些基站105可将UE 115限制为一次最多配置一个活跃带宽部分210用于下行链路通信,以及一次最多配置一个活跃带宽部分210用于下行链路通信。
对于每个所配置的带宽部分210,基站105可配置带宽部分210的带宽,带宽部分210的频率(例如,频率界限)以及带宽部分210的参数设计。带宽部分210的参数设计可包括带宽部分的副载波间隔和码元历时。在一些情形中,无线通信***100可支持多个参数设计,而基站105可确定和配置每个所配置的带宽部分210的参数设计。在一些情形中,参数设计可相对于基本参数设计以二(2)的幂进行缩放,而基站105可通过向UE 115传送对表示二(2)的幂的参数的指示来向UE 115指示带宽部分210的参数设计(例如,给定的参数设计可具有与基本副载波间隔乘以2μ相等的副载波间隔,而基站可通过向UE 115传送对μ的指示来向UE 115指示该参数设计)。
图3解说了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的过程300的示例。在一些示例中,过程300可以由无线通信***100的各方面实现。例如,过程300可由基站105-a和UE 115-a实现,它们可以是参照图1所描述的基站105和UE 115的示例。
在305处,UE 115-a和基站105-a可交换一个或多个消息以经由服务波束彼此建立无线通信。例如,UE 115-a可先前已处于RRC空闲状态,而在305处,UE 115-a和基站105-a可执行随机接入规程。作为另一示例,UE 115-a可先前已处于RRC连通状态,并且在305处,UE115-a和基站105-a可执行波束选择规程(例如,基于与一个或多个候选波束相关联的信号质量),以便经由服务波束建立通信。
在310处,UE 115-a可标识(例如,检测)服务波束的故障。在一些情形中,UE 115-a可基于与服务波束相关联的差错率来检测服务波束的故障。例如,UE 115-a可确定与服务波束相关联的差错率,可将差错率与阈值进行比较,并且如果差错率达到或超过阈值,则可标识服务波束的故障。差错率可以是块差错率(BLER),并且UE 115-a可确定由服务波束携带的物理下行链路控制信道(PDCCH)的BLER。UE 115-a可在PHY层处标识服务波束的故障,并且PHY层可将对服务波束的故障的指示发送到MAC层。
在315处,UE 115-a可标识一个或多个可行候选波束。候选波束可以是由基站105-a传送的波束,并且如果候选波束能够支持UE 115-a和基站105-a之间的无线通信,则候选波束可以是可行的。UE 115-a可通过标识由基站105-a传送的一个或多个候选波束,以及针对每个所标识的候选波束,确定其可行性(例如,候选波束的可行性水平、或候选波束是否可行),来标识一个或多个可行候选波束。当UE 115-a在315处标识不止一个可行候选波束时,UE 115-a可选择可行波束之一(例如,可选择具有最高RSRP的候选波束)。
在一些情形中,UE 115-a可基于由候选波束携带的参考信号来确定候选波束的可行性。例如,UE 115-a可确定(例如,测量)参考信号的参考信号收到功率(RSRP),并将该RSRP与阈值进行比较。如果RSRP超过阈值,则UE 115-a可确定候选波束是可行的;否则,UE115-a可确定候选波束不是可行的。在一些情形中,UE 115-a可在PHY层(也可被称为层1(L1))处测量参考信号的RSRP,并且因此要用于确定候选波束的可行性的所测量RSRP可以是L1RSRP。进一步地,在一些情形中,UE 115-a可使用L1滤波器,并且因此用于确定候选波束的可行性的所测量RSRP可以是经滤波的L1RSRP。
UE 115-a确定参考波束的可行性所基于的参考信号可以是与同步有关的参考信号或信道状态信息参考信号(CSI-RS),或其组合(例如,可行性确定可以基于与同步有关的参考信号和CSI-RS两者)。在一些情形中,与同步有关的参考信号可被包括在同步信号(SS)块(SSB)中,该同步信号块可由基站105-a进行波束扫掠(例如,根据调度(诸如周期性调度)以不同方向(例如,经由不同波束)重复地传送)。SSB可包括主同步信号(PSS)或副同步信号(SSS),并且作为群被扫掠的一系列SSB可被称为SS突发。
在320处,UE 115-a可经由所选候选波束向基站105-a传送波束恢复请求。波束恢复请求可包括关于所选候选波束的信息,其可由基站105-a用以确定是否要经由所选候选波束与UE 115-a重新建立无线通信。当所选候选波束包括专用随机接入资源(例如,物理随机接入信道(PRACH))时,UE 115-a可发起无争用随机接入(CFRA)规程。例如,UE 115-a可使用专用随机接入资源来传送波束恢复请求。在一些情形中,仅当所选候选波束还具有高于阈值的质量度量(例如,RSRP)时,UE 115-a才可使用CFRA,该阈值可以是用以确定候选波束的可行性的相同阈值,或者特定于确定是否要使用CFRA的不同阈值。当所选候选波束不包括专用随机接入资源时(或者在一些情形中,如果候选波束的质量度量低于阈值),UE 115-a可发起基于争用的随机接入规程(CBRA)。
在325处,UE 115-a可监视来自基站105-a的波束恢复响应。在一些情形中,UE115-a可通过监视定址到与UE 115-a相关联的无线电网络临时标识符(RNTI)(其可以是蜂窝小区RNTI(C-RNTI))的PDCCH来监视波束恢复响应。进一步地,在一些情形中,UE 115-a可在波束恢复请求之后的时间历时内监视波束恢复响应,该时间历时可由基站105-a经由RRC信令为UE 115-a配置。
在一些情形中,在330处,基站105-a可传送而UE 115-a可接收波束恢复响应。波束恢复响应可指示UE 115-a是否可将与波束恢复请求相关联的所选候选波束用于与基站105-a的后续无线通信。在一些情形中,波束恢复响应可包括随机接入响应。如果在波束恢复请求之后,UE 115-a没有接收到波束恢复响应(例如,在相关时间历时内未接收到波束恢复响应),则UE 115-a可如同波束恢复请求已被拒绝的情况继续,并且可传送另一波束恢复请求。
波束恢复(诸如过程300)可包括较少操作,并且因此相对于无线电链路故障(RLF)规程提供高效和等待时间益处。
图4解说了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的过程400的示例。在一些示例中,过程400可以由无线通信***100的各方面实现。例如,过程400可由基站105-b和UE 115-b实现,它们可以是参照图1所描述的基站105和UE 115的示例。
在405处,UE 115-b和基站105-b可交换一个或多个消息以在初始带宽部分中建立无线通信。例如,UE 115-a可先前已处于RRC空闲状态,而在305处,UE 115-b和基站105-b可执行随机接入规程。初始带宽部分可包括随机接入资源(例如,PRACH),并且UE 115-b可在初始带宽部分中使用随机接入资源以在初始带宽部分中建立无线通信。
在一些情形中,基站105-b可将UE 115-b配置成使用初始带宽部分。例如,基站105-b可在初始带宽部分中传送用UE 115-b的标识符(例如,随机移动订户标识(RMSI)或RNTI)编码的SSB。UE 115-b可搜索(例如,监视)用UE 115-b的标识符编码的SSB,并且在标识用UE 115-b的标识符编码的SSB之际,可确定SSB被传送所经由的带宽部分是UE 115-b要用以与基站105-b建立无线通信的初始带宽部分。当UE 115-b和基站105-b使用波束成形时,UE115-b和基站105-b还可在405处使用初始服务波束来建立通信(例如,如参照过程300所描述的)。
在410处,基站105-b可将UE 115-b配置成切换到不同带宽部分(与初始带宽部分不同),以用作与基站105-b的无线通信的活跃带宽部分。在410处配置的活跃带宽部分可以是上行链路或下行链路带宽部分。在一些情形中,基站105-b可经由一个或多个下行链路控制信息(DCI)消息将UE 115-b配置成切换到活跃带宽部分。在一些情形中,基站105-b可经由RRC信令将UE 115-b配置成切换到活跃带宽部分。UE 115-b和基站105-b还可在410处使用活跃带宽部分中的新服务波束来建立通信,或者可继续使用初始带宽部分中使用的服务波束(例如,服务波束的频率可以改变,而其他波束参数(例如,波束方向)保持不变)。尽管过程400的示例仅示出一个带宽部分切换,但是应理解,任何数目个带宽部分切换可发生。
在415处,UE 115-b可标识活跃带宽部分中的服务波束的故障。如参照过程300所描述的,UE 115-b可标识服务波束的故障。
在420处,UE 115-b可针对活跃带宽部分,确定对随机接入规程的支持水平。例如,UE 115-b可确定活跃带宽部分支持还是不支持随机接入。在一些情形中,UE 115-b可基于活跃带宽部分是否包括随机接入资源(例如,PRACH)来确定对随机接入规程的支持水平。
在425处,UE 115-b可基于(例如,响应于)已在415处标识在活跃带宽部分中的服务波束故障和/或已在420处确定对随机接入规程的支持水平,来确定应急带宽部分。应急(例如,后备)带宽部分可以是支持随机接入规程并且UE 115-b要用于与基站105-b重新建立无线通信的带宽部分。
如果在420处确定的支持水平足够(例如,如果活跃带宽部分支持随机接入),则UE115-b可确定应急带宽部分是活跃带宽部分。如果在420处确定的支持水平不足(例如,如果活跃带宽部分不支持随机接入),则UE 115-b可确定应急带宽部分是初始带宽部分。因此,在一些情形中,UE 115-b可基于UE115-b的先前随机接入规程来确定应急带宽部分。例如,UE 115-b可在405处存储关于初始带宽部分的信息,并且因此可知晓初始带宽部分足够支持随机接入。
在430处,如果在425处确定的应急带宽部分不同于活跃带宽部分,则UE 115-b可切换以利用在425处确定的应急带宽部分。切换到应急带宽部分可包括将被包括UE 115-b中的发射机或或接收机配置成使用应急带宽部分。
在435处,UE 115-b和基站105-b可使用在425处确定的应急带宽部分来执行随机接入规程。例如,UE 115-b可向基站105-b传送波束恢复请求(例如,如参照过程300所描述的波束恢复请求)。
在一些情形中,UE 115-b可基于被包括在活跃带宽部分中的可行候选波束的数目来确定在435处执行的随机接入规程。例如,UE 115-b可确定被包括在活跃带宽部分中的可行候选波束的数目(例如,如参照过程300所描述的,通过标识可行候选波束,其可能发生在310处服务波束故障的标识之后或之前),并且如果被包括在活跃带宽部分中的可行候选波束的数目达到或超过阈值,则可以选择CFRA规程,而如果被包括在活跃带宽部分中的可行候选波束的数目低于阈值,则可以选择CBRA规程。在一些情形中,阈值可以是一个,并且如果活跃带宽部分包括至少一个可行候选波束,则UE 115-b可以选择CFRA规程,而如果活跃带宽部分未包括可行候选波束,则UE 115-b可以选择CBRA规程。在一些情形中,UE 115-b可在420处针对活跃带宽部分确定对随机接入的支持水平之前确定在435处执行的随机接入规程,但是应理解,UE 115-b可在任何时间确定在435处执行的随机接入规程。
在一些情形中,UE 115-b可基于被包括在应急带宽部分中的可行候选波束的数目来确定在435处执行的随机接入规程。例如,UE 115-b可确定被包括在应急带宽部分中的可行候选波束的数目(例如,如参照过程300所描述的,通过标识可行候选波束,其可能发生在310处服务波束故障的标识之后或之前),并且如果被包括在应急带宽部分中的可行候选波束的数目达到或超过阈值,则可以选择CFRA规程,而如果被包括在应急带宽部分中的可行候选波束的数目低于阈值,则可以选择CBRA规程。在一些情形中,阈值可以是一个,并且如果应急带宽部分包括至少一个可行候选波束,则UE 115-b可以选择CFRA规程,而如果应急带宽部分未包括可行候选波束,则UE 115-b可以选择CBRA规程。在一些情形中,UE 115-b可在425处确定应急带宽部分之后确定在435处执行的随机接入规程,但是应理解,UE 115-b可在任何时间确定在435处执行的随机接入规程。
尽管过程400利用单个应急带宽部分,但是应理解,过程400可被修改以利用任何数目个应急带宽部分。例如,在425处,UE 115-b可确定一对应急带宽部分,一个用于上行链路而一个用于下行链路,其中UE 115-b将所确定应急带宽部分之一用于在435处执行的随机接入规程的上行链路方面,以及将所确定应急带宽的另一者用于在435处执行的随机接入规程的下行链路方面。例如,UE 115-b可将该对应急带宽部分确定为活跃上行链路带宽部分和活跃下行链路带宽部分,或者可将该对应急带宽部分确定为初始上行链路带宽部分和初始下行链路带宽部分。
图5解说了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的过程500的示例。在一些示例中,过程500可以由无线通信***100的各方面实现。例如,过程500可由基站105-c和UE 115-c实现,它们可以是参照图1所描述的基站105和UE 115的示例。
在505处,UE 115-c和基站105-c可交换一个或多个消息以在初始带宽部分中建立无线通信(例如,如参照过程400的方面405所描述的)。
在510处,基站105-c可向UE 115-c传送对在后续服务波束故障的情况下UE 115-c要用于波束恢复和随机接入的应急带宽部分的指示(例如,显式指示)。所指示的应急带宽部分可以是初始带宽部分,由基站105-c配置用于随机接入的默认(例如,专用)带宽部分,或者是支持随机接入(例如,包括随机接入资源,诸如PRACH)的任何其他带宽部分。应理解,在510处传送的对应急带宽部分的指示可由基站105-c在任何时间传送,包括作为在505处交换的消息的一部分。在一些情形中,基站105-c可在510处经由RRC信令传送该指示。由基站105-c标识在后续服务波束故障的情况下UE 115-c要用于波束恢复和随机接入的应急带宽部分可有益地避免使被包括在任何一个带宽部分中的随机接入资源过载,因为基站105-c可控制将多少个UE 115分配给给定的应急带宽部分。
在515处,基站105-c可将UE 115-c配置成切换到不同带宽部分(与初始带宽部分不同),以用作与基站105-c的无线通信的活跃带宽部分(例如,如参照过程400的方面410所描述的)。
在520处,UE 115-c可标识活跃带宽部分中的服务波束的故障(例如,如参照过程400的方面415所描述的)。
在525处,UE 115-c可针对载波的活跃带宽部分,确定对随机接入规程的支持水平(如参照过程400的方面420所描述的)。
在530处,UE 115-c可基于(例如,响应于)已在520处标识在活跃带宽部分中的服务波束故障和/或已在525处确定对随机接入规程的支持水平、基于在510处接收到的指示确定应急带宽部分。例如,UE 115-c可将应急带宽部分确定为在510所指示的带宽部分。
在535处,如果在530处确定的应急带宽部分不同于活跃带宽部分,则UE 115-c可切换以利用在530处确定的应急带宽部分。切换到应急带宽部分可包括将被包括UE 115-c中的发射机或或接收机配置成使用应急带宽部分。
在540处,UE 115-c和基站105-c可使用在530处确定的应急带宽部分来执行随机接入规程。例如,UE 115-c可向基站105-c传送波束恢复请求(例如,如参照过程300所描述的波束恢复请求)。
在一些情形中,UE 115-c可基于被包括在活跃带宽部分中的可行候选波束的数目来确定在540处执行的随机接入规程。例如,UE 115-c可确定被包括在活跃带宽部分中的可行候选波束的数目(例如,如参照过程300所描述的,通过标识可行候选波束,其可能发生在520处服务波束故障的标识之后或之前),并且如果被包括在活跃带宽部分中的可行候选波束的数目达到或超过阈值,则可以选择CFRA规程,而如果被包括在活跃带宽部分中的可行候选波束的数目低于阈值,则可以选择CBRA规程。在一些情形中,阈值可以是一个,并且如果活跃带宽部分包括至少一个可行候选波束,则UE 115-c可以选择CFRA规程,而如果活跃带宽部分未包括可行候选波束,则UE 115-c可以选择CBRA规程。在一些情形中,UE 115-c可在525处针对活跃带宽部分确定对随机接入的支持水平之前确定在540处执行的随机接入规程,但是应理解,UE 115-c可在任何时间确定在540处执行的随机接入规程。
在一些情形中,UE 115-c可基于被包括在应急带宽部分中的可行候选波束的数目来确定在540处执行的随机接入规程。例如,UE 115-c可确定被包括在应急带宽部分中的可行候选波束的数目(例如,如参照过程300所描述的,通过标识可行候选波束,其可能发生在310处服务波束故障的标识之后或之前),并且如果被包括在应急带宽部分中的可行候选波束的数目达到或超过阈值,则可以选择CFRA规程,而如果被包括在应急带宽部分中的可行候选波束的数目低于阈值,则可以选择CBRA规程。在一些情形中,阈值可以是一个,并且如果应急带宽部分包括至少一个可行候选波束,则UE 115-c可以选择CFRA规程,而如果应急带宽部分未包括可行候选波束,则UE 115-c可以选择CBRA规程。在一些情形中,UE 115-c可在530处确定应急带宽部分之后确定在540处执行的随机接入规程,但是应理解,UE 115-c可在任何时间确定在540处执行的随机接入规程。
尽管过程500利用单个应急带宽,但是应理解,过程500可被修改以利用任何数目个应急带宽。例如,在510处,指示可指示一对应急带宽,一个用于上行链路,一个用于下行链路,其中UE 115-c将所指示应急带宽之一用于在540处执行的随机接入规程的上行链路方面,以及将所指示应急带宽的另一者用于在540处执行的随机接入规程的下行链路方面。
图6解说了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的过程600的示例。在一些示例中,过程600可以由无线通信***100的各方面实现。例如,过程600可由基站105-d和UE 115-d实现,它们可以是参照图1所描述的基站105和UE 115的示例。
在605处,UE 115-d和基站105-d可交换一个或多个消息以在初始带宽部分中建立无线通信(例如,如参照过程400的方面405所描述的)。
在610处,基站105-d可传送而UE 115-d可接收参考信号。在一些情形中,在610处传送的参考信号可与由UE 115用以标识可行候选波束的参考信号相同,如参照过程300所描述的。因此,在610处传送的参考信号可被包括在SSB中,可包括CSI-RS,或者可以是其组合。尽管在图6中解说为仅由基站105-d传送一次,所以应理解,基站105-d可传送在610处传送的参考信号任意次数。例如,基站105-d可在过程600的整个时间帧内根据调度(例如,周期性调度)来传送在610处传送的参考信号。进一步地,基站105-d可在任何带宽部分传送在610处传送的参考信号,包括初始带宽部分或基站105-d可将UE 115-d配置成用作活跃带宽部分的不同带宽部分。在一些情形中,基站105-d可在给定时间在由基站105-d支持的所有活跃带宽部分中传送在610处传送的参考信号。
在615处,基站105-d可向UE 115-d传送对在610处传送的参考信号与随机接入资源(例如,携带PRACH的波束)之间的映射的指示。随机接入资源可以在其中基站105-d在610处传送参考信号的带宽部分相同或不同的带宽部分中。进一步地,基站105-d可在610处传送参考信号之前或之后传送对映射的指示。在一些情形中,基站105-d可在615处使用RRC信令传送该指示。在一些情形中,在610处传送的参考信号可与在615处指示的随机接入资源准共处一地,并且在615处传送的指示可指示该准共处一地。
在620处,UE 115-d可标识活跃带宽部分中的服务波束的故障(例如,如参照过程400的方面415所描述的)。活跃带宽部分可以或可以不与初始带宽部分相同,因为在605处的通信建立与在620处的服务波束故障的标识之间可能发生了任何数目次带宽部分切换。
在625处,UE 115-d可基于(例如,响应于)在520处已标识在活跃带宽部分中的服务波束故障(和/或针对活跃带宽部分,已确定对随机接入规程的支持水平,如本文所描述的)、基于在610处接收到的参考信号和在615处接收到的指示确定应急带宽部分。例如,UE115-d可基于在610处接收到的参考信号,以及由在615处接收到的指示所指示的映射,来确定包括所映射的随机接入资源的带宽部分。UE 115-d可确定包括所映射的随机接入资源的应急带宽部分。因此,在一些情形中,UE 115-d可基于参考信号(包括UE 115-d还可用以标识候选波束的参考信号)来确定应急带宽部分。
在630处,如果在625处确定的应急带宽部分不同于活跃带宽部分,则UE 115-d可切换以利用在625处确定的应急带宽部分。切换到应急带宽部分可包括将被包括UE 115-d中的发射机或或接收机配置成使用应急带宽部分。
在635处,UE 115-d和基站105-d可使用在625处确定的应急带宽部分来执行随机接入规程。例如,UE 115-d可向基站105-d传送波束恢复请求(例如,如参照过程300所描述的波束恢复请求)。
在一些情形中,UE 115-d可基于被包括在活跃带宽部分中的可行候选波束的数目来确定在635处执行的随机接入规程。例如,UE 115-d可确定被包括在活跃带宽部分中的可行候选波束的数目(例如,如参照过程300所描述的,通过标识可行候选波束,其可能发生在620处服务波束故障的标识之后或之前),并且如果被包括在活跃带宽部分中的可行候选波束的数目达到或超过阈值,则可以选择CFRA规程,而如果被包括在活跃带宽部分中的可行候选波束的数目低于阈值,则可以选择CBRA规程。在一些情形中,阈值可以是一个,并且如果活跃带宽部分包括至少一个可行候选波束,则UE 115-d可以选择CFRA规程,而如果活跃带宽部分未包括可行候选波束,则UE 115-d可以选择CBRA规程。在一些情形中,UE 115-d可在620处标识服务波束的故障之前确定在635处执行的随机接入规程,但是应理解,UE 115-d可在任何时间确定在635处执行的随机接入规程。
在一些情形中,UE 115-d可基于被包括在应急带宽部分中的可行候选波束的数目来确定在635处执行的随机接入规程。例如,UE 115-d可确定被包括在应急带宽部分中的可行候选波束的数目(例如,如参照过程300所描述的,通过标识可行候选波束,其可能发生在310处服务波束故障的标识之后或之前),并且如果被包括在应急带宽部分中的可行候选波束的数目达到或超过阈值,则可以选择CFRA规程,而如果被包括在应急带宽部分中的可行候选波束的数目低于阈值,则可以选择CBRA规程。在一些情形中,阈值可以是一个,并且如果应急带宽部分包括至少一个可行候选波束,则UE 115-d可以选择CFRA规程,而如果应急带宽部分未包括可行候选波束,则UE 115-d可以选择CBRA规程。在一些情形中,UE 115-d可在624处确定应急带宽部分之后确定在635处执行的随机接入规程,但是应理解,UE 115-d可在任何时间确定在635处执行的随机接入规程。
尽管过程600利用单个应急带宽,但是应理解,过程600可被修改以利用任何数目个应急带宽。例如,在610处,指示可指示一对应急带宽,一个用于上行链路,一个用于下行链路,其中UE 115-d将所指示应急带宽之一用于在635处执行的随机接入规程的上行链路方面,以及将所指示应急带宽的另一者用于在635处执行的随机接入规程的下行链路方面。
图7示出了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的无线设备705的框图700。无线设备705可以是如本文中所描述的用户装备(UE)115的各方面的示例。无线设备705可包括接收机710、UE通信管理器715和发射机720。无线设备705还可包括处理器。这些组件中的每一者可彼此处于通信(例如,经由一条或多条总线)。
接收机710可接收信息,诸如分组、用户数据、或与各种信息信道相关联的控制信息(例如,控制信道、数据信道、以及与在多带宽部分环境中的波束恢复有关的信息等)。信息可被传递到该设备的其他组件。接收机710可以是参照图10所描述的收发机1035的各方面的示例。接收机710可利用单个天线或天线集合。
UE通信管理器715可以是参照图10所描述的UE通信管理器1015的各方面的示例。
UE通信管理器715和/或其各个子组件中的至少一些子组件可以在硬件、由处理器执行的软件、固件、或其任何组合中实现。如果在由处理器执行的软件中实现,则UE通信管理器715和/或其各个子组件中的至少一些子组件的功能可由设计成执行本公开中描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来执行。UE通信管理器715和/或其各个子组件中的至少一些子组件可物理地位于各个位置,包括被分布成使得功能的各部分在不同物理位置由一个或多个物理设备实现。在一些示例中,根据本公开的各个方面,UE通信管理器715和/或其各个子组件中的至少一些子组件可以是分开且相异的组件。在其他示例中,根据本公开的各个方面,UE通信管理器715和/或其各个子组件中的至少一些子组件可以与一个或多个其他硬件组件(包括但不限于I/O组件、收发机、网络服务器、另一计算设备、本公开中所描述的一个或多个其他组件、或其组合)相组合。
UE通信管理器715可标识由UE用于无线通信的载波的活跃带宽部分中的服务波束的故障;可针对载波的活跃带宽部分,确定对随机接入规程的支持水平;可基于服务波束的故障和支持水平来确定支持随机接入规程的载波的应急带宽部分;以及可使用该载波的应急带宽部分来执行随机接入规程。
发射机720可传送由该设备的其他组件生成的信号。在一些示例中,发射机720可与接收机710共处于收发机模块中。例如,发射机720可以是参照图10所描述的收发机1035的各方面的示例。发射机720可利用单个天线或天线集合。
图8示出了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的无线设备805的框图800。无线设备805可以是如参照图7所描述的无线设备705或UE 115的各方面的示例。无线设备805可包括接收机810、UE通信管理器815和发射机820。无线设备805还可包括处理器。这些组件中的每一者可彼此处于通信(例如,经由一条或多条总线)。
接收机810可接收信息,诸如分组、用户数据、或与各种信息信道相关联的控制信息(例如,控制信道、数据信道、以及与在多带宽部分环境中的波束恢复有关的信息等)。信息可被传递到该设备的其他组件。接收机810可以是参照图10所描述的收发机1035的各方面的示例。接收机810可利用单个天线或天线集合。
UE通信管理器815可以是参照图10所描述的UE通信管理器1015的各方面的示例。UE通信管理器815还可包括波束故障检测组件825,随机接入支持组件830,应急带宽部分组件835和随机接入组件840。
波束故障检测组件825可标识由UE用于无线通信的载波的活跃带宽部分中的服务波束的故障。
随机接入支持组件830可针对载波的活跃带宽部分,确定对随机接入规程的支持水平。
应急带宽部分组件835可基于服务波束的故障和支持水平来确定支持随机接入规程的载波的应急带宽部分。在一些情形中,应急带宽部分组件835可基于先前随机接入规程来确定载波的应急带宽部分。在一些情形中,应急带宽部分组件835可从基站接收对载波的应急带宽部分的指示。在一些情形中,应急带宽部分组件835可基于在载波的活跃带宽部分中传送的参考信号来确定载波的应急带宽部分。在一些情形中,载波的应急带宽部分是载波的活跃带宽部分。在一些情形中,载波的活跃带宽部分是第一带宽部分,而载波的应急带宽部分是第二带宽部分。
在一些情形中,应急带宽部分组件835可将接收机810配置成从基站接收配置信息,并且可至少部分地基于该配置信息来将接收机810或发射机820配置成使用载波的活跃带宽部分。在一些情形中,应急带宽部分组件835可至少部分地基于确定载波的应急带宽部分来将接收机810或发射机820配置成使用载波的应急带宽部分。
随机接入组件840可使用载波的应急带宽部分来执行随机接入规程。
发射机820可传送由该设备的其他组件生成的信号。在一些示例中,发射机820可与接收机810共处于收发机模块中。例如,发射机820可以是参照图10所描述的收发机1035的各方面的示例。发射机820可利用单个天线或天线集合。
图9示出了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的UE通信管理器915的框图900。UE通信管理器915可以是参照图7、8和10所描述的UE通信管理器715、UE通信管理器815、或UE通信管理器1015的各方面的示例。UE通信管理器915可包括波束故障检测组件920,随机接入支持组件925,应急带宽部分组件930,随机接入组件935,初始带宽部分组件940,指示组件945,映射组件950,候选波束组件955和随机接入选择组件960。这些模块中的每一者可彼此直接或间接通信(例如,经由一条或多条总线)。
波束故障检测组件920可标识由UE用于无线通信的载波的活跃带宽部分中的服务波束的故障。
随机接入支持组件925可针对载波的活跃带宽部分,确定对随机接入规程的支持水平。
应急带宽部分组件930可基于服务波束的故障和支持水平来确定支持随机接入规程的载波的应急带宽部分。在一些情形中,载波的应急带宽部分是载波的活跃带宽部分。在一些情形中,载波的活跃带宽部分是第一带宽部分,而载波的应急带宽部分是第二带宽部分。
在一些情形中,应急带宽部分组件930可将接收机配置成从基站接收配置信息,并且可至少部分地基于该配置信息来将接收机或发射机配置成使用载波的活跃带宽部分。在一些情形中,应急带宽部分组件930可至少部分地基于确定载波的应急带宽部分来将接收机或发射机配置成使用载波的应急带宽部分。
随机接入组件935可使用载波的应急带宽部分来执行随机接入规程。
在一些情形中,应急带宽部分组件930可基于先前随机接入规程来确定载波的应急带宽部分。确定载波的应急带宽部分可包括将载波的初始带宽部分标识为用于先前随机接入规程,而初始带宽部分组件940可将载波的应急带宽部分确定为载波的初始带宽部分。
在一些情形中,应急带宽部分组件930可从基站接收对载波的应急带宽部分的指示。指示组件945可经由RRC信令接收对载波的应急带宽部分的指示。
在一些情形中,应急带宽部分组件930可基于在载波的活跃带宽部分中传送的参考信号来确定载波的应急带宽部分。映射组件950可标识参考信号与包括随机接入资源的波束之间的映射,基于该映射来确定载波的应急带宽部分。映射组件950可经由RRC信令来接收对映射的指示。在一些情形中,参考信号与包括随机接入资源的波束准共处一地。在一些情形中,参考信号包括同步信号、CSI-RS、或其组合。候选波束组件955可基于参考信号来标识候选波束。
在一些情形中,随机接入选择组件960可基于载波的活跃带宽部分的可行候选波束的数目来选择随机接入规程。在一些情形中,选择随机接入规程包括:如果在载波的活跃带宽部分中的可行候选波束的数目是至少一个,则将随机接入规程选择为无争用随机接入规程。在一些情形中,选择随机接入规程包括:如果在载波的活跃带宽部分中的可行候选波束的数目是零,则将随机接入规程选择为基于争用的随机接入规程。
在一些情形中,随机接入选择组件960可基于载波的应急带宽部分的可行候选波束的数目来选择随机接入规程。在一些情形中,选择随机接入规程包括:如果在载波的应急带宽部分中的可行候选波束的数目是至少一个,则将随机接入规程选择为无争用随机接入规程。在一些情形中,选择随机接入规程包括:如果在载波的应急带宽部分中的可行候选波束的数目是零,则将随机接入规程选择为基于争用的随机接入规程。
图10解说了根据本公开的各方面的包括支持在多带宽部分环境中的波束恢复的设备1005的***1000的框图。设备1005可以是以上例如参照图7和8所描述的无线设备705、无线设备805或UE 115的各组件的示例或者包括这些组件。设备1005可包括用于双向语音和数据通信的组件,其包括用于传送和接收通信的组件,包括UE通信管理器1015、处理器1020、存储器1025、软件1030、收发机1035、天线1040和I/O控制器1045。这些组件可经由一条或多条总线(例如,总线1010)处于电子通信。设备1005可与一个或多个基站105进行无线通信。
处理器1020可包括智能硬件设备(例如,通用处理器、DSP、中央处理单元(CPU)、微控制器、ASIC、FPGA、可编程逻辑器件、分立的门或晶体管逻辑组件、分立的硬件组件、或者其任何组合)。在一些情形中,处理器1020可被配置成使用存储器控制器来操作存储器阵列。在其他情形中,存储器控制器可被集成到处理器1020中。处理器1020可被配置成执行存储器中所存储的计算机可读指令以执行各种功能(例如,支持在多带宽部分环境中的波束恢复的功能或任务)。
存储器1025可包括随机存取存储器(RAM)和只读存储器(ROM)。存储器1025可存储包括指令的计算机可读、计算机可执行软件1030,这些指令在被执行时致使处理器执行本文中所描述的各种功能。在一些情形中,存储器1025可尤其包含基本输入/输出***(BIOS),该BIOS可控制基本硬件或软件操作,诸如与***组件或设备的交互。
软件1030可包括用以实现本公开的诸方面的代码,包括用于支持多带宽部分环境中的波束恢复的代码。软件1030可被存储在非瞬态计算机可读介质(诸如***存储器或其他存储器)中。在一些情形中,软件1030可以不由处理器直接执行,而是(例如,在被编译和执行时)可致使计算机执行本文中所描述的功能。
收发机1035可经由一个或多个天线、有线或无线链路进行双向通信,如上所述。例如,收发机1035可表示无线收发机并且可与另一无线收发机进行双向通信。收发机1035还可包括调制解调器以调制分组并将经调制的分组提供给天线以供传输、以及解调从天线接收到的分组。
在一些情形中,无线设备可包括单个天线1040。然而,在一些情形中,该设备可具有不止一个天线1040,这些天线可以能够并发地传送或接收多个无线传输。
I/O控制器1045可管理设备1005的输入和输出信号。I/O控制器1045还可管理未被集成到设备1005中的***设备。在一些情形中,I/O控制器1045可代表至外部***设备的物理连接或端口。在一些情形中,I/O控制器1045可利用操作***,诸如
Figure BDA0002572876390000331
OS/
Figure BDA0002572876390000332
Figure BDA0002572876390000333
或另一已知操作***。在其他情形中,I/O控制器1045可表示调制解调器、键盘、鼠标、触摸屏或类似设备或者与其交互。在一些情形中,I/O控制器1045可被实现为处理器的一部分。在一些情形中,用户可经由I/O控制器1045或者经由I/O控制器1045所控制的硬件组件来与设备1005交互。
图11示出了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的无线设备1105的框图1100。无线设备1105可以是如本文中所描述的基站105的各方面的示例。无线设备1105可包括接收机1110、基站通信管理器1115和发射机1120。无线设备1105还可包括处理器。这些组件中的每一者可彼此处于通信(例如,经由一条或多条总线)。
接收机1110可接收信息,诸如分组、用户数据、或与各种信息信道相关联的控制信息(例如,控制信道、数据信道、以及与在多带宽部分环境中的波束恢复有关的信息等)。信息可被传递到该设备的其他组件。接收机1110可以是参照图14所描述的收发机1435的各方面的示例。接收机1110可利用单个天线或天线集合。
基站通信管理器1115可以是参照图14所描述的基站通信管理器1415的各方面的示例。
基站通信管理器1115和/或其各个子组件中的至少一些子组件可以在硬件、由处理器执行的软件、固件、或其任何组合中实现。如果在由处理器执行的软件中实现,则基站通信管理器1115和/或其各个子组件中的至少一些子组件的功能可由设计成执行本公开中描述的功能的通用处理器、DSP、ASIC、FPGA或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来执行。基站通信管理器1115和/或其各个子组件中的至少一些子组件可物理地位于各个位置处,包括被分布成使得功能的各部分在不同物理位置处由一个或多个物理设备实现。在一些示例中,根据本公开的各个方面,基站通信管理器1115和/或其各个子组件中的至少一些子组件可以是分开且相异的组件。在其他示例中,根据本公开的各个方面,基站通信管理器1115和/或其各个子组件中的至少一些子组件可以与一个或多个其他硬件组件(包括但不限于I/O组件、收发机、网络服务器、另一计算设备、本公开中所描述的一个或多个其他组件、或其组合)相组合。
基站通信管理器1115可将UE配置成将载波的第一带宽部分用作载波的活跃带宽部分以供无线通信;以及向UE传送对要用于后续随机接入规程的载波的应急带宽部分的指示。
发射机1120可传送由该设备的其他组件生成的信号。在一些示例中,发射机1120可与接收机1110共处于收发机模块中。例如,发射机1120可以是参照图14所描述的收发机1435的各方面的示例。发射机1120可利用单个天线或天线集合。
图12示出了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的无线设备1205的框图1200。无线设备1205可以是参照图11所描述的无线设备1105或基站105的各方面的示例。无线设备1205可包括接收机1210、基站通信管理器1215和发射机1220。无线设备1205还可包括处理器。这些组件中的每一者可彼此处于通信(例如,经由一条或多条总线)。
接收机1210可接收信息,诸如分组、用户数据、或与各种信息信道相关联的控制信息(例如,控制信道、数据信道、以及与在多带宽部分环境中的波束恢复有关的信息等)。信息可被传递到该设备的其他组件。接收机1210可以是参照图14所描述的收发机1435的各方面的示例。接收机1210可利用单个天线或天线集合。
基站通信管理器1215可以是参照图14所描述的基站通信管理器1415的各方面的示例。基站通信管理器1215还可包括带宽部分组件1225和应急带宽部分组件1230。
带宽部分组件1225可将UE配置成将载波的第一带宽部分用作载波的活跃带宽部分以供无线通信。
应急带宽部分组件1230可向UE传送对要用于后续随机接入规程的载波的应急带宽部分的指示。在一些情形中,载波的应急带宽部分是载波的活跃带宽部分。在一些情形中,载波的应急带宽部分是第二带宽部分。
发射机1220可传送由该设备的其他组件生成的信号。在一些示例中,发射机1220可与接收机1210共处于收发机模块中。例如,发射机1220可以是参照图14所描述的收发机1435的各方面的示例。发射机1220可利用单个天线或天线集合。
图13示出了根据本公开的各方面的支持在多带宽部分环境中的波束恢复的基站通信管理器1315的框图1300。基站通信管理器1315可以是参照图11、12和14所描述的基站通信管理器1415的各方面的示例。基站通信管理器1315可包括带宽部分组件1320,应急带宽部分组件1325,参考信号组件1330,随机接入资源组件1335,映射组件1340,指示组件1345和配置组件1350。这些模块中的每一者可彼此直接或间接通信(例如,经由一条或多条总线)。
带宽部分组件1320可将UE配置成将载波的第一带宽部分用作载波的活跃带宽部分以供无线通信。
应急带宽部分组件1325可向UE传送对要用于后续随机接入规程的载波的应急带宽部分的指示。在一些情形中,载波的应急带宽部分是载波的活跃带宽部分。在一些情形中,载波的应急带宽部分是第二带宽部分。
在一些情形中,传送对载波的应急带宽部分的指示包括在载波的活跃带宽部分中向UE传送参考信号。参考信号组件1330可传送参考信号。随机接入资源组件1335可向UE传送包括随机接入资源的波束。映射组件1340可向UE传送对参考信号与包括随机接入资源的波束之间的映射的指示。在一些情形中,映射组件1340可经由RRC信令传送对映射的指示。
在一些情形中,传送对载波的应急带宽部分的指示包括经由RRC信令传送对载波的应急带宽部分的显式指示。指示组件1345可传送对应急带宽部分的指示。
在一些情形中,传送对载波的应急带宽部分的指示包括将UE配置成基于UE的先前随机接入规程来确定载波的应急带宽部分。配置组件1350可将UE配置成基于UE的先前随机接入规程来确定载波的应急带宽部分。
图14示出了根据本公开的各方面的包括支持在多带宽部分环境中的波束恢复的设备1405的***1400的框图。设备1405可以是如上(例如,参照图1)所描述的基站105的组件的示例或者包括这些组件。设备1405可包括用于双向语音和数据通信的组件,其包括用于传送和接收通信的组件,包括基站通信管理器1415、处理器1420、存储器1425、软件1430、收发机1435、天线1440、网络通信管理器1445、以及站间通信管理器1450。这些组件可经由一条或多条总线(例如,总线1410)处于电子通信。设备1405可与一个或多个UE 115进行无线通信。
处理器1420可包括智能硬件设备(例如,通用处理器、DSP、CPU、微控制器、ASIC、FPGA、可编程逻辑器件、分立的门或晶体管逻辑组件、分立的硬件组件、或者其任何组合)。在一些情形中,处理器1420可被配置成使用存储器控制器来操作存储器阵列。在其他情形中,存储器控制器可被集成到处理器1420中。处理器1420可被配置成执行存储器中所存储的计算机可读指令以执行各种功能(例如,支持在多带宽部分环境中的波束恢复的功能或任务)。
存储器1425可包括RAM和ROM。存储器1425可存储包括指令的计算机可读、计算机可执行软件1430,这些指令在被执行时致使处理器执行本文中所描述的各种功能。在一些情形中,存储器1425可尤其包含BIOS,该BIOS可控制基本硬件或软件操作,诸如与***组件或设备的交互。
软件1430可包括用以实现本公开的诸方面的代码,包括用于支持多带宽部分环境中的波束恢复的代码。软件1430可被存储在非瞬态计算机可读介质(诸如***存储器或其他存储器)中。在一些情形中,软件1430可以不由处理器直接执行,而是(例如,在被编译和执行时)可致使计算机执行本文中所描述的功能。
收发机1435可经由一个或多个天线、有线或无线链路进行双向通信,如上所述。例如,收发机1435可表示无线收发机并且可与另一无线收发机进行双向通信。收发机1435还可包括调制解调器以调制分组并将经调制的分组提供给天线以供传输、以及解调从天线接收到的分组。
在一些情形中,无线设备可包括单个天线1440。然而,在一些情形中,该设备可具有不止一个天线1440,这些天线可以能够并发地传送或接收多个无线传输。
网络通信管理器1445可管理与核心网的通信(例如,经由一个或多个有线回程链路)。例如,网络通信管理器1445可管理客户端设备(诸如一个或多个UE 115)的数据通信的传递。
站间通信管理器1450可管理与其他基站105的通信,并且可包括控制器或调度器以用于与其他基站105协作地控制与UE 115的通信。例如,站间通信管理器1450可针对各种干扰缓解技术(诸如波束成形或联合传输)来协调对去往UE 115的传输的调度。在一些示例中,站间通信管理器1450可提供长期演进(LTE)/LTE-A无线通信网络技术内的X2接口以提供基站105之间的通信。
图15示出了解说根据本公开的各方面的用于在多带宽部分环境中的波束恢复的方法1500的流程图。方法1500的操作可由如本文中所描述的UE 115或其组件来实现。例如,方法1500的操作可由如参照图7至图10所描述的UE通信管理器来执行。在一些示例中,UE115可执行代码集以控制该设备的功能元件执行下述功能。附加地或替换地,UE 115可使用专用硬件来执行下述功能的各方面。
在1505处,UE 115可标识由UE用于无线通信的载波的活跃带宽部分中的服务波束的故障。1505的操作可根据本文中所描述的方法来执行。在某些示例中,1505的操作的各方面可由如参照图7至10所描述的波束故障检测组件来执行。
在1510处,UE 115可针对载波的活跃带宽部分,确定对随机接入规程的支持水平。1510的操作可根据本文中所描述的方法来执行。在某些示例中,1510的操作的各方面可由如参照图7至图10所描述的随机接入支持组件来执行。
在1515处,UE 115可至少部分地基于服务波束的故障和支持水平来确定支持随机接入规程的载波的应急带宽部分。1515的操作可根据本文中所描述的方法来执行。在某些示例中,1515的操作的各方面可由如参照图7至10所描述的应急带宽部分组件来执行。
在1520处,UE 115可使用载波的应急带宽部分来执行随机接入规程。1520的操作可根据本文中所描述的方法来执行。在某些示例中,框1520的操作的各方面可由如参照图7至图10所描述的随机接入组件来执行。
图16示出了解说根据本公开的各方面的用于在多带宽部分环境中的波束恢复的方法1600的流程图。方法1600的操作可由如本文中所描述的基站105或其组件来实现。例如,方法1600的操作可由如参照图11至图14所描述的基站通信管理器来执行。在一些示例中,基站105可执行代码集以控制该设备的功能元件执行下述各功能。附加地或替换地,基站105可使用专用硬件来执行下述各功能的各方面。
在1605处,基站105可将用户装备(UE)配置成将载波的第一带宽部分用作载波的活跃带宽部分以供无线通信。1605的操作可根据本文中所描述的方法来执行。在某些示例中,1605的操作的各方面可由如参照图11到14描述的带宽部分组件来执行。
在1610处,基站105可向UE传送对要用于后续随机接入规程的载波的应急带宽部分的指示。1610的操作可根据本文中所描述的方法来执行。在某些示例中,1610的操作的各方面可由如参照图11至14所描述的应急带宽部分组件来执行。
应当注意,上述方法和过程描述了可能的实现,并且各操作和步骤可被重新安排或以其他方式被修改且其他实现也是可能的。此外,来自两种或更多种方法或过程的各方面可被组合。
本文中所描述的技术可被用于各种无线通信***,诸如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)以及其他***。CDMA***可以实现诸如CDMA2000、通用地面无线电接入(UTRA)等无线电技术。CDMA2000涵盖IS-2000、IS-95和IS-856标准。IS-2000版本通常可被称为CDMA2000 1X、1X等。IS-856(TIA-856)通常被称为CDMA2000 1xEV-DO、高速率分组数据(HRPD)等。UTRA包括宽带CDMA(WCDMA)和CDMA的其他变体。TDMA***可实现诸如全球移动通信***(GSM)之类的无线电技术。
OFDMA***可以实现诸如超移动宽带(UMB)、演进型UTRA(E-UTRA)、电气和电子工程师协会(IEEE)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信***(UMTS)的一部分。LTE、LTE-A和LTE-A Pro是使用E-UTRA的UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A、LTE-A Pro、NR以及GSM在来自名为“第三代伙伴项目”(3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。尽管LTE、LTE-A、LTE-A Pro或NR***的各方面可被描述以用于示例目的,并且在大部分描述中可使用LTE、LTE-A、LTE-A Pro或NR术语,但本文所描述的技术也可应用于LTE、LTE-A、LTE-A Pro或NR应用之外的应用。
宏蜂窝小区一般覆盖相对较大的地理区域(例如,半径为数千米的区域),并且可允许由与网络供应商具有服务订阅的UE 115无约束地接入。小型蜂窝小区可与较低功率基站105相关联(与宏蜂窝小区相比而言),且小型蜂窝小区可在与宏蜂窝小区相同或不同的(例如,有执照、无执照等)频带中操作。根据各个示例,小型蜂窝小区可包括微微蜂窝小区、毫微微蜂窝小区、以及微蜂窝小区。微微蜂窝小区例如可覆盖较小地理区域并且可允许由与网络供应商具有服务订阅的UE 115无约束地接入。毫微微蜂窝小区也可覆盖较小地理区域(例如,住宅)并且可提供由与该毫微微蜂窝小区有关联的UE 115(例如,封闭订户群(CSG)中的UE 115、住宅中的用户的UE 115等)有约束地接入。用于宏蜂窝小区的eNB可被称为宏eNB。用于小型蜂窝小区的eNB可被称为小型蜂窝小区eNB、微微eNB、毫微微eNB、或家用eNB。eNB可支持一个或多个(例如,两个、三个、四个等)蜂窝小区,并且还可支持使用一个或多个分量载波的通信。
本文中所描述的一个或多个无线通信***100可支持同步或异步操作。对于同步操作,基站105可以具有类似的帧定时,并且来自不同基站105的传输可以在时间上大致对准。对于异步操作,基站105可以具有不同的帧定时,并且来自不同基站105的传输可以不在时间上对准。本文所描述的技术可被用于同步或异步操作。
本文中所描述的信息和信号可使用各种各样的不同技艺和技术中的任一种来表示。例如,贯穿上面说明始终可能被述及的数据、指令、命令、信息、信号、比特、码元和码片可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子、或其任何组合来表示。
结合本文的公开所描述的各种解说性块和模块可用设计成执行本文中描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件(PLD)、分立的门或晶体管逻辑、分立的硬件组件、或其任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,处理器可以是任何常规的处理器、控制器、微控制器、或状态机。处理器还可被实现为计算设备的组合(例如,DSP与微处理器的组合、多个微处理器、与DSP核心协同的一个或多个微处理器,或者任何其他此类配置)。
本文中所描述的功能可以在硬件、由处理器执行的软件、固件、或其任何组合中实现。如果在由处理器执行的软件中实现,则各功能可以作为一条或多条指令或代码存储在计算机可读介质上或藉其进行传送。其他示例和实现落在本公开及所附权利要求的范围内。例如,由于软件的本质,上述功能可使用由处理器执行的软件、硬件、固件、硬连线或其任何组合来实现。实现功能的特征也可物理地位于各种位置,包括被分布以使得功能的各部分在不同的物理位置处实现。
计算机可读介质包括非瞬态计算机存储介质和通信介质两者,其包括促成计算机程序从一地向另一地转移的任何介质。非瞬态存储介质可以是能被通用或专用计算机访问的任何可用介质。作为示例而非限定,非瞬态计算机可读介质可包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、闪存、压缩盘(CD)ROM或其他光盘存储、磁盘存储或其他磁存储设备、或能被用来携带或存储指令或数据结构形式的期望程序代码手段且能被通用或专用计算机、或者通用或专用处理器访问的任何其他非瞬态介质。任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或诸如红外、无线电、以及微波之类的无线技术从网站、服务器、或其他远程源传送的,则该同轴电缆、光纤电缆、双绞线、DSL、或诸如红外、无线电、以及微波之类的无线技术就被包括在介质的定义之中。如本文中所使用的盘(disk)和碟(disc)包括CD、激光碟、光碟、数字通用碟(DVD)、软盘和蓝光碟,其中盘常常磁性地再现数据而碟用激光来光学地再现数据。以上介质的组合也被包括在计算机可读介质的范围内。
如本文(包括权利要求中)所使用的,在项目列举(例如,以附有诸如“中的至少一个”或“中的一个或多个”之类的措辞的项目列举)中使用的“或”指示包含性列举,以使得例如A、B或C中的至少一个的列举意指A或B或C或AB或AC或BC或ABC(即,A和B和C)。同样,如本文所使用的,短语“基于”不应被解读为引述封闭条件集。例如,被描述为“基于条件A”的示例性步骤可基于条件A和条件B两者而不脱离本公开的范围。换言之,如本文所使用的,短语“基于”应当以与短语“至少部分地基于”相同的方式来解读。
在附图中,类似组件或特征可具有相同的附图标记。此外,相同类型的各个组件可通过在附图标记后跟随短划线以及在类似组件之间进行区分的第二标记来加以区分。如果在说明书中仅使用第一附图标记,则该描述可应用于具有相同的第一附图标记的类似组件中的任何一个组件而不论第二附图标记、或其他后续附图标记如何。
本文结合附图阐述的说明描述了示例配置而不代表可被实现或者落在权利要求的范围内的所有示例。本文所使用的术语“示例性”意指“用作示例、实例或解说”,而并不意指“优于”或“胜过其他示例”。本详细描述包括具体细节以提供对所描述的技术的理解。然而,可在没有这些具体细节的情况下实践这些技术。在一些实例中,众所周知的结构和设备以框图形式示出以避免模糊所描述的示例的概念。
提供本文中的描述是为了使得本领域技术人员能够制作或使用本公开。对本公开的各种修改对于本领域技术人员将是显而易见的,并且本文中所定义的普适原理可被应用于其他变形而不会脱离本公开的范围。由此,本公开并非被限定于本文中所描述的示例和设计,而是应被授予与本文所公开的原理和新颖特征相一致的最广范围。

Claims (34)

1.一种用于在用户装备(UE)处进行无线通信的方法,包括:
标识由所述UE用于无线通信的载波的活跃带宽部分中的服务波束的故障;
针对所述载波的所述活跃带宽部分,确定对随机接入规程的支持水平;
至少部分地基于所述服务波束的故障和所述支持水平来确定支持所述随机接入规程的所述载波的应急带宽部分;以及
使用所述载波的所述应急带宽部分来执行所述随机接入规程。
2.如权利要求1所述的方法,其特征在于,进一步包括:
至少部分地基于先前随机接入规程来确定所述载波的所述应急带宽部分。
3.如权利要求2所述的方法,其特征在于,确定所述载波的所述应急带宽部分包括:
标识用于所述先前随机接入规程的所述载波的初始带宽部分;以及
将所述载波的所述应急带宽部分确定为所述载波的所述初始带宽部分。
4.如权利要求1所述的方法,其特征在于,进一步包括:
从基站接收对所述载波的所述应急带宽部分的指示。
5.如权利要求4所述的方法,其特征在于,进一步包括:
经由无线电资源控制(RRC)信令接收对所述载波的所述应急带宽部分的所述指示。
6.如权利要求1所述的方法,其特征在于,进一步包括:
至少部分地基于在所述载波的所述活跃带宽部分中传送的参考信号来确定所述载波的所述应急带宽部分。
7.如权利要求6所述的方法,其特征在于,进一步包括:
标识所述参考信号与包括随机接入资源的波束之间的映射;以及
至少部分地基于所述映射来确定所述载波的所述应急带宽部分。
8.如权利要求7所述的方法,其特征在于,进一步包括:
经由无线电资源控制(RRC)信令接收对所述映射的指示。
9.如权利要求7所述的方法,其特征在于,所述参考信号与包括所述随机接入资源的所述波束准共处一地。
10.如权利要求6所述的方法,其特征在于,进一步包括:
至少部分地基于所述参考信号来标识候选波束。
11.如权利要求6所述的方法,其特征在于,所述参考信号包括同步信号、信道状态信息参考信号(CSI-RS)或其组合。
12.如权利要求1所述的方法,其特征在于,使用所述载波的所述应急带宽部分来执行所述随机接入规程包括:
确定所述载波的所述活跃带宽部分的可行候选波束的数目;以及
至少部分地基于所述载波的所述活跃带宽部分的可行候选波束的数目来选择所述随机接入规程。
13.如权利要求12所述的方法,其特征在于,选择所述随机接入规程包括:
如果在所述载波的所述活跃带宽部分中的可行候选波束的数目是至少一个,则将所述随机接入规程选择为无争用随机接入规程。
14.如权利要求12所述的方法,其特征在于,选择所述随机接入规程包括:
如果在所述载波的所述活跃带宽部分中的可行候选波束的数目是零,则将所述随机接入规程选择为基于争用的随机接入规程。
15.如权利要求1所述的方法,其特征在于,使用所述载波的所述应急带宽部分来执行所述随机接入规程包括:
确定所述载波的所述应急带宽部分的可行候选波束的数目;以及
至少部分地基于所述载波的所述应急带宽部分的可行候选波束的数目来选择所述随机接入规程。
16.如权利要求15所述的方法,其特征在于,选择所述随机接入规程包括:
如果在所述载波的所述应急带宽部分中的可行候选波束的数目是至少一个,则将所述随机接入规程选择为无争用随机接入规程。
17.如权利要求15所述的方法,其特征在于,选择所述随机接入规程包括:
如果在所述载波的所述应急带宽部分中的可行候选波束的数目是零,则将所述随机接入规程选择为基于争用的随机接入规程。
18.如权利要求1所述的方法,其特征在于,所述载波的所述应急带宽部分是所述载波的所述活跃带宽部分。
19.如权利要求1所述的方法,其特征在于:
所述载波的所述活跃带宽部分是第一带宽部分;以及
所述载波的所述应急带宽部分是第二带宽部分。
20.一种用于无线通信的方法,包括:
将用户装备(UE)配置成将所述载波的第一带宽部分用作所述载波的活跃带宽部分以供无线通信;以及
向UE传送对要用于后续随机接入规程的所述载波的应急带宽部分的指示。
21.如权利要求20所述的方法,其特征在于,传送对所述载波的所述应急带宽部分的所述指示包括:
在所述载波的所述活跃带宽部分中向UE传送参考信号;
向UE传送包括随机接入资源的波束;以及
向UE传送对所述参考信号与包括所述随机接入资源的波束之间的映射的指示。
22.如权利要求21所述的方法,其特征在于,传送对所述映射的所述指示包括:
经由无线电资源控制(RRC)信令传送对所述映射的所述指示。
23.如权利要求20所述的方法,其特征在于,传送对所述载波的所述应急带宽部分的所述指示包括:
经由无线电资源控制(RRC)信令传送对所述载波的所述应急带宽部分的显式指示。
24.如权利要求20所述的方法,其特征在于,传送对所述载波的所述应急带宽部分的所述指示包括:
将所述UE配置成至少部分地基于所述UE的先前随机接入规程来确定所述载波的所述应急带宽部分。
25.如权利要求20所述的方法,其特征在于,所述载波的所述应急带宽部分是所述载波的所述活跃带宽部分。
26.如权利要求20所述的方法,其特征在于,所述载波的所述应急带宽部分是第二带宽部分。
27.一种用于在用户装备(UE)处进行无线通信的装备,包括:
用于标识由所述UE用于无线通信的载波的活跃带宽部分中的服务波束的故障的装置;
用于针对所述载波的所述活跃带宽部分,确定对随机接入规程的支持水平的装置;
用于至少部分地基于所述服务波束的故障和所述支持水平来确定支持所述随机接入规程的所述载波的应急带宽部分的装置;以及
用于使用所述载波的所述应急带宽部分来执行所述随机接入规程的装置。
28.一种用于无线通信的装备,包括:
用于将用户装备(UE)配置成将载波的第一带宽部分用作所述载波的活跃带宽部分以供无线通信的装置;以及
用于向所述UE传送对要用于后续随机接入规程的所述载波的应急带宽部分的指示的装置。
29.一种用于在用户装备(UE)处进行无线通信的装置,包括:
处理器;
与所述处理器处于电子通信的存储器;以及
指令,所述指令存储在所述存储器中并且能由所述处理器执行以致使所述装置:
标识由所述UE用于无线通信的载波的活跃带宽部分中的服务波束的故障;
针对所述载波的所述活跃带宽部分,确定对随机接入规程的支持水平;
至少部分地基于所述服务波束的故障和所述支持水平来确定支持所述随机接入规程的所述载波的应急带宽部分;以及
使用所述载波的所述应急带宽部分来执行所述随机接入规程。
30.如权利要求29所述的装置,其特征在于,进一步包括:
接收机;
发射机;以及
指令,所述指令存储在所述存储器中并且能由所述处理器执行以致使所述装置:
经由所述接收机从基站接收配置信息;以及
至少部分地基于所述配置信息来将所述接收机或所述发射机配置成使用所述载波的所述活跃带宽部分。
31.如权利要求29所述的装置,其特征在于,进一步包括:
接收机;
发射机;以及
指令,所述指令存储在所述存储器中并且能由所述处理器执行以致使所述装置:
至少部分地基于确定所述载波的所述应急带宽部分来将所述接收机或所述发射机配置成使用所述载波的所述应急带宽部分。
32.一种用于无线通信的装备,包括:
处理器;
与所述处理器处于电子通信的存储器;以及
指令,所述指令存储在所述存储器中并且能由所述处理器执行以致使所述装置:
将用户装备(UE)配置成将载波的第一带宽部分用作所述载波的活跃带宽部分以供无线通信;以及
向所述UE传送对要用于后续随机接入规程的所述载波的应急带宽部分的指示。
33.一种存储用于用户装备(UE)处的无线通信的代码的非瞬态计算机可读介质,所述代码包括能由处理器执行以进行以下操作的指令:
标识由所述UE用于无线通信的载波的活跃带宽部分中的服务波束的故障;
针对所述载波的所述活跃带宽部分,确定对随机接入规程的支持水平;
至少部分地基于所述服务波束的故障和所述支持水平来确定支持所述随机接入规程的所述载波的应急带宽部分;以及
使用所述载波的所述应急带宽部分来执行所述随机接入规程。
34.一种存储用于无线通信的代码的非瞬态计算机可读介质,所述代码包括能由处理器执行以用于以下操作的指令:
将用户装备(UE)配置成将载波的第一带宽部分用作所述载波的活跃带宽部分以供无线通信;以及
向所述UE传送对要用于后续随机接入规程的所述载波的应急带宽部分的指示。
CN201880085682.7A 2018-01-09 2018-01-09 多带宽部分环境中的波束恢复 Pending CN111567077A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071877 WO2019136587A1 (en) 2018-01-09 2018-01-09 Beam recovery in a multiple bandwidth part environment

Publications (1)

Publication Number Publication Date
CN111567077A true CN111567077A (zh) 2020-08-21

Family

ID=67218857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880085682.7A Pending CN111567077A (zh) 2018-01-09 2018-01-09 多带宽部分环境中的波束恢复

Country Status (9)

Country Link
US (1) US11792843B2 (zh)
EP (1) EP3738336A4 (zh)
JP (1) JP7164614B2 (zh)
KR (1) KR102590408B1 (zh)
CN (1) CN111567077A (zh)
AU (1) AU2018402028B2 (zh)
BR (1) BR112020013867A2 (zh)
SG (1) SG11202004903VA (zh)
WO (1) WO2019136587A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190107568A (ko) * 2018-03-12 2019-09-20 한국전자통신연구원 통신 시스템에서 빔 실패 복구를 위한 방법 및 장치
US11197179B2 (en) * 2018-03-26 2021-12-07 Acer Incorporated Device and method for handling radio link monitoring and bandwidth part switching
CN110611957B (zh) * 2018-06-15 2021-09-07 华为技术有限公司 一种信号传输方法及装置
US11956822B2 (en) * 2018-06-19 2024-04-09 Interdigital Patent Holdings, Inc. Radio link monitoring in shared spectrum
EP3840496A4 (en) * 2018-08-16 2021-09-01 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR ADJUSTING A BAND WIDTH PART
CN109417751B (zh) * 2018-09-26 2021-11-02 北京小米移动软件有限公司 故障排查的方法、装置、终端、基站及存储介质
US12022507B2 (en) * 2018-09-26 2024-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Wireless channel switching
US20210377988A1 (en) * 2018-11-05 2021-12-02 Apple Inc. Mechanisms for bandwidth part (bwp) switching in a new radio (nr) network
WO2020222474A1 (en) * 2019-05-01 2020-11-05 Lg Electronics Inc. Random access procedure based on beam quality
US11546031B2 (en) * 2020-05-21 2023-01-03 Qualcomm Incorporated Reporting wide bandwidth operation for beamforming

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015097A1 (zh) * 2009-08-07 2011-02-10 中兴通讯股份有限公司 用于载波聚合的周期性cqi反馈的方法和装置
CN107493605A (zh) * 2017-08-31 2017-12-19 宇龙计算机通信科技(深圳)有限公司 频域资源的设置方法、装置及基站

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611290B1 (ko) 2008-12-29 2016-04-11 엘지전자 주식회사 복수의 전송 대역을 지원하는 무선 통신 시스템에 있어서, cqi를 요청하기 위한 제어정보를 전송하는 방법
CN111149306A (zh) * 2017-08-09 2020-05-12 Idac控股公司 用于波束恢复和管理的方法和***
ES2966167T3 (es) * 2017-11-15 2024-04-18 Nokia Technologies Oy Acceso aleatorio con conmutación de parte de ancho de banda
KR102352684B1 (ko) * 2017-11-16 2022-01-18 삼성전자주식회사 무선통신 시스템에서 통신 방법 및 장치
CN110022607B (zh) * 2018-01-08 2021-02-05 电信科学技术研究院 一种波束失败恢复方法、装置及设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015097A1 (zh) * 2009-08-07 2011-02-10 中兴通讯股份有限公司 用于载波聚合的周期性cqi反馈的方法和装置
CN107493605A (zh) * 2017-08-31 2017-12-19 宇龙计算机通信科技(深圳)有限公司 频域资源的设置方法、装置及基站

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 15)" *
ERICSSON: "\"R1-1721425 BWP and random access\"" *
GUANGDONG OPPO MOBILE TELECOM.: "R1-1710164 \"Bandwidth part configuration and frequency resource allocation\"" *
MEDIATEK INC.: "\"R1-1719566_BeamRecovery_final\"" *
MEDIATEK INC.: "R1-1707832 \"Discussion on Beam Recovery Mechanism\"" *
QUALCOMM INCORPORATED: "\"R2-1713806 BWPs for random access in connected mode\"" *

Also Published As

Publication number Publication date
EP3738336A4 (en) 2021-08-25
BR112020013867A2 (pt) 2020-12-01
JP2021516464A (ja) 2021-07-01
AU2018402028B2 (en) 2024-03-14
EP3738336A1 (en) 2020-11-18
KR102590408B1 (ko) 2023-10-16
US20200374923A1 (en) 2020-11-26
SG11202004903VA (en) 2020-07-29
AU2018402028A1 (en) 2020-06-18
US11792843B2 (en) 2023-10-17
JP7164614B2 (ja) 2022-11-01
WO2019136587A1 (en) 2019-07-18
KR20200107955A (ko) 2020-09-16

Similar Documents

Publication Publication Date Title
CN112913152B (zh) 用于经pdcch指令的rach的多个msg1的方法和装置
CN111567130B (zh) 确定用于传输的rach前置码消息的数目
CN110999119B (zh) 多波束***中的基于上行链路的定位参考信号传输
CN111512585B (zh) 针对多链路部署的控制监测和功率控制
CN111758290B (zh) 无授权上行链路传输技术
CN111727580B (zh) 用于跟踪的参考信号
CN111226469B (zh) 无线***中的上行链路功率控制
AU2018402028B2 (en) Beam recovery in a multiple bandwidth part environment
CN110915288B (zh) 多波束上行链路随机接入信道消息
CN112997442A (zh) 在初始控制资源集上配置发送配置指示状态
CN111989945B (zh) 无线电链路监视参考信号资源重新配置
CN111034330B (zh) 具有跨频带下行链路/上行链路配对的随机接入规程
CN113748638A (zh) 用于多个分量载波的通信配置
CN112189318B (zh) 前载探通参考信号和物理随机接入信道信号
CN111095851B (zh) 用于信令通知同步信号突发集模式的技术
CN113170354B (zh) 用于初始控制资源集合的传输配置指示状态排序
CN112889339A (zh) 两步随机接入规程的消息2以及与四步随机接入规程的共存
CN113228775A (zh) 用于共享数据信道的传输配置指示确定
CN111066260A (zh) 用于建立波束对链路的技术
CN111344984B (zh) 一种用于无线通信的方法和装置
CN111972040B (zh) 窄带物联网中的基于无线电链路故障的测量报告
CN111434181B (zh) 共享频谱中的信道可用性协议
CN113169840A (zh) 用于无线通信的灵活控制信息
CN113615263B (zh) 使用公共标识符来监测唤醒信号
CN113261212A (zh) 自主传输配置更新

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination