CN111548511A - 含peg链段亲水性硅烷材料及其制备方法 - Google Patents

含peg链段亲水性硅烷材料及其制备方法 Download PDF

Info

Publication number
CN111548511A
CN111548511A CN202010519390.9A CN202010519390A CN111548511A CN 111548511 A CN111548511 A CN 111548511A CN 202010519390 A CN202010519390 A CN 202010519390A CN 111548511 A CN111548511 A CN 111548511A
Authority
CN
China
Prior art keywords
hydrophilic silane
peg chain
preparation
silane
chain segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010519390.9A
Other languages
English (en)
Inventor
刘明光
赵茹
林伟
刘宇
刘立洁
沈凤国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PLA NAVAL LOGISTICS COLLEGE
Original Assignee
PLA NAVAL LOGISTICS COLLEGE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PLA NAVAL LOGISTICS COLLEGE filed Critical PLA NAVAL LOGISTICS COLLEGE
Priority to CN202010519390.9A priority Critical patent/CN111548511A/zh
Publication of CN111548511A publication Critical patent/CN111548511A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/088Assessment or manipulation of a chemical or biochemical reaction, e.g. verification whether a chemical reaction occurred or whether a ligand binds to a receptor in drug screening or assessing reaction kinetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

本发明公开了含PEG链段亲水性硅烷材料及其制备方法,包括如下步骤:S1、含PEG链段亲水性硅烷材料的制备;S2、自组装;S3、表征与测试,本发明结构科学合理,使用安全方便,首先通过2,4‑甲苯二异氰酸酯与3‑氨基丙基三乙氧基硅烷发生发应,所合成预聚物中‑NCO活性明显降低,保证了后续与聚乙二醇发生发应的可控性、可实施性,聚乙二醇的引入代替了传统制备过程中所用的甲氧基聚乙二醇,大大降低了亲水性硅烷生产成本,将所制备的新型含PEG链段亲水性硅烷材料接枝到硅片上,可有效防止蛋白质、细菌或微生物在硅基材料表面的吸附和粘接,市场前景广阔,本发明易于推广应用。

Description

含PEG链段亲水性硅烷材料及其制备方法
技术领域
本发明涉及含PEG链段亲水性硅烷材料技术领域,具体为含PEG链段亲水性硅烷材料及其制备方法。
背景技术
生物医用材料在接触到血液或生物组织液短短几分钟之后,便会有蛋白质吸附在其界面上,从而导致血小板的附着,最终形成血栓,给人体的健康带来不利的影响;水处理用的各种膜材料(分离膜、超滤膜和交换膜)对水中微生物的吸附会导致其分离性能下降,因此,提高材料表面对微生物、细菌、细胞和蛋白质的抗吸附作用是改善材料使用性能的重要途径,大量研究表明,亲水性表面能够有效减少与微生物、蛋白质等的接触和非定向结合,从而减少污染物质在其表面的吸附沉积,生物材料表面的物理化学性质对蛋白质的吸附有着密切的关系,其中影响因素主要有一下几种:材料表面的亲疏水性、表面能、表面电荷等因素对蛋白质在材料表面的吸附行为具有较大的影响;
聚乙二醇(PolyethyleneGlycol,PEG)是一种无毒、中性的水溶性高分子化合物,因具有良好的亲水性和生物相容性而被广泛应用在生物、医学、化妆品等领域,在水介质中,PEG分子构象会发生变化,亲水性的—O—分布于链表面使得聚合物周围变得很容易与水结合,因而对蛋白质的附着位点少,在材料表面接枝一定密度和链长的PEG,可形成一层能够在水溶液中飘动的聚合物刷,PEG分子长链对生物大分子可以起到一定的排斥作用,当蛋白质等生物大分子受到膜材料表面分子层的吸引向材料靠近时,PEG分子链受到压迫导致构象熵减少处于不稳定状态,要恢复到稳定状态,必然会将蛋白质等推出其排斥体积之外,远离材料表面,因此,PEG刷能形成压制细菌靠近、产生排斥渗透力、降低聚合物链段运动性的高亲水性层,可阻止蛋白质的非选择性吸附以及减少细菌和微生物的粘接,因此,PEG刷可用于聚合物膜、硅基材料表面和金属表面的防污以及防止蛋白质、细菌或微生物在聚合物表面、硅基材料表面和金属表面的吸附和粘接。
发明内容
本发明提供含PEG链段亲水性硅烷材料及其制备方法,可以有效解决上述背景技术中提出聚乙二醇的合成制备与推广的问题。
为实现上述目的,本发明提供如下技术方案:含PEG链段亲水性硅烷材料及其制备方法,包括如下步骤:
S1、含PEG链段亲水性硅烷材料的制备:在带有搅拌器、冷凝管和滴液漏斗的三口烧瓶中加入0.2mol2,4-甲苯二异氰酸酯以丙酮(100ml)为溶剂,搅拌使其充分混匀,通过滴液漏斗逐步滴加0.2mol3-氨基丙基三乙氧基硅烷,升温至80℃,继续反应4h,用二正丁胺法测定-NCO的含量来监测反应的进行,当-NCO的含量接近0.2mol时,将所制备的产物滴加到装有0.2mol的聚乙二醇2000的三口烧瓶中,控制反应温度50℃,反应2h后,减压抽出溶剂,得到含PEG链段亲水性硅烷;
S2、自组装:将5%w/v含PEG链段新型亲水性硅烷丙酮溶液中,获得亲水性硅烷的丙酮溶液,然后再将处理好的硅片浸泡于其丙酮溶液中24h后,将其硅片放置于120℃的烘箱里1h,取出后依次将自组装后的硅片放在丙酮、乙醇、去离子水中超声清洗5min,除去未反应的亲水性硅烷,然后取出用高纯氮气吹干;
S3、表征与测试。
优选的,所述表征与测试包括如下:
1)、全反射傅立叶红外光谱(FTIR)表征:
经硅烷修饰的硅片表面的全反射(ATR)傅立叶红外光谱(FTIR)用Perkin-Elemer仪器公司生产的SpectrumBXII傅立叶红外光谱仪测定,测试波数范围为400~4000cm-1,分辨率为0.8cm-1
2)、核磁共振分析:AVANCEDigital500MHzNMR(德国Bruker公司),CDCl3作溶剂,TMS做化学位移内标;
3)、AFM测试:日本Seiko仪器公司SPI3800-SPA-400型的原子力显微镜,用矩形Si3N4探针,在轻敲模式下测定,放大倍数为5μm×5μm;
4)、接触角的测试:硅片表面与水的接触角用承德市盛惠试验机有限公司生产的JGW-360a型接触角测定仪测试,测试温度为25℃,用悬滴的方式将水滴滴到硅片表面,待其稳定后,通过JGW-360a型接触角测定仪对水滴与材料表面的夹角进行观测,所得到的角度值即为静态水接触角,从每个样品表面取对角线上三个点进行测量,取平均值
5)、SEM测试:荷兰FEI公司的NavaNanoSEM430,高真空模式,放大倍数为30倍~30万倍。
与现有技术相比,本发明的有益效果:本发明结构科学合理,使用安全方便,本发明公开一种新型含PEG链段亲水性硅烷材料及其制备方法,采用悬浮聚合法,以3-氨基丙基三乙氧基硅烷(KH550)、2,4-甲苯二异氰酸酯(TDI)和聚乙二醇为原料,自制含PEG链段新型亲水性硅烷,利用自制的亲水性硅烷进行分子自组装,将含PEG链段亲水性硅烷接枝到经活化处理的硅片表面上,并对改性后的硅片特性进行了表征。
1、合成工艺创新:
本实验在硅烷合成工艺上创新,首先通过2,4-甲苯二异氰酸酯与3-氨基丙基三乙氧基硅烷发生发应,所合成预聚物中-NCO活性明显降低,保证了后续与聚乙二醇发生发应的可控性、可实施性。
2、推广应用前景明确:
发明具有明确的应用前景,聚乙二醇的引入代替了传统制备过程中所用的甲氧基聚乙二醇,大大降低了亲水性硅烷生产成本,将所制备的新型含PEG链段亲水性硅烷材料接枝到硅片上,可有效防止蛋白质、细菌或微生物在硅基材料表面的吸附和粘接,市场前景广阔,本发明易于推广应用。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
在附图中:
图1是本发明的含PEG链段硅烷的合成反应图;
图2是本发明的含PEG链段硅烷在硅片表面自组装示意图;
图3是本发明的KH550-TDI反应产物和硅烷的红外光谱图
图4是本发明的硅烷的核磁共振谱图
图5是本发明的空白硅片、含PEG链段硅烷自组装膜的原子力立体图
图6是本发明的空白硅片、自组装膜表面水的接触角
图7是本发明的硅烷自组装膜扫描电镜照片。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例:本发明提供技术方案,含PEG链段亲水性硅烷材料及其制备方法,包括如下步骤:
如图1所示:
S1、含PEG链段亲水性硅烷材料的制备:在带有搅拌器、冷凝管和滴液漏斗的三口烧瓶中加入0.2mol2,4-甲苯二异氰酸酯以丙酮(100ml)为溶剂,搅拌使其充分混匀,通过滴液漏斗逐步滴加0.2mol3-氨基丙基三乙氧基硅烷,升温至80℃,继续反应4h,用二正丁胺法测定-NCO的含量来监测反应的进行,当-NCO的含量接近0.2mol时,将所制备的产物滴加到装有0.2mol的聚乙二醇2000的三口烧瓶中,控制反应温度50℃,反应2h后,减压抽出溶剂,得到含PEG链段亲水性硅烷;
如图2所示:
S2、自组装:将5%w/v含PEG链段新型亲水性硅烷丙酮溶液中,获得亲水性硅烷的丙酮溶液,然后再将处理好的硅片浸泡于其丙酮溶液中24h后,将其硅片放置于120℃的烘箱里1h,取出后依次将自组装后的硅片放在丙酮、乙醇、去离子水中超声清洗5min,除去未反应的亲水性硅烷,然后取出用高纯氮气吹干;
S3、表征与测试。
优选的,所述表征与测试包括如下:
1)、全反射傅立叶红外光谱(FTIR)表征:
经硅烷修饰的硅片表面的全反射(ATR)傅立叶红外光谱(FTIR)用Perkin-Elemer仪器公司生产的SpectrumBXII傅立叶红外光谱仪测定,测试波数范围为400~4000cm-1,分辨率为0.8cm-1
2)、核磁共振分析:AVANCEDigital500MHzNMR(德国Bruker公司),CDCl3作溶剂,TMS做化学位移内标;
3)、AFM测试:日本Seiko仪器公司SPI3800-SPA-400型的原子力显微镜,用矩形Si3N4探针,在轻敲模式下测定,放大倍数为5μm×5μm;
4)、接触角的测试:硅片表面与水的接触角用承德市盛惠试验机有限公司生产的JGW-360a型接触角测定仪测试,测试温度为25℃,用悬滴的方式将水滴滴到硅片表面,待其稳定后,通过JGW-360a型接触角测定仪对水滴与材料表面的夹角进行观测,所得到的角度值即为静态水接触角,从每个样品表面取对角线上三个点进行测量,取平均值
5)、SEM测试:荷兰FEI公司的NavaNanoSEM430,高真空模式,放大倍数为30倍~30万倍。
进一步的;
1、含PEG链段硅烷的红外光谱分析:
图3为KH550-TDI反应产物、硅烷的红外光谱图;
可以看出,在KH550-TDI反应产物的图谱中3313、2974、2272、1545、1078、778cm-1处出现比较强烈的吸收峰,其中3313cm-1为酰胺基的伸缩振动峰,2974cm-1为亚甲基的伸缩振动峰,2272cm-1为异氰酸酯基的伸缩振动峰,1545cm-1为羰基的伸缩振动峰,1078cm-1为硅氧键的伸缩振动峰,778cm-1为苯环的伸缩振动峰,这些符合第一步反应产物的特征;
硅烷为KH550-TDI与PEG2000的反应产物,它们的图谱中,2272cm-1处异氰酸酯基的伸缩振动峰消失,同时羟基和酰胺基伸缩振动峰合并成一宽的吸收峰,表明异氰酸酯基与PEG中的部分羟基发生反应。
2、含PEG链段硅烷的核磁共振光谱分析:
图4为亲水性硅烷的核磁共振图;
从图4中可以看出,δ=3.7ppm处的化学位移为中Si-OCH3上甲基氢的特征吸收峰;δ=3.4~3.6ppm为硅烷PEG链段中乙氧基中氢的特征吸收峰;这些特征吸收峰的出现,表明产物中具有聚乙二醇链段和KH550链段,说明通过上述合成反应,获得了目标产物即亲水性硅烷。
3、含PEG链段硅烷硅烷自组装膜的原子力分析
图5为空白硅片、含PEG链段硅烷自组装膜的原子力立体图,从图中可见未自组装的硅片表面比较光滑,其平面最高高度为2nm,表面粗糙度为0.27nm;
含PEG链段硅烷自组装膜的表面比较粗糙形成了尺寸为7nm左右,高度为5-10nm的小山峰,表面粗糙度(RMS)为0.65nm,表明含PEG链段亲水性硅烷自组装膜成功。
4、含PEG链段硅烷硅烷自组装膜的亲水性分析
从图6中可以看出:
自组装膜表面与水的接触角明显小于空白硅片,这是由于一方面亲水性硅烷接枝在硅片表面后,其聚乙二醇链段排列在自组装膜表面外侧,聚乙二醇链段之间的分子间作用力很小,对水具有低界面能,水溶性、柔顺性及高运动性,使聚乙二醇链段可以结合大量的水分子,使接触角减小,另一方面表面粗糙度对材料表面的亲疏水性有较大的影响,粗糙度大的自组装表面的亲水性硅烷可以增加水分子的分散面积,使自组装后硅片表面亲水性增强。
5、含PEG链段硅烷硅烷自组装膜的扫描电镜分析:
图7中分别为放大40000倍的空白硅片和亲水性硅烷自组装膜的表面SEM照片;
从图7中可以看出,空白硅片无任何物质表面非常光滑,自组装膜与空白硅片相比发生了明显的变化,自组装后的硅片表面出现分布规则的点阵结构,部分较大的点可能是由于PEG刷相互交缠形成的。
最后应说明的是:以上所述仅为本发明的优选实例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.含PEG链段亲水性硅烷材料及其制备方法,其特征在于:包括如下步骤:
S1、含PEG链段亲水性硅烷材料的制备:在带有搅拌器、冷凝管和滴液漏斗的三口烧瓶中加入0.2mol2,4-甲苯二异氰酸酯以丙酮(100ml)为溶剂,搅拌使其充分混匀,通过滴液漏斗逐步滴加0.2mol3-氨基丙基三乙氧基硅烷,升温至80℃,继续反应4h,用二正丁胺法测定-NCO的含量来监测反应的进行,当-NCO的含量接近0.2mol时,将所制备的产物滴加到装有0.2mol的聚乙二醇2000的三口烧瓶中,控制反应温度50℃,反应2h后,减压抽出溶剂,得到含PEG链段亲水性硅烷;
S2、自组装:将5%w/v含PEG链段新型亲水性硅烷丙酮溶液中,获得亲水性硅烷的丙酮溶液,然后再将处理好的硅片浸泡于其丙酮溶液中24h后,将其硅片放置于120℃的烘箱里1h,取出后依次将自组装后的硅片放在丙酮、乙醇、去离子水中超声清洗5min,除去未反应的亲水性硅烷,然后取出用高纯氮气吹干;
S3、表征与测试。
2.根据权利要求1所述的含PEG链段亲水性硅烷材料及其制备方法,其特征在于,所述表征与测试包括如下:
1)、全反射傅立叶红外光谱(FTIR)表征:
经硅烷修饰的硅片表面的全反射(ATR)傅立叶红外光谱(FTIR)用Perkin-Elemer仪器公司生产的SpectrumBXII傅立叶红外光谱仪测定,测试波数范围为400~4000cm-1,分辨率为0.8cm-1
2)、核磁共振分析:AVANCEDigital500MHzNMR(德国Bruker公司),CDCl3作溶剂,TMS做化学位移内标;
3)、AFM测试:日本Seiko仪器公司SPI3800-SPA-400型的原子力显微镜,用矩形Si3N4探针,在轻敲模式下测定,放大倍数为5μm×5μm;
4)、接触角的测试:硅片表面与水的接触角用承德市盛惠试验机有限公司生产的JGW-360a型接触角测定仪测试,测试温度为25℃,用悬滴的方式将水滴滴到硅片表面,待其稳定后,通过JGW-360a型接触角测定仪对水滴与材料表面的夹角进行观测,所得到的角度值即为静态水接触角,从每个样品表面取对角线上三个点进行测量,取平均值
5)、SEM测试:荷兰FEI公司的NavaNanoSEM430,高真空模式,放大倍数为30倍~30万倍。
CN202010519390.9A 2020-06-09 2020-06-09 含peg链段亲水性硅烷材料及其制备方法 Pending CN111548511A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010519390.9A CN111548511A (zh) 2020-06-09 2020-06-09 含peg链段亲水性硅烷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010519390.9A CN111548511A (zh) 2020-06-09 2020-06-09 含peg链段亲水性硅烷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111548511A true CN111548511A (zh) 2020-08-18

Family

ID=72002276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010519390.9A Pending CN111548511A (zh) 2020-06-09 2020-06-09 含peg链段亲水性硅烷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111548511A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063471A (ja) * 1998-08-24 2000-02-29 Dainichiseika Color & Chem Mfg Co Ltd 親水性ポリウレタン系樹脂の製造方法
JP2000063470A (ja) * 1998-08-21 2000-02-29 Dainichiseika Color & Chem Mfg Co Ltd 親水性ポリウレタン系樹脂及びその製造方法
CN107216435A (zh) * 2017-06-26 2017-09-29 山东师范大学 一种新型的侧链为磷脂化聚乙二醇的聚(氨酯‑脲)及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063470A (ja) * 1998-08-21 2000-02-29 Dainichiseika Color & Chem Mfg Co Ltd 親水性ポリウレタン系樹脂及びその製造方法
JP2000063471A (ja) * 1998-08-24 2000-02-29 Dainichiseika Color & Chem Mfg Co Ltd 親水性ポリウレタン系樹脂の製造方法
CN107216435A (zh) * 2017-06-26 2017-09-29 山东师范大学 一种新型的侧链为磷脂化聚乙二醇的聚(氨酯‑脲)及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘明光等: ""含PEG硅烷的合成及其对纳米氧化亚铜的表面修饰"", 《海军工程大学学报》 *
刘明光等: ""聚乙二醇硅烷的合成及对不锈钢表面的修饰"", 《高分子材料科学与工程》 *
邵海永等: ""新型亲水性聚合物硅烷的制备"", 《弹性体》 *

Similar Documents

Publication Publication Date Title
Wang et al. In vitro stability study of organosilane self-assemble monolayers and multilayers
Li et al. Anti-biofouling sulfobetaine polymer thin films on silicon and silicon nanopore membranes
Dai et al. Biomedical coatings by the covalent immobilization of polysaccharides onto gas‐plasma‐activated polymer surfaces
KR101051674B1 (ko) 소재의 표면 개질 방법
Schmidt et al. Modification of poly (octadecene‐alt‐maleic anhydride) films by reaction with functional amines
Cox et al. Surface passivation of a microfluidic device to glial cell adhesion: a comparison of hydrophobic and hydrophilic SAM coatings
EP2213293A2 (en) Self-assembling monomers and oligomers as surface-modifying endgroups for polymers
Bai et al. Preparation and characterizations of poly (2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization
US20020106449A1 (en) Tailoring the grafting density of organic modifiers at solid/liquid interfaces
Xue et al. Efficient cancer cell capturing SiNWAs prepared via surface-initiated SET-LRP and click chemistry
Vianello et al. Preparation, morphological characterization, and activity of thin films of horseradish peroxidase
Zhang et al. Preparation of anti-fouling silicone elastomers by covalent immobilization of carboxybetaine
WO2008086228A2 (en) Arrays and methods for guided cell patterning
CN111548511A (zh) 含peg链段亲水性硅烷材料及其制备方法
Popat et al. Characterization of vapor deposited poly (ethylene glycol) films on silicon surfaces for surface modification of microfluidic systems
Liu et al. Preparation of poly (N-isopropylacrylamide) brush bonded on silicon substrate and its water-based lubricating property
Popat et al. AFM analysis of organic silane thin films for bioMEMS applications
CN112300419A (zh) 一种具有环境响应性的纤维素气凝胶的制备方法
KR100345690B1 (ko) 기질상에 높은 아민기 밀도를 갖는 분자층을 형성하는 방법
Liu et al. Study on self-assembly of novel hydrophilic silane containing PEG segments and its resistance to protein adsorption
Lassen et al. Some model surfaces made by RF plasma aimed for the study of biocompatibility
WO2004078930A2 (en) Nanometer-controlled polymeric thin films that resist adsorption of biological molecules and cells
US8481435B2 (en) Protein repelling silicon and germanium surfaces
JP3647852B2 (ja) 素材の表面改質方法
Guo et al. Self-assembly of silanated poly (ethylene glycol) on silicon and glass surfaces for improved haemocompatibility

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200818