CN111545749B - Method for cladding complex curved surface revolution body by ultra-high-speed laser - Google Patents

Method for cladding complex curved surface revolution body by ultra-high-speed laser Download PDF

Info

Publication number
CN111545749B
CN111545749B CN202010334162.4A CN202010334162A CN111545749B CN 111545749 B CN111545749 B CN 111545749B CN 202010334162 A CN202010334162 A CN 202010334162A CN 111545749 B CN111545749 B CN 111545749B
Authority
CN
China
Prior art keywords
cladding
curved surface
speed
complex curved
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010334162.4A
Other languages
Chinese (zh)
Other versions
CN111545749A (en
Inventor
鲁金忠
杜家龙
徐祥
罗开玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010334162.4A priority Critical patent/CN111545749B/en
Publication of CN111545749A publication Critical patent/CN111545749A/en
Application granted granted Critical
Publication of CN111545749B publication Critical patent/CN111545749B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/46Radiation means with translatory movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)

Abstract

The invention relates to a laser cladding technology, in particular to a method for cladding a complex curved surface revolving body by ultrahigh-speed laser. Firstly, setting parameters such as a cladding linear velocity V and the like according to process requirements; according to the lap joint rate delta and the ultrahigh-speed laser cladding single-track width DLPerforming fitting calculation on a contour bus of the complex curved surface revolving body according to the parameters, and setting an ultrahigh-speed laser cladding path of the complex curved surface revolving body into an i-section space spiral line; obtaining the rotation angular velocity omega when the ultra-high speed laser cladding complex curved surface revolution bodyiAnd the moving speed of the laser cladding head along the X axis
Figure DDA0002466005940000011
Speed of movement along Y-axis
Figure DDA0002466005940000012
And the rotational angular velocity epsilon of the laser cladding headiAnd the maintenance of the cladding linear velocity V is ensured to be stable. By the method, the relative movement of the ultrahigh-speed laser cladding head and the complex revolving body revolving at high speed can be efficiently regulated, the stability of parameters in the ultrahigh-speed laser cladding process is effectively ensured, the cladding efficiency is stabilized while the cladding quality is ensured, and the cladding layer with better metallurgical bonding, compactness and uniform thickness is prepared.

Description

Method for cladding complex curved surface revolution body by ultra-high-speed laser
Technical Field
The invention relates to a laser cladding technology, in particular to a method for cladding a complex curved surface revolving body by ultrahigh-speed laser.
Background
In 2017, by an Ultra High-Speed Laser Cladding technology (Ultra High-Speed Laser Cladding) provided by Freund's college of Germany, the Cladding Speed can reach 25-200 m/min, Laser is focused above a workpiece in the processing process, most of energy acts on powder above the workpiece, by adopting the method, the heat input of a matrix in the Cladding process is extremely small, but the powder and the matrix can be guaranteed to be fully metallurgically combined, and the dilution rate is only about 2-4% generally. Therefore, the coating with ultra-thin and high quality can be prepared, the thickness of the coating is basically only 25-400 mu m according to different cladding rates, the surface smoothness of the coating is good, the coating can be put into use through simple grinding and polishing, the coating is known as an advanced green manufacturing technology for replacing the traditional electroplating process, and the coating has wide application prospect.
The optimum coupling of powder particles and a laser beam is realized by the optimized design of the coaxial powder feeding nozzle based on the ultra-high-speed laser cladding, the powder and the surface of a base body moving at high speed are simultaneously melted under the action of the high-energy-density laser beam, and a cladding layer which is in high-strength metallurgical bonding with the base body is formed after the powder is rapidly solidified, so that the cladding speed is greatly improved, and the efficiency bottleneck of the traditional cladding is broken through. Compared with the traditional laser cladding, the ultrahigh-speed laser cladding solves the problems of low energy utilization efficiency, large heat influence on a matrix and thicker cladding layer; compared with thermal spraying, the method solves the problem of metallurgical bonding of the coating, and is expected to be widely applied in the field of preparation of thin coatings which are expected to have metallurgical bonding and have small heat influence on substrates.
The ultra-high speed laser cladding has the processing efficiency far higher than that of the traditional laser cladding, and the high efficiency is the cladding speed far higher than that of the traditional laser cladding, namely the cladding linear speed of the surface of a part, and the ordered and stable control of the relative motion between a high-energy density laser beam and the surface of a substrate moving at high speed is a necessary factor for ensuring the high-speed cladding speed; on the other hand, in the ultra-high speed laser cladding process, technological parameters such as the cladding linear velocity V, the laser beam power P, the lap joint rate delta and the like have obvious influences on the cladding quality of the surface of the part, the bonding property of the cladding layer and the substrate and the thickness of the cladding layer. In order to ensure the surface quality of the ultra-high-speed laser cladding layer of the disc part, the cladding layer is uniform and compact and has uniform thickness, and the stability of process parameters is ensured in the cladding process.
At present, ultra-high speed laser cladding is less researched in China, and is often suitable for cylindrical part outer circle cladding, and the process is realized by controlling the rotation angular velocity of parts and the axial movement velocity of a laser head to be constant. However, for a complex revolving body with a constantly changing radius of gyration, the radius of gyration R is accompanied byGo back toIf the same cladding strategy is kept, different surface cladding linear speeds and different cladding lap ratios can be caused, and for ultra-high speed cladding, the cladding quality and the coating thickness have huge difference under different cladding linear speeds.
Therefore, in order to ensure the uniformity of the cladding layer and realize the tight combination with the matrix, the constant value of the cladding linear velocity V needs to be ensured in the same cladding process, the cladding lap joint rate is relatively stable, and the process can be realized by comprehensively controlling the part rotation angular velocity, the laser head moving speed and the laser head rotation angle according to the mathematical relation among the cladding parameters.
Disclosure of Invention
Aiming at the problems, the invention provides a method for cladding a complex curved surface revolving body by ultrahigh-speed laser, which is used for setting a cladding linear speed V, laser beam power P, defocusing amount H of the ultrahigh-speed laser cladding, cladding lap joint rate delta and single-channel width D of the ultrahigh-speed laser cladding according to process requirementsLAnd carrier gas flow, guard gas flow parameters; arranging a cladding path node on a contour generatrix of the complex curved surface revolving body, and arranging an ultra-high speed laser cladding path of the complex curved surface revolving body into an i-section space spiral line, wherein i is 1,2 and 3 …; by controlling the rotating angular speed omega of the workpiece in the cladding processiThe movement and the rotation of the ultrahigh-speed laser cladding head effectively regulate and control the relative movement of the ultrahigh-speed laser cladding head and the complex curved surface revolving body revolving at high speed, realize the stability of cladding parameters such as the lap ratio delta, the cladding linear speed V and the defocusing amount H in the cladding process, ensure the cladding efficiency and further prepare a coating with good quality, thickness and uniformity on the surface of the complex curved surface revolving body.
The method comprises the following specific steps:
step 1, setting a plane rectangular coordinate system
A rectangular coordinate system is established on the axial section of the complex curved surface revolving body, the axis of the complex curved surface revolving body is set as an X axis, the radial direction is set as a Y axis, and the contour generatrix of the complex curved surface revolving body is arranged in a first quadrant.
Step 2, calculating cladding feeding step length delta L
ΔL=DL(1-δ) (1);
Wherein: Δ L is cladding feeding step length, unit: mm; delta is the cladding overlap ratio, 0<δ<1;DLThe method is characterized in that the method comprises the following steps of (1) ultra-high-speed laser cladding single-channel width: mm;
step 3, cladding path nodes are arranged
Figure BDA0002466005920000021
Obtaining the nodes (Xi, Yi) of the cladding path and the intersection angle theta between the normal direction of the nodes and the X axisi
θi=arctan((1+f(Xi)′2)/(-f(Xi)′(1+f(Xi)′2))) (3);
Wherein: i is 1,2,3 …, imax
Figure BDA0002466005920000031
Xmax、XminDefining maximum and minimum values in the domain for X; xi is the X-axis coordinate of the ith node on the cladding path, and the unit is as follows: mm; yi is the Y-axis coordinate of the ith node on the cladding path, and the unit is as follows: mm; thetaiAn intersection angle between the normal direction of the ith node on the cladding path and the X axis is formed;
step 4, calculating the time T used for cladding the i section of pathiAngular velocity ω of rotation of workpiecei
Ti=((Yi+Yi-1)π)/V; (4);
ωi=2V/(Yi+Yi-1) (5);
Wherein: 1,2,3 … imax
Figure BDA0002466005920000032
Xmax、XminDefining the maximum value and the minimum value in the domain for X; t isiTime used for cladding the ith path, unit: s; omegaiThe rotating angular speed of the workpiece in the ith section of the path for cladding is as follows: rad/s; v is the cladding linear velocity, unit mm/s; and Yi is the Y-axis coordinate of the ith node on the cladding path.
Step 5, solving the control parameter of the ultra-high-speed laser cladding head
VXi=((Xi+H×cosθi)-(Xi-1+H×cosθi-1))/Ti (6);
VYi=((Yi+H×sinθi)-(Yi-1+H×sinθi-1))/Ti (7);
εi=(θii-1)/Ti (8);
Wherein: 1,2,3 … imax
Figure BDA0002466005920000033
Xmax、XminDefining maximum and minimum values in the domain for X; (ii) a
Figure BDA0002466005920000034
Moving speed of the cladding head along the X axis in the process of cladding the ith path in unit: mm/s;
Figure BDA0002466005920000035
moving speed of the cladding head along the Y axis in the process of cladding the ith path in a unit: mm/s; epsiloniThe unit of the rotating angular speed of the cladding head when cladding the ith path is as follows: rad/s; h is the defocusing amount of ultra-high-speed laser cladding, unit: mm; xi is the X-axis coordinate of the ith node on the cladding path, and the unit is as follows: mm; and Yi is the Y-axis coordinate of the ith node on the cladding path.
In the step 2, the cladding feeding step length delta L is required to meet the fitting precision of the contour generatrix of the complex curved surface revolving body, namely:
Figure BDA0002466005920000036
the curvature radius of the contour generatrix of the revolution body with the complex curved surface
Figure BDA0002466005920000037
When in use
Figure BDA0002466005920000038
When r has an extreme value, i.e.
Figure BDA0002466005920000039
Finding X ═ Xk(ii) a Minimum curvature radius of complex curved surface revolution body contour generatrix equation
Figure BDA0002466005920000041
Wherein: Δ L is cladding feeding step length, unit: mm; Δ H is the defocusing amount change range limit, and is preset on the premise of meeting cladding quality, and the unit is as follows: mm; r isminThe minimum curvature radius of a complex curved surface revolution body contour generatrix equation is as follows: mm; r is the curvature radius of the contour generatrix of the complex curved surface revolution body, unit: mm; xkThe X-axis coordinate is obtained when the minimum curvature radius of the complex curved surface revolution body profile generatrix equation is obtained.
When the formula (9) can not be met, the cladding overlap ratio delta and the single-pass width D of the ultra-high-speed laser cladding can be adjusted through cladding equipment and process parametersLThereby properly reducing the cladding feeding step length delta L.
Setting the specific process parameter range interval of the ultra-high speed laser cladding as follows: the diameter of a light spot is 1-5 mm, the surface linear velocity of the disc part, namely the cladding linear velocity V is 10-100 m/min, the power P of a laser beam is 1-10 KW, the powder feeding speed is 5-40 g/min, and the cladding lap joint rate delta is 0< delta < 100%.
In addition, a direction axis which is perpendicular to the axial section of the complex curved surface revolution body in the step 1 and the intersection point of which is positioned at the origin is set as a Z axis. In the ultra-high speed laser cladding equipment, the ultra-high speed laser cladding head can at least realize the movement along the X axis and the Y axis and the rotation along the Z axis and the Y axis; and the movement speed of the cladding head along the X axis when cladding the ith section of path in the cladding process
Figure BDA0002466005920000042
The moving speed of the cladding head along the Y axis during cladding the ith path
Figure BDA0002466005920000043
The rotating angular speed epsilon of the cladding head during cladding the ith pathiThe moving speed and the rotating angular speed of the cladding head of the ultra-high speed laser cladding equipment within unit time are not required to be higher than each other.
The gain effect of the invention is as follows:
(1) the method for cladding the complex curved surface revolving body by the ultra-high-speed laser effectively solves the problem that the curved surface revolving body is difficult to clad at a high speed, can achieve the purpose of cladding the whole complex curved surface revolving body revolving surface at one time, and effectively ensures the cladding efficiency.
(2) The method for cladding the complex curved surface revolving body by the ultra-high-speed laser can be widely applied to revolving body parts with different shapes, can adjust cladding parameters according to the contour generatrix of the complex curved surface revolving body, and has wide application range
(3) The method for cladding the complex curved surface revolving body by the ultra-high speed laser provided by the invention sets the ultra-high speed laser cladding path of the complex curved surface revolving body as an i-section space spiral line; by controlling the rotating angular speed omega of the workpiece in the cladding processiThe moving and rotating of the ultra-high speed laser cladding head can ensure the stability of cladding parameters such as the lap joint rate delta and the cladding linear speed V in the ultra-high speed laser cladding process, and ensure the cladding efficiency, and further ensure that the cladding coating on the surface of the complex curved surface revolving body has good quality and uniform thickness.
Drawings
FIG. 1 is a schematic diagram of a method for cladding a complex curved surface revolution body by ultra-high-speed laser;
FIG. 2 is a schematic view of a curved surface rotary part of a certain design;
FIG. 3 is an enlarged view of a detail of a curved surface revolving body part of a certain design by ultra-high-speed laser cladding;
FIG. 4 shows the thickness of the cladding layer at different locations;
fig. 5 shows the actual cladding adjacent path spacing at different locations.
Reference numerals: 1-ultrahigh speed laser cladding head, 2-ultrahigh speed laser cladding head ideal moving track, 3-normal direction of i node on cladding path, 4-complex curved surface revolving body, 5-surface to be clad of certain roller part, and 6-complex curved surface revolving body contour generatrix.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention will be described in detail with reference to the accompanying drawings and specific embodiments.
Example (b):
as shown in fig. 2, in a certain roller part, a bus of a cross-sectional profile of a to-be-fused surface is approximately parabolic, the diameter of two ends is phi 400mm, the diameter of the middle is phi 200mm, and the length is 400mm, single-layer ultra-high-speed laser cladding is performed on the surface of the roller part, iron-based stainless steel powder is selected as cladding powder, and the cladding process is performed through the following process steps.
Firstly, according to the process requirement, setting a cladding linear speed V of 30/min-500 mm/s, a laser beam power P of 5kW, an ultrahigh-speed laser cladding defocusing amount H of 12mm, a cladding lap ratio delta of 0.6 and an ultrahigh-speed laser cladding single-channel width DLThe thickness is 2.5mm after multiple tests; arranging cladding path nodes on the contour generatrix of the axial section of the complex curved surface revolution body; by controlling the rotating angular speed omega of the workpiece in the cladding processiThe movement and the rotation of the ultra-high speed laser cladding head effectively regulate and control the relative movement of the ultra-high speed laser cladding head and the complex curved surface revolving body revolving at high speed, thereby realizing the cladding process.
The method comprises the following specific steps:
step 1, setting a plane rectangular coordinate system
A rectangular coordinate system is established on the axial section of the complex curved surface revolving body, the axis of the complex curved surface revolving body is set as an X axis, the radial direction is set as a Y axis, and the contour generatrix of the complex curved surface revolving body is arranged in a first quadrant. The contour line equation of the complex curved surface revolution body is f (X) 0.0025x2-x+200。
Step 2, calculating cladding feeding step length delta L
ΔL=DL(1-δ)=2.5×(1-0.6)=1mm (1);
Wherein: Δ L is cladding feeding step length, unit: mm; delta is the cladding overlap ratio, 0<δ<1;DLThe method is characterized in that the method comprises the following steps of (1) ultra-high-speed laser cladding single-channel width: mm;
step 3, setting cladding path nodes
Figure BDA0002466005920000061
θi=arctan ((1+f(Xi)′2)/(-f(Xi)′(1+f(Xi)′2))) (3);
Wherein: 1,2,3 … imax
Figure BDA0002466005920000062
Xmax=400、X min0, defining the maximum and minimum values in the domain for X; xi is the X-axis coordinate of the ith node on the cladding path, and the unit is as follows: mm; : yi is the Y-axis coordinate of the ith node on the cladding path, and the unit is as follows: mm; thetaiAn intersecting angle between the normal direction of the ith node on the cladding path and the X axis is formed;
can obtain cladding path node (X)i,Yi) And the intersection angle theta of the node normal direction and the X axisi
Due to (X)0,Y0)=(0,200);f(X)=0.0025x2-x+200;
Can obtain (X)1,Y1)=(0.70773261080424379674177533968638,199.2935196028168),
(X2,Y2)=(1.4167196468276037365900784074610,198.5882980895667),
(X3,Y3)=(2.1269655388388088449881179349945,197.8843444171697),……;
θ0=0.78539816339745,θ1=0.78717062915113,θ2=0.78895253647475,θ3=0.79074395236400,……;
Step 4, calculating the time T used for cladding the i section of pathiAngular velocity ω of rotation of workpiecei
Ti=((Yi+Yi-1)π)/V; (4);
ωi=2V/(Yi+Yi-1) (5);
Wherein: t isiTime used for cladding the ith path, unit: s; omegaiThe rotating angular speed of the workpiece in the ith section of the path for cladding is as follows: rad/s;v is the cladding linear velocity, unit mm/s; and Yi is the Y-axis coordinate of the ith node on the cladding path.
The following can be obtained:
T1=2.50883517562044,T2=2.49996519091869,T3=2.49111108209699,……;
ω1=2.50442331494564,ω2=2.51330911726440,ω3=2.52224212414104,……;
step 5, solving the control parameters of the ultra-high speed laser cladding head
Figure BDA0002466005920000077
Figure BDA0002466005920000078
εi=(θii-1)/Ti (8);
Wherein:
Figure BDA0002466005920000079
moving speed of the cladding head along the X axis in the process of cladding the ith path in unit: mm/s;
Figure BDA00024660059200000710
moving speed of the cladding head along the Y axis in the process of cladding the ith path in a unit: mm/s; : epsiloniThe unit of the rotating angular speed of the cladding head when cladding the ith path is as follows: rad/s; h is the defocusing amount of ultra-high-speed laser cladding, unit: mm; xi is the X-axis coordinate of the ith node on the cladding path, and the unit is as follows: mm; and Yi is the Y-axis coordinate of the ith node on the cladding path.
The following can be obtained:
Figure BDA00024660059200000711
Figure BDA00024660059200000712
ε1=7.064895178861714×10-4,ε2=7.127728538353085×10-4
ε3=7.191232467007935×10-4,……;
meanwhile, the cladding feeding step length delta L in the step 2 should meet the fitting precision of the contour generatrix of the complex curved surface revolving body, namely:
Figure BDA0002466005920000071
wherein: Δ L is cladding feeding step length, unit: mm; Δ H is the limit of the variation range of the defocusing amount, and is preset to be 0.25mm on the premise of meeting the cladding quality, and the unit is as follows: mm; r isminThe minimum curvature radius of a complex curved surface revolution body contour generatrix equation is as follows: mm;
curvature radius of contour generatrix of complex curved surface revolution body:
Figure BDA0002466005920000072
when in use
Figure BDA0002466005920000073
When the curvature radius r of the contour generatrix of the complex curved surface revolving body has an extreme value,
namely, it is
Figure BDA0002466005920000074
To obtain
X=Xk=200;
Minimum curvature radius of complex curved surface revolution body contour generatrix equation:
Figure BDA0002466005920000075
Figure BDA0002466005920000076
through the examination of the formula, the cladding feeding step length delta L meets the fitting precision of the contour bus of the complex curved surface revolving body.
After parameter planning is finished, starting ultrahigh-speed laser cladding equipment, and setting parameters of laser beam power P, carrier gas flow, protective gas flow and powder feeding amount according to cladding requirements; the cladding control parameters designed in the steps comprise the time T for cladding the ith pathiAnd the workpiece rotation angular velocity omega in the i-th cladding pathiAnd the moving speed of the cladding head along the X axis during cladding the ith path
Figure BDA0002466005920000081
The moving speed of the cladding head along the Y axis during cladding the ith path
Figure BDA0002466005920000082
The rotating angular speed epsilon of the cladding head when cladding the ith pathiAnd the data are imported into a control system of corresponding ultra-high-speed laser cladding equipment.
Moving the ultra-high-speed laser cladding head to the starting position, and setting the position and the posture of the ultra-high-speed laser cladding head to enable laser spots to be aligned with a contour bus (X) of a complex curved surface revolving body0,Y0) The position is ensured, the laser beam is consistent with the normal direction of the point, the initial defocusing H of the ultra-high-speed laser cladding head is 12mm, and ultra-high-speed laser cladding equipment is started, when the angular speed omega of the complex curved surface revolving body isiLifting to the ultra-high speed laser cladding 1 st section path angular velocity omega1And starting the ultra-high-speed laser cladding head to perform ultra-high-speed laser cladding processing on the complex curved surface revolving body part.
After the cladding processing is completed, different positions are selected to measure the thickness of the cladding layer and the actual distance between the cladding adjacent paths, as shown in fig. 4 and 5. The average cladding thickness is about 305 mu m, the whole thickness is uniform, and the fluctuation is small. The actual cladding adjacent path distance is about 1mm, and the variation range is small. The method has the advantages that all the cladding parameters in the ultra-high-speed laser cladding process are stable, and the cladding efficiency is ensured, and meanwhile, the cladding coating on the surface of the revolution body with the complex curved surface has good quality and uniform thickness.

Claims (4)

1. A method for cladding a complex curved surface revolving body by ultrahigh-speed laser is characterized in that parameters of cladding linear speed V, laser beam power P, defocusing amount H of ultrahigh-speed laser cladding, cladding lap joint rate delta, single-channel width of ultrahigh-speed laser cladding, carrier gas flow and protective gas flow are set according to process requirements; arranging cladding path nodes on a contour generatrix of a complex curved surface revolving body, setting an ultra-high-speed laser cladding path of the complex curved surface revolving body into an i-section space spiral line, and controlling the rotating angular speed omega of a workpiece in the cladding processiThe movement and rotation of the ultra-high-speed laser cladding head effectively regulate and control the relative movement of the ultra-high-speed laser cladding head and the complex curved surface revolving body revolving at high speed, so that the cladding parameter stability of the overlap ratio delta, the cladding linear speed V and the defocusing amount H in the cladding process is realized, the cladding efficiency is ensured, and a coating with good quality, uniform thickness and uniformity is prepared on the surface of the complex curved surface revolving body; the method comprises the following specific steps:
step 1, setting a plane rectangular coordinate system
A rectangular coordinate system is established on the axial section of the complex curved surface revolving body, the axis of the complex curved surface revolving body is set as an X axis, the radial direction is set as a Y axis, and the contour generatrix of the complex curved surface revolving body is arranged in a first quadrant;
step 2, calculating cladding feeding step length delta L
ΔL=DL(1-δ) (1);
Wherein: Δ L is cladding feeding step length, unit: mm; delta is the cladding overlap ratio, 0<δ<1;DLThe unit of the single-pass width of ultra-high-speed laser cladding is as follows: mm;
step 3, setting cladding path nodes
Combined stand
Figure FDA0003523282100000011
Finding a cladding path node(Xi, Yi) and the angle θ between the normal direction of the node and the X-axisi
θi=arctan((1+f(Xi)′2)/(-f(Xi)′(1+f(Xi)′2))) (3);
Wherein: i is 1,2,3 …, imax
Figure FDA0003523282100000012
Xmax、XminDefining the maximum value and the minimum value in the domain for X; xi is the X-axis coordinate of the ith node on the cladding path, and the unit is as follows: mm; yi is the Y-axis coordinate of the ith node on the cladding path, and the unit is as follows: mm; theta.theta.iAn intersection angle between the normal direction of the ith node on the cladding path and the X axis is formed;
step 4, calculating the time T used for cladding the i section of pathiAngular velocity ω of rotation of workpiecei
Ti=((Yi+Yi-1)π)/V; (4);
ωi=2V/(Yi+Yi-1) (5);
Wherein: 1,2,3 … imax
Figure FDA0003523282100000021
Xmax、XminDefining maximum and minimum values in the domain for X; t isiTime used for cladding the ith path, unit: s; omegaiThe rotating angular speed of the workpiece in the ith section of the path for cladding is as follows: rad/s; v is the cladding linear velocity, unit mm/s; yi is a Y-axis coordinate of the ith node on the cladding path;
step 5, solving the control parameter of the ultra-high-speed laser cladding head
Figure FDA0003523282100000022
Figure FDA0003523282100000023
εi=(θii-1)/Ti (8);
Wherein: 1,2,3 … imax
Figure FDA0003523282100000024
Xmax、XminDefining maximum and minimum values in the domain for X;
Figure FDA0003523282100000025
moving speed of the cladding head along the X axis in the process of cladding the ith path in unit: mm/s;
Figure FDA0003523282100000026
moving speed of the cladding head along the Y axis in the process of cladding the ith path in a unit: mm/s; epsiloniThe unit of the rotating angular speed of the cladding head during cladding the ith path is as follows: rad/s; h is the defocusing amount of ultra-high-speed laser cladding, unit: mm; xiThe X-axis coordinate of the ith node on the cladding path is represented by the following unit: mm; y isiIs the Y-axis coordinate of the ith node on the cladding path.
2. The method for cladding the complex curved surface revolving body by the ultra-high speed laser according to claim 1, wherein in the step 2, the cladding feeding step length Δ L should satisfy the fitting precision of the contour generatrix of the complex curved surface revolving body, that is:
Figure FDA0003523282100000027
the curvature radius of the contour generatrix of the revolution body with the complex curved surface
Figure FDA0003523282100000028
When the temperature is higher than the set temperature
Figure FDA0003523282100000029
There is an extreme value of time r, i.e.
Figure FDA00035232821000000210
Finding X ═ Xk(ii) a Minimum curvature radius of complex curved surface revolution body contour generatrix equation
Figure FDA00035232821000000211
Wherein: Δ L is cladding feeding step length, unit: mm; Δ H is the defocusing amount change range limit, and is preset on the premise of meeting cladding quality, and the unit is as follows: mm; r isminThe minimum curvature radius of a complex curved surface revolution body contour generatrix equation is as follows: mm; r is the curvature radius of the contour generatrix of the complex curved surface revolution body, unit: mm; xkObtaining the X-axis coordinate of the complex curved surface revolving body profile generatrix equation at the time of the minimum curvature radius;
when the formula (9) can not be met, the cladding lap joint rate delta and the single-pass width D of the ultra-high-speed laser cladding can be adjusted through cladding equipment and process parametersLThereby properly reducing the cladding feeding step length delta L.
3. The method for ultra-high speed laser cladding of the complex curved surface revolving body as claimed in claim 1, wherein the specific process parameter range interval for ultra-high speed laser cladding is set as follows: the diameter of a light spot is 1-5 mm, the surface linear velocity of the complex curved surface rotator, namely the cladding linear velocity V is 10-100 m/min, the power P of a laser beam is 1-10 KW, the powder feeding speed is 5-40 g/min, and the cladding lap joint rate delta is 0< delta < 100%.
4. The method for cladding the revolving body with the complex curved surface by the ultra-high speed laser according to claim 1, wherein a direction axis which is perpendicular to the axial section of the revolving body with the complex curved surface in the step 1 and the intersection point is located at the origin is a Z axis; in the used ultra-high-speed laser cladding equipment, the ultra-high-speed laser cladding head can at least realize the movement along the X axis and the Y axis and the rotation along the Z axis and the Y axis; and the movement speed of the cladding head along the X axis when cladding the ith section of path in the cladding process
Figure FDA0003523282100000031
The moving speed of the cladding head along the Y axis during cladding the ith path
Figure FDA0003523282100000032
The rotating angular speed epsilon of the cladding head during cladding the ith pathiThe moving speed and the rotating angular speed of the cladding head of the ultra-high speed laser cladding equipment within unit time are not required to be higher than each other.
CN202010334162.4A 2020-04-24 2020-04-24 Method for cladding complex curved surface revolution body by ultra-high-speed laser Active CN111545749B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010334162.4A CN111545749B (en) 2020-04-24 2020-04-24 Method for cladding complex curved surface revolution body by ultra-high-speed laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010334162.4A CN111545749B (en) 2020-04-24 2020-04-24 Method for cladding complex curved surface revolution body by ultra-high-speed laser

Publications (2)

Publication Number Publication Date
CN111545749A CN111545749A (en) 2020-08-18
CN111545749B true CN111545749B (en) 2022-06-21

Family

ID=71998359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010334162.4A Active CN111545749B (en) 2020-04-24 2020-04-24 Method for cladding complex curved surface revolution body by ultra-high-speed laser

Country Status (1)

Country Link
CN (1) CN111545749B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112048697A (en) * 2020-09-17 2020-12-08 南京铖联激光科技有限公司 Metal tube surface laser spraying method and device
CN114507855A (en) * 2022-02-18 2022-05-17 上海彩石激光科技有限公司 Method and equipment for manufacturing high-performance disc parts
CN114211380A (en) * 2022-02-21 2022-03-22 江苏天健智能装备制造有限公司 End socket polishing path planning method based on equal step method
CN115138860B (en) * 2022-02-22 2023-06-13 江苏大学 Eccentric ultra-high-speed laser composite manufacturing method for revolving body component
CN114737183A (en) * 2022-03-09 2022-07-12 山东能源重装集团大族再制造有限公司 Sprocket wheel laser cladding method
CN114855160B (en) * 2022-04-19 2023-07-21 南京辉锐光电科技有限公司 Workpiece cladding method, terminal equipment and workpiece cladding system
CN116174747B (en) * 2022-12-06 2023-07-25 杭州爱新凯科技有限公司 Multichannel laser 3D printing device and scanning method thereof
CN117070942B (en) * 2023-10-18 2024-01-26 江苏大学 Method for ultra-high-speed laser cladding of irregular plane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104400649A (en) * 2014-08-29 2015-03-11 东华大学 Rotary part arc trimming algorithm and control system using same
CN104988497A (en) * 2015-07-24 2015-10-21 新疆汇翔激光科技有限公司 Complex revolving body surface orientated laser cladding trajectory planning method
CN106077947A (en) * 2016-07-05 2016-11-09 温州大学 A kind of constant speed elliptical orbit laser precision machining method of oblique cone round platform
CN108220951A (en) * 2017-12-22 2018-06-29 北京机科国创轻量化科学研究院有限公司 A kind of ultrahigh speed laser melting coating system
CN108672951A (en) * 2018-06-04 2018-10-19 广东水利电力职业技术学院(广东省水利电力技工学校) A kind of fully-automatic laser diced system and control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE040753T2 (en) * 2014-01-14 2019-03-28 The Batteries Spolka Z Ograniczona Odpowiedzialnoscia Method for applying thin-film coatings and manufacturing line for implementing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104400649A (en) * 2014-08-29 2015-03-11 东华大学 Rotary part arc trimming algorithm and control system using same
CN104988497A (en) * 2015-07-24 2015-10-21 新疆汇翔激光科技有限公司 Complex revolving body surface orientated laser cladding trajectory planning method
CN106077947A (en) * 2016-07-05 2016-11-09 温州大学 A kind of constant speed elliptical orbit laser precision machining method of oblique cone round platform
CN108220951A (en) * 2017-12-22 2018-06-29 北京机科国创轻量化科学研究院有限公司 A kind of ultrahigh speed laser melting coating system
CN108672951A (en) * 2018-06-04 2018-10-19 广东水利电力职业技术学院(广东省水利电力技工学校) A kind of fully-automatic laser diced system and control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
超高速激光熔覆技术研究现状及其发展方向;吴影等;《电焊机》;20200331;第1-10页 *

Also Published As

Publication number Publication date
CN111545749A (en) 2020-08-18

Similar Documents

Publication Publication Date Title
CN111545749B (en) Method for cladding complex curved surface revolution body by ultra-high-speed laser
CN111334789B (en) Method for ultra-high-speed laser cladding of end faces of disc parts
Wu et al. Stable layer-building strategy to enhance cold-spray-based additive manufacturing
CN112195467B (en) Method and system for controlling deformation of functional coating prepared by high-speed laser cladding of disc part
CN111676477B (en) Ultrahigh-speed laser-induction composite cladding method and device
CN100547113C (en) The method of preparing material coating by laser inductive composite melt-coating and device
EP3666927B1 (en) Gear product having reinforced deposition surface and deposition system for manufacturing the same
US7836847B2 (en) Multi-station rotation system for use in spray operations
JP2020073730A (en) Method for manufacturing round preform by cold spray deposition
Shi et al. Laser metal deposition with spatial variable orientation based on hollow-laser beam with internal powder feeding technology
CN103205746B (en) Method of laser cladding for surfaces of hemispheroidal parts
CN201053030Y (en) Laser induction composite smelting and coating device for preparing material coat
CN108823567A (en) A kind of efficient laser cladding apparatus of sheet metal and method
CN105239070A (en) Method for repairing and strengthening surface of hot work die
CN111218684A (en) Method for preparing high-melting-point coating through laser-assisted ultrahigh-speed laser cladding
CN110834094A (en) Laser cladding forming method for variable-width thin-walled part based on optical outer coaxial powder feeding
CN211199407U (en) Metal matrix surface coating structure and forming device
CN112430796B (en) Preparation method of micro-nano textured coating of diamond grinding wheel
Lu et al. Research on surface finish of thin-wall parts by laser with coaxial inside-beam powder feeding
CN104611665A (en) Method for thermal spraying preparation of coating on large size bending pipe workpiece
Yanjun et al. Modeling of thickness and profile uniformity of thermally sprayed coatings deposited on cylinders
Wang et al. Laser cladding with grinding processing of orthogonal offset face gear
CN113996795A (en) Composite process for rapidly preparing wear-resistant and corrosion-resistant coating on surface of workpiece
CN102424897A (en) Method for broadband laser strengthening treatment of surface of tension wheel
CN106555031A (en) The method of broadband laser strengthening treatment of surface of tension wheel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant