CN111499956A - 一种抗水树老化的复合材料及其制备、应用和性能测试方法 - Google Patents

一种抗水树老化的复合材料及其制备、应用和性能测试方法 Download PDF

Info

Publication number
CN111499956A
CN111499956A CN202010495936.1A CN202010495936A CN111499956A CN 111499956 A CN111499956 A CN 111499956A CN 202010495936 A CN202010495936 A CN 202010495936A CN 111499956 A CN111499956 A CN 111499956A
Authority
CN
China
Prior art keywords
water tree
composite material
graphene
aging
tree aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010495936.1A
Other languages
English (en)
Other versions
CN111499956B (zh
Inventor
朱光亚
周凯
任显诚
杨培
李原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202010495936.1A priority Critical patent/CN111499956B/zh
Publication of CN111499956A publication Critical patent/CN111499956A/zh
Application granted granted Critical
Publication of CN111499956B publication Critical patent/CN111499956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2688Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
    • G01R27/2694Measuring dielectric loss, e.g. loss angle, loss factor or power factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/129Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of components or parts made of semiconducting materials; of LV components or parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Power Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种抗水树老化的复合材料及其制备、应用和性能测试方法。复合材料基于石墨烯和交联聚乙烯制成,其中石墨烯的层数为2层,其表面积为450~500m2/g。本发明采用溶液共混法以及掺杂的方式制备抗水树老化的复合材料。然后利用性能测试装置对其抗水树老化性能进行测试。本发明通过在交联聚乙烯中添加特定种类与含量的石墨烯,可抑制复合材料中的水树生长,水树尺寸大大减小,复合材料的抗水树老化性能显著提升。同时,采用本发明中的测试方法可以快速且准确的测定材料中的水树尺寸,为新一代抗水树老化材料的研发提供理论依据。

Description

一种抗水树老化的复合材料及其制备、应用和性能测试方法
技术领域
本发明属于特种材料技术领域,具体涉及一种抗水树老化的复合材料及其制备、应用和性能测试方法。
背景技术
近年来我国电力事业飞速发展,安全可靠的供配电与国民生产生活密切相关,我国的输配电线路中交联聚乙烯电缆占有很大比重,而交联聚乙烯电缆在实际运行中由于运行环境的影响不可避免的会受到电、热和水的老化作用。各种老化因子随着时间积累导致交联聚乙烯电缆的绝缘层中水树枝频繁出现,致使电缆的绝缘性能下降,供电可靠性降低,因此研究交联聚乙烯电缆中的水树生长特性对研究抗水树电缆材料具有重大意义。但是现有的水树性能测试方法不仅耗时,而且测试结果与实际情况偏差较大,寻找一种新的性能测试方法很有必要。
发明内容
针对上述现有技术,本发明提供一种抗水树老化的复合材料及其制备、应用和性能测试方法,以解决现有材料抗水树老化性能差以及抗水树老性能测试困难的问题。
为了达到上述目的,本发明所采用的技术方案是:提供一种抗水树老化的复合材料,包括以下质量百分比的组分:
石墨烯0.002~0.01%,交联聚乙烯99.9~99.998%;所述石墨烯的层数为2层,其表面积为450~500m2/g。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,本发明中的抗水树老化的复合材料,包括以下质量百分比的组分:
石墨烯0.007%,交联聚乙烯99.993%。
本发明中的抗水树老化的复合材料经过以下步骤制得:
S1:将聚乙烯与二甲苯按40~50g:280~320ml的料液比混合,于90~120℃下搅拌至聚乙烯完全溶解,得初始溶液;
S2:将石墨烯加入到初始溶液中,超声振荡1~2h,得悬浮液;
S3:于75~85℃下将悬浮液烘干,得混合固体;
S4:将混合固体与交联剂按100:2~5的质量比混合,于120~130℃下搅拌均匀,然后在155~165℃、15~20MPa下交联30~35min,得初品;
S5:将初品置于真空环境中,脱气处理20~25h,得抗水树老化的复合材料。
抗水树老化的复合材料在上述制备方法的基础上还可以做如下进一步改进。
进一步,S1中聚乙烯与二甲苯的料液比为45g:300ml;溶解温度为100℃。
进一步,交联剂为过氧化苯甲酰,其与所述混合固体的质量比为4:100。
进一步,S4中交联在160℃、15MPa的条件下进行。
制备出符合材料后,本发明对复合材料的性能进行了测试,复合材料的性能测试方法包括以下步骤:
S1:将抗水树老化的复合材料制成边长为50mm、厚度为3mm的方形薄片,并在方形薄片上扎22~25个缺陷针孔;
S2:将经过S1处理后的方形薄片放入测试装置中;所述测试装置包括杯体以及栓接于所述杯体底部的底座,所述杯体配备有杯盖,所述杯盖上设置有上电极,所述上电极连接高频高压电源;所述杯体底部设置有通孔,所述底座上正对所述通孔处设置有下电极,所述下电极接地;所述杯体中盛装有质量浓度为20%的NaCl溶液,所述方形薄片固定在通孔与下电极之间,所述缺陷针孔正对所述通孔;
S3:控制高频高压电源输出电压为7.0~8.0kV,输出频率为400~450Hz,在此条件下对方形薄片进行加速水树老化处理,处理时间为30天;
S4:将经过S3处理后的方形薄片切片并染色,于光学显微镜下测量水树尺寸,完成复合材料抗水树老化性能的测试。
测试发现本发明所制得的复合材料具有优良的抗水树老化性能,可以用其制备输电线路中的绝缘层,可保证线缆的绝缘性能。
本发明的有益效果是:
1.本发明通过在交联聚乙烯中添加特定种类与含量的石墨烯,可抑制复合材料中的水树生长,水树尺寸大大减小,复合材料的抗水树老化性能显著提升。
2.本发明中公开的复合材料抗水树老化性能测试方法用到一种特殊的性能测试装置,采用该装置,可以快速且准确的测定材料中的水树尺寸,为考察材料的抗水树老化性能提供精确的理论依据。
附图说明
图1为本发明中性能测试装置的主视图;
图2为纯XLPE样本的水树形态;
图3为石墨烯/XLPE复合材料样本的水树形态;
图4为材料样本平均水树尺寸统计结果图;
图5为材料样本的应力-应变曲线;
图6为材料样本的击穿电压结果图;
其中,1、杯体;2、底座;3、下电极;4、杯盖;5、上电极;6、高频高压电源;7、通孔;8、方形薄片。
具体实施方式
下面结合实施例对本发明的具体实施方式做详细的说明。
实施例一:制备抗水树老化的复合材料
本发明中采用溶液共混法制备抗水树老化的复合材料。具体包括以下步骤:
S1:将45g左右的聚乙烯和300ml左右的二甲苯一起加入到烧瓶中,于油浴下(温度100℃左右)混合并用高速搅拌器搅拌,至聚乙烯完全溶解,得初始溶液;
S2:将具有双层结构且表面积为450m2/g的石墨烯加入到初始溶液中,超声振荡1h左右,得悬浮液;
S3:将悬浮液缓慢倒入干净的玻璃容器中,在真空箱于80℃恒温下将其烘干得到混合固体;
S4:将过氧化苯甲酰加入混合固体中,采用内部混合器在125℃、60rmp的速度搅拌均匀,然后将此混合物在160℃、15MPa下交联30分钟,得初品;
S5:将初品置于真空环境中,脱气处理20~25h,除去交联副产物,得抗水树老化的复合材料。
为了研究不同石墨烯含量的复合材料的理化、电气性能及抗水树老化特性,本发明共制备A、B、C三种复合材料样本,材料样本用压片机压成特定的厚度。其中,A种复合材料样本厚度为500μm,分为6组,分别记为A1~A6,石墨烯含量分别为0%、0.002%、0.004%、0.006%、0.008%、0.01%;B种复合材料样本厚度为3mm,同样分为6组,分别记为B1~B6,石墨烯含量分别为0%、0.002%、0.004%、0.006%、0.008%、0.01%;C种样本厚度为3mm,石墨烯含量为0.007%。其中,A种样本用来做基本电气性能及空间电荷测试,B种样本用来做力学性能、热性能及交联度测试,C种样本用来做水树老化特性研究。
实施例二:复合材料的水树老化特性
将厚度为3mm的纯交联聚乙烯材料(XLPE)和C种复合材料(石墨烯/XLPE)分别切为4片边长50mm的方形薄片8,并将其记为D、C两组,D组为纯XLPE样本,C组为石墨烯/XLPE样本。使用钢针在两组样本(各4片)正中间直径约25mm的圆形区域制作三行缺陷针孔(每片样本中的针孔数约为22~25个)。之后利用性能测试装置对两组样本在室温下进行为期30天的加速水树老化测试,性能测试装置如图1所示,包括杯体1以及栓接于杯体1底部的底座2,杯体1配备有杯盖4,杯体1、底座2和杯盖4均采用绝缘材料制成;杯盖4中部固定设置有贯穿杯盖4的上电极5,上电极5通过导线与高频高压电源6电连接。杯体1底部中央开设有通孔7,底座2上正对通孔7处设置有下电极3,下电极3接地。材料水树老化性能测试包括以下步骤:
S1:将方形薄片8置于杯体1底部,方形薄片8上的缺陷针孔正对通孔7;然后安装底座2,并紧固螺栓,使底座2与杯体1紧密相连;再向杯体1中灌装质量浓度为20%的NaCl溶液;
S2:盖上杯盖4,上电极5***NaCl溶液溶液中;控制高频高压电源6输出电压为7.5kV左右,输出频率为450Hz左右,在此条件下对方形薄片8进行加速水树老化处理,处理时间为30天。
水树老化结束后,对老化样本切片并染色,利用光学显微镜分别在64倍和160倍的放大倍数下观察切片针孔周围的水树形态,纯XLPE样本和石墨烯/XLPE样本中的水树形态分别如图2和图3所示,其中(a)为放大64倍后的水树形态,(b)为放大160倍后的水树形态。从图中可以看出,石墨烯/XLPE复合材料的水树老化明显弱于纯XLPE材料的水树老化,表明在XLPE中添加特定种类和含量的石墨烯,能够显著改善材料的抗水树老化性能。
为了进一步研究老化样本中的水树生长速率,统计两组样本中每个切片中的水树尺寸并计算其平均值,样本中的平均水树尺寸统计结果如图4所示。由图4的统计结果可知,水树老化30天后,纯XPPE样本中的平均水树尺寸为101.8μm,而石墨烯/XLPE样本中的平均水树尺寸仅为85.6μm,复合样本中的水树尺寸比纯XLPE样本减少了15.9%。上述实验结果表明,石墨烯/XLPE样本中的水树生长相比于纯的XLPE样本得到有效抑制。
对两种样本进行机械拉伸实验,得到对应的应力-应变曲线,结果如图5所示。由图5的结果可知,相比于纯的XLPE样本,石墨烯/XLPE样本的力学强度得到较大提升。纯的XLPE样本的屈服强度为10.99MPa,而石墨烯/XLPE样本的屈服强度为12.69MPa,屈服强度提升5.5%。由于水树老化与材料的屈服强度具有紧密关系,屈服强度越高,破坏相同体积材料的分子链所需的电场能量越大,水树越不容易生长。由此可见,由于石墨烯/XLPE材料具有更优的力学性能,因此相对于纯的XLPE材料,其抑制水树生长的效果能够得到较大提升。
实施例三:石墨烯/XLPE复合材料的电气性能测试
利用自动平衡电桥测量A种样本中的直流电导率、电容和0.1Hz介质损耗,结果如表1所示。
表2-4A种样本绝缘性能对比
Figure BDA0002522817350000061
由表1结果可知,相比于纯XLPE样本,石墨烯/XLPE复合材料样本的直流电导率、电容、低频介损等主要绝缘性能参数均没有发生明显变化。此外,对6组样本进行交流击穿实验,样本的击穿电压结果如图6所示。由图6可知,5种石墨烯/XLPE复合样本的击穿强度相比于XLPE均有较大幅度提升,其中石墨烯添加量为0.006%时击穿电压提升幅度最大,高达38.4%。
虽然结合实施例对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (8)

1.一种抗水树老化的复合材料,其特征在于,包括以下质量百分比的组分:
石墨烯0.002~0.01%,交联聚乙烯99.9~99.998%;所述石墨烯的层数为2层,其表面积为450~500m2/g。
2.根据权利要求1所述的抗水树老化的复合材料,其特征在于,包括以下质量百分比的组分:
石墨烯0.007%,交联聚乙烯99.993%。
3.如权利要求1或2所述的抗水树老化的复合材料的制备方法,其特征在于,包括以下步骤:
S1:将聚乙烯与二甲苯按40~50g:280~320ml的料液比混合,于90~120℃下搅拌至聚乙烯完全溶解,得初始溶液;
S2:将石墨烯加入到初始溶液中,超声振荡1~2h,得悬浮液;
S3:于75~85℃下将悬浮液烘干,得混合固体;
S4:将混合固体与交联剂按100:2~5的质量比混合,于120~130℃下搅拌均匀,然后在155~165℃、15~20MPa下交联30~35min,得初品;
S5:将初品置于真空环境中,脱气处理20~25h,得抗水树老化的复合材料。
4.根据权利要求3所述的制备方法,其特征在于:S1中聚乙烯与二甲苯的料液比为45g:300ml;溶解温度为100℃。
5.根据权利要求3所述的制备方法,其特征在于:所述交联剂为过氧化苯甲酰,其与所述混合固体的质量比为4:100。
6.根据权利要求3所述的制备方法,其特征在于:S4中交联在160℃、15MPa的条件下进行。
7.测试如权利要求1或2所述的复合材料的抗水树老化性能的方法,其特征在于,包括以下步骤:
S1:将抗水树老化的复合材料制成边长为50mm、厚度为3mm的方形薄片(8),并在方形薄片(8)上扎22~25个缺陷针孔;
S2:将经过S1处理后的方形薄(8)放入性能测试装置中;所述性能测试装置包括杯体(1)以及栓接于所述杯体(1)底部的底座(2),所述杯体(1)配备有杯盖(4),所述杯盖(4)上设置有上电极(5),所述上电极(5)连接高频高压电源(6);所述杯体(1)底部设置有通孔(7),所述底座(2)上正对所述通孔(7)处设置有下电极(3),所述下电极(3)接地;所述杯体(1)中盛装有质量浓度为20%的NaCl溶液,所述方形薄片(8)固定在通孔(7)与下电极(3)之间,所述缺陷针孔正对所述通孔(7);
S3:控制高频高压电源(6)输出电压为7.0~8.0kV,输出频率为400~450Hz,在此条件下对方形薄片(8)进行加速水树老化处理,处理时间为30天;
S4:将经过S3处理后的方形薄片(8)切片并染色,于光学显微镜下测量水树尺寸,完成复合材料抗水树老化性能的测试。
8.如权利要求1或2所述的抗水树老化的复合材料在制备电缆绝缘层中的应用。
CN202010495936.1A 2020-06-03 2020-06-03 一种抗水树老化的复合材料及其制备、应用和性能测试方法 Active CN111499956B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010495936.1A CN111499956B (zh) 2020-06-03 2020-06-03 一种抗水树老化的复合材料及其制备、应用和性能测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010495936.1A CN111499956B (zh) 2020-06-03 2020-06-03 一种抗水树老化的复合材料及其制备、应用和性能测试方法

Publications (2)

Publication Number Publication Date
CN111499956A true CN111499956A (zh) 2020-08-07
CN111499956B CN111499956B (zh) 2022-01-18

Family

ID=71875265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010495936.1A Active CN111499956B (zh) 2020-06-03 2020-06-03 一种抗水树老化的复合材料及其制备、应用和性能测试方法

Country Status (1)

Country Link
CN (1) CN111499956B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092969A (zh) * 2021-04-13 2021-07-09 哈尔滨理工大学 一种xlpe绝缘材料水树生长实验装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965543A (zh) * 2014-05-21 2014-08-06 哈尔滨理工大学 一种高压直流电缆用可交联聚乙烯绝缘材料
CN107805331A (zh) * 2017-09-30 2018-03-16 四川力智久创知识产权运营有限公司 一种电缆绝缘材料及其制备方法
WO2019124916A1 (ko) * 2017-12-18 2019-06-27 전자부품연구원 고전압 케이블 절연소재 조성물 및 그의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103965543A (zh) * 2014-05-21 2014-08-06 哈尔滨理工大学 一种高压直流电缆用可交联聚乙烯绝缘材料
CN107805331A (zh) * 2017-09-30 2018-03-16 四川力智久创知识产权运营有限公司 一种电缆绝缘材料及其制备方法
WO2019124916A1 (ko) * 2017-12-18 2019-06-27 전자부품연구원 고전압 케이블 절연소재 조성물 및 그의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
冯杰 等: "《低温环境下 XLPE 材料中水树生长特性的研究》", 《四川电力技术》 *
郭佳 等: "《纳米石墨烯掺杂浓度对XLPE击穿性能的影响》", 《电测与仪表》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092969A (zh) * 2021-04-13 2021-07-09 哈尔滨理工大学 一种xlpe绝缘材料水树生长实验装置

Also Published As

Publication number Publication date
CN111499956B (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
JP7311605B2 (ja) 破壊強度が改善された二軸配向ポリプロピレンフィルム
CN111499956B (zh) 一种抗水树老化的复合材料及其制备、应用和性能测试方法
CN110791106A (zh) 一种液体硅橡胶及其制备方法
Tao et al. The mechanism of water tree growth in XLPE cables based on the finite element method
Liu et al. Thermal aging effect on properties of pure and doped nano-TiO 2 cellulose pressboard
Ciuprina et al. Chemical crosslinking of polyethylene and its effect on water tree initiation and propagation
CN116024840B (zh) 一种氟化碳纳米管/芳纶纳米纤维复合绝缘纸及其制备方法
CN106893186A (zh) 高介电性能n‑乙基咔唑/聚乙烯复合材料及其制备方法
CN108891108A (zh) 一种高驱动应变的电致驱动弹性体及其制备方法
CN106960701B (zh) 一种复合耐击穿电力电缆
Banaszczyk et al. Dielectric strength measurements of silicone gel
CN114438792A (zh) 有机硅浸渍阻燃无纺布
Liu et al. Improved XLPE Water-Tree Ageing Resistance and Electrical Properties by Adoption Crosslinking Auxiliary Triallyl Isocyanurate
Shang et al. Study on the material used for on-site insulation of bare overhead conductors
Yuan et al. Temperature rise prediction on silicone rubber housing of composite insulator in high humidity environment
Wang et al. The thermal conductivity and electrical properties of EP composite with different size BN
CN113817257A (zh) 一种防铜害的二步法硅烷交联聚乙烯绝缘料及其制备方法
JP2000221232A (ja) 水トリー試験方法
CN106280448B (zh) 一种石墨烯复合电缆料及其制备方法
Du et al. Dependence of electrical treeing behavior on cross-linking temperature of XLPE
Fang et al. Microscale characteristic of chalking silicone rubber
JPH0562529A (ja) 電力ケーブル
Nagao et al. Effect of moisture on treeing phenomenon in epoxy resin with filler under AC voltage
Yu et al. The Degradation Analysis of PVC Insulation Tape in 220kV Oil-filled Cable Terminal
Nikolić et al. Electrical Strength Tests of a Self-healable Copolymer Based on Ethylene and Anisylpropylene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant