CN111454971A - Method for improving conversion rate of chiral amine - Google Patents

Method for improving conversion rate of chiral amine Download PDF

Info

Publication number
CN111454971A
CN111454971A CN202010209530.2A CN202010209530A CN111454971A CN 111454971 A CN111454971 A CN 111454971A CN 202010209530 A CN202010209530 A CN 202010209530A CN 111454971 A CN111454971 A CN 111454971A
Authority
CN
China
Prior art keywords
nucleotide sequence
arr
fermentation liquor
ldh
omega
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010209530.2A
Other languages
Chinese (zh)
Other versions
CN111454971B (en
Inventor
宋浩
赵妍淑
张金华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010209530.2A priority Critical patent/CN111454971B/en
Publication of CN111454971A publication Critical patent/CN111454971A/en
Application granted granted Critical
Publication of CN111454971B publication Critical patent/CN111454971B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a method for improving conversion rate of chiral amine, which comprises the steps of synthesizing and amplifying optimized ArR-omega TA nucleotide sequences containing enzyme cutting sites, constructing P2A 4-ArR-omega TA, P2A4-FA and P2A4-ldh, respectively introducing FA which is a gene for expressing formate acetyltransferase into escherichia coli to obtain recombinant bacteria 1, FA and 6, fermenting to obtain recombinant bacteria 1, FA and 6 fermentation liquor, centrifuging to obtain recombinant bacteria 1, FA and 6 fermentation liquor sediment, respectively preparing FA crude enzyme liquid and ldh crude enzyme liquid, re-suspending the recombinant bacteria 1 fermentation liquor sediment by PBS, adding P L P, NAD, re-suspending+Reacting; adding FA crude enzyme solution, ldh crude enzyme solution, formate dehydrogenase, D-alanine, substrate ketone and CoA, adding cosolvent, reacting, terminating, extracting, and drying. Method of the inventionRemoving the byproduct pyruvic acid and improving the conversion rate of chiral amine. Adding formate dehydrogenase to recover coenzyme I.

Description

Method for improving conversion rate of chiral amine
Technical Field
The invention belongs to the field of chemistry, and particularly relates to a method for improving the conversion rate of chiral amine.
Background
In recent years, enantiomerically pure amines have played a crucial role in the chemical, pharmaceutical and agrochemical industries. Chiral amines are widely used in therapeutic drugs such as neurologic drugs, cardiovascular drugs, hypotensive drugs, anti-infective drugs, and vaccines. At present, chemical methods, biological resolution methods and biological asymmetric synthesis methods are the main methods for preparing chiral amines. The asymmetric synthesis method has little pollution to the environment, and the theoretical yield can reach 100 percent, so the method is a hot point of research. In the asymmetric synthesis of chiral amines using transaminases, the transamination reaction is a reversible reaction and the byproduct pyruvate prevents the reaction from proceeding toward the production of the amine. At present, a coupling system of lactate dehydrogenase and glucose dehydrogenase is mainly used for eliminating the inhibition effect of byproduct pyruvic acid and regenerating cofactors so as to improve the conversion rate of chiral amine. In the reaction for asymmetric synthesis of chiral amine by using transaminase, no report has been made on improvement of conversion rate of chiral amine by coupling system of formate acetyltransferase and lactate dehydrogenase.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provide a method for improving the conversion rate of chiral amine.
The technical scheme of the invention is summarized as follows:
a method for increasing the conversion rate of chiral amine comprises the following steps:
(1) in vitro synthesis and amplification of genes:
the amino acid sequence of an (R) -selective ω -transaminase derived from arthrobacter sp, abbreviated as: ArR- ω TA; the amino acid sequence of the ArR-omega TA is shown in SEQ ID NO. 1;
the amino acid sequence of ArR- ω TA is determined at the JCAT site by entering: avoiding restriction sites of XbaI, NdeI, SpeI and HindIII as conditions to obtain an optimized ArR-omega TA nucleotide sequence;
adding an XbaI restriction site and a HindIII restriction site before and after the optimized ArR-omega TA nucleotide sequence to obtain an optimized ArR-omega TA nucleotide sequence containing the restriction sites, wherein the optimized ArR-omega TA nucleotide sequence containing the restriction sites is shown as SEQ ID NO. 2;
(2) connecting the optimized ArR-omega TA nucleotide sequence containing the enzyme cleavage site obtained in the step (1) to a p2A4 vector to obtain p2A 4-ArR-omega TA; expressing the nucleotide sequence of the formate acetyltransferase by using FA, and connecting the FA into a p2A4 vector to obtain p2A 4-FA; ligating the nucleotide sequence of ldh into the p2A4 vector to give p2A 4-ldh;
the nucleotide sequence of the p2A4 vector is shown as SEQ ID NO. 18;
the nucleotide sequence of ldh is shown as SEQ ID NO. 7;
(3) p2A 4-ArR-omega TA; p2A 4-FA; introducing p2A4-ldh into Escherichia coli (E.coli MG1655) respectively to obtain recombinant bacterium 1, recombinant bacterium FA and recombinant bacterium 6;
(4) respectively fermenting the recombinant bacteria 1, the recombinant bacteria FA and the recombinant bacteria 6 to obtain recombinant bacteria 1 fermentation liquor, recombinant bacteria FA fermentation liquor and recombinant bacteria 6 fermentation liquor;
(5) respectively centrifuging, collecting and washing the fermentation liquor obtained in the step (4) to obtain a recombinant bacterium 1 fermentation liquor precipitate, a recombinant bacterium FA fermentation liquor precipitate and a recombinant bacterium 6 fermentation liquor precipitate;
(6) respectively re-suspending cells of the recombinant bacteria FA fermentation liquor sediment obtained in the step (5) and the recombinant bacteria 6 fermentation liquor sediment by PBS and carrying out ultrasonic crushing treatment; obtaining FA crude enzyme solution and ldh crude enzyme solution;
(7) re-suspending the fermentation liquid sediment (ArR-omega TA whole cells) of the recombinant bacteria 1 obtained in the step (5) by PBS to obtain a mixed liquid, adding the mixed liquid into P L P, NAD+Reacting for 20-40 minutes at 25-40 ℃ and 180-220 rpm; adding FA crude enzyme solution, ldh crude enzyme solution, formate dehydrogenase, D-alanine, substrate ketone and CoA to obtain reaction solution, adding cosolvent, reacting at 25-40 deg.C and 180-220rpm for 12-24 hr, adding NADH to terminate the reaction, extracting with ethyl acetate, adding Na into the extracted organic phase2SO4Drying, and detecting by gas chromatography.
The FA is ybiw, pflB, pflD or tdcE, the nucleotide sequence of ybiw is shown as SEQ ID NO.3, the nucleotide sequence of pflB is shown as SEQ ID NO.4, the nucleotide sequence of pflD is shown as SEQ ID NO.5, and the nucleotide sequence of tdcE is shown as SEQ ID NO. 6.
Step (7) is preferably: and (3) resuspending the fermentation liquor sediment of the recombinant bacteria 1 obtained in the step (5) by using PBS (phosphate buffer solution) with the pH value of 7.5 and the concentration of 100mM to obtain a mixed liquor, wherein the volume of the PBS is the volume of the PBS1/7 of the volume of the fermentation liquid of the recombinant bacterium 1 obtained in the step (4), taking 1m L mixed liquid according to the proportion, adding 1.5mM P L P and 1mM NAD+Reacting for 20-40 minutes at 25-40 ℃ and 180-220 rpm; then adding 10U of FA crude enzyme solution, 10U of ldh crude enzyme solution, 10U of formate dehydrogenase, D-alanine with the final concentration of 250mM, substrate ketone with the final concentration of 25mM and CoA with the final concentration of 0.1mM to obtain a reaction solution, adding DMSO with the volume of 15-60% of the reaction solution, reacting for 12-24 hours at the temperature of 25-40 ℃, 180-220rpm, adding NADH with the final concentration of 10M to terminate the reaction, extracting with ethyl acetate twice, adding Na into the organic phase after extraction2SO4Drying, and detecting by gas chromatography.
The ketone is preferably 2-pentanone, cyclohexanone or benzylacetone, and other ketones may be used.
The invention has the advantages that:
compared with the reported method for eliminating the byproduct pyruvic acid by one way, the method removes the byproduct pyruvic acid and can improve the conversion rate of the chiral amine. Meanwhile, the introduction of formate dehydrogenase can be used for recovering the cofactor reduced coenzyme I.
Drawings
FIG. 1 shows the ArR- ω TA/TdcE/FDH/L DH coupling system.
FIG. 2 shows the enzyme activities of ybiw, pflB, pflD, tdcE.
FIG. 3 shows the conversion of 2-pentanone, benzylacetone, cyclohexanone in the ArR- ω TA/TdcE/FDH/L DH coupling system.
Detailed Description
P L P pyridoxal phosphate
NAD+: coenzyme I
CoA: coenzyme A
NADH: reduced coenzyme I
DMSO dimethyl sulfoxide
The present invention will be further described with reference to the following examples.
Primers ybiw-F and ybiw-R were designed, ybiw was amplified from genomic DNA of E.coli MG1655 by PCR;
primers pflB-F and pflB-R were designed, and pflB was amplified from genomic DNA of E.coli MG1655 by PCR;
primers pflD-F and pflD-R were designed, and pflD was amplified from genomic DNA of E.coli MG1655 by PCR;
primers tdcE-F and tdcE-R are designed, and tdcE is amplified from the genome DNA of the Escherichia coli MG1655 through PCR;
primers ldh-F and ldh-R were designed and ldh was amplified from genomic DNA of E.coli MG1655 by PCR;
the nucleotide sequence of ybiw is shown in SEQ ID NO.3,
the nucleotide sequence of pflB is shown in SEQ ID NO.4,
the nucleotide sequence of pflD is shown in SEQ ID NO.5,
the nucleotide sequence of tdcE is shown in SEQ ID NO.6,
the nucleotide sequence of ldh is shown as SEQ ID NO.7,
the nucleotide sequence of ybiw-F is shown as SEQ ID NO.8, the nucleotide sequence of ybiw-R is shown as SEQ ID NO.9,
the nucleotide sequence of pflB-F is shown in SEQ ID NO.10, the nucleotide sequence of pflB-R is shown in SEQ ID NO.11,
the nucleotide sequence of pflD-F is shown in SEQ ID NO.12, the nucleotide sequence of pflD-R is shown in SEQ ID NO.13,
the nucleotide sequence of tdcE-F is shown as SEQ ID NO.14, the nucleotide sequence of tdcE-R is shown as SEQ ID NO.15,
the nucleotide sequence of ldh-F is shown as SEQ ID NO.16, and the nucleotide sequence of ldh-R is shown as SEQ ID NO. 17.
Example 1
A method for increasing the conversion rate of chiral amine comprises the following steps:
(1) in vitro synthesis and amplification of genes:
the amino acid sequence of an (R) -selective ω -transaminase derived from arthrobacter sp, abbreviated as: ArR- ω TA; the amino acid sequence of the ArR-omega TA is shown in SEQ ID NO. 1;
the amino acid sequence of ArR- ω TA is determined at the JCAT site by entering: avoiding restriction sites of XbaI, NdeI, SpeI and HindIII as conditions to obtain an optimized ArR-omega TA nucleotide sequence;
adding an XbaI restriction site and a HindIII restriction site before and after the optimized ArR-omega TA nucleotide sequence to obtain an optimized ArR-omega TA nucleotide sequence containing the restriction sites, wherein the optimized ArR-omega TA nucleotide sequence containing the restriction sites is shown as SEQ ID NO. 2;
(2) connecting the optimized ArR-omega TA nucleotide sequence containing the enzyme cleavage site obtained in the step (1) to a p2A4 vector to obtain p2A 4-ArR-omega TA; expressing a nucleotide sequence of formate acetyltransferase (FA is tdcE) by using tdcE, and connecting the tdcE into a p2A4 vector to obtain p2A 4-tdcE; ligating the nucleotide sequence of ldh into the p2A4 vector to give p2A 4-ldh;
the nucleotide sequence of the p2A4 vector is shown as SEQ ID NO. 18;
(3) p2A 4-ArR-omega TA; p2A 4-tdcE; introducing p2A4-ldh into Escherichia coli (E.coli MG1655) respectively to obtain recombinant bacteria 1, recombinant bacteria 5 and recombinant bacteria 6;
(4) respectively fermenting the recombinant bacteria 1, the recombinant bacteria 5 and the recombinant bacteria 6 to obtain recombinant bacteria 1 fermentation liquor, recombinant bacteria 5 fermentation liquor and recombinant bacteria 6 fermentation liquor;
and (3) fermentation process:
recombinant bacterium 1, recombinant bacterium 5 and recombinant bacterium 6 were cultured in TB liquid plus glucose medium (10 g glucose in 1 liter of TB liquid medium) containing (100. mu.g/ml ampicillin) respectively at 37 ℃ and 220rpm for 12 hours, the culture was transferred at a ratio of 1:100 into a 250m L shake flask containing 50m L TB medium and grown at 37 ℃, Isopropylthiogalactoside (IPTG) was added to give a final concentration of 1mM when the optical density at 600nm (OD600) reached about 0.6 and grown at 25 ℃ and 200rpm for 16 hours.
(5) Respectively centrifuging the fermentation liquor obtained in the step (4) at 4 ℃ and 6500rpm, collecting precipitates, washing and washing the precipitates with 0.01M PBS (pH is 7.5), and obtaining recombinant bacterium 1 fermentation liquor precipitates, recombinant bacterium 5 fermentation liquor precipitates and recombinant bacterium 6 fermentation liquor precipitates;
(6) respectively resuspending the recombinant bacterium 5 fermentation liquor sediment and the recombinant bacterium 6 fermentation liquor sediment obtained in the step (5) by PBS (100mM, pH 7.5) and carrying out ultrasonic disruption treatment, wherein the pulse is 5s, the interval is 10s, and the total working time is 20 minutes; obtaining a recombinant bacteria 5 crude enzyme solution (namely tdcE crude enzyme solution) and ldh crude enzyme solution;
(7) re-suspending the recombinant bacterium 1 fermentation liquid precipitate obtained in the step (5) by PBS (the volume of which is 1/7 of the volume of the recombinant bacterium 1 fermentation liquid obtained in the step (4) and the pH value of which is 7.5 mM) and the concentration of which is 100mM to obtain a mixed liquid, taking 1m L mixed liquid, adding P L P with the final concentration of 1.5mM and NAD with the final concentration of 1mM to obtain a mixed liquid+Reacting at 30 ℃ and 180rpm for 30 minutes, adding 10U of tdcE crude enzyme solution, 10U of ldh crude enzyme solution, 10U of formate dehydrogenase, 250mM D-alanine, 25mM substrate 2-pentanone and 0.1mM CoA to obtain a reaction solution, adding 30% DMSO by volume of the reaction solution, reacting at 30 ℃ and 180rpm for 24 hours, adding 10M NADH to terminate the reaction, extracting with ethyl acetate, extracting twice, each time adding 500 mu L, adding Na to the organic phase after extraction2SO4Drying, and detecting by gas chromatography.
Gas chromatography was carried out using TG-5MS column (30m × 0.32.32 mm × 0.25.25 μm; Thermo Fisher scientific) under the conditions of sample injector temperature of 250 ℃, constant flow of 1.8 ml/min, temperature program of 40 ℃/min hold of 2 min, 80 ℃/rate of 5 ℃/min hold of 2 min, 250 ℃/rate of 20 ℃/min hold of 10 min.
See fig. 1, 2 and 3.
Benzyl acetone and cyclohexanone were used instead of 2-pentanone in this example, respectively, and the conversion rates in the ArR- ω TA/TdcE/FDH/L DH coupling system are shown in FIG. 3.
Example 2
A method for increasing the conversion rate of chiral amine comprises the following steps:
(1) same as example 1, step (1);
(2) replacing tdcE in example 1 with ybiw, the same as in step (2) of example 1;
(3) p2A 4-ArR-omega TA; p2A 4-ybiw; introducing p2A4-ldh into Escherichia coli (E.coli MG1655) respectively to obtain recombinant bacterium 1, recombinant bacterium 2 and recombinant bacterium 6;
(4) respectively fermenting the recombinant bacteria 1, the recombinant bacteria 2 and the recombinant bacteria 6 to obtain recombinant bacteria 1 fermentation liquor, recombinant bacteria 2 fermentation liquor and recombinant bacteria 6 fermentation liquor;
the fermentation process was the same as in example 1;
(5) respectively centrifuging the fermentation liquor obtained in the step (4) at 4 ℃ and 6500rpm, collecting precipitates, washing and washing the precipitates with 0.01M PBS (pH 7.5), and obtaining recombinant bacterium 1 fermentation liquor precipitates, recombinant bacterium 2 fermentation liquor precipitates and recombinant bacterium 6 fermentation liquor precipitates;
(6) respectively re-suspending the recombinant bacterium 2 fermentation liquor sediment and the recombinant bacterium 6 fermentation liquor sediment obtained in the step (5) by using PBS (100mM, PH 7.5,) for cell re-suspension treatment, carrying out ultrasonic disruption treatment for 5s pulse and 10s interval, wherein the total working time is 20 minutes; obtaining a recombinant bacteria 2 crude enzyme solution (namely ybiw crude enzyme solution) and ldh crude enzyme solution;
(7) re-suspending the recombinant bacterium 1 fermentation liquid precipitate obtained in the step (5) by PBS (the volume of which is 1/7 of the volume of the recombinant bacterium 1 fermentation liquid obtained in the step (4) and the pH value of which is 7.5 mM) and the concentration of which is 100mM to obtain a mixed liquid, taking 1m L mixed liquid, adding P L P with the final concentration of 1.5mM and NAD with the final concentration of 1mM to obtain a mixed liquid+Reacting at 40 ℃ and 180rpm for 40 minutes, adding 10U ybiw crude enzyme solution, 10U ldh crude enzyme solution, 10U formate dehydrogenase, 250mM D-alanine, 25mM cyclohexanone as substrate and 0.1mM CoA to obtain a reaction solution, adding 15% by volume of DMSO as a cosolvent, reacting at 40 ℃ and 180rpm for 12 hours, adding 10M NADH to terminate the reaction, extracting with ethyl acetate twice, adding 500 mu L each time, adding Na to the organic phase after extraction2SO4Drying, and detecting by gas chromatography.
Example 3
A method for increasing the conversion rate of chiral amine comprises the following steps:
(1) same as example 1, step (1);
(2) the step (2) of example 1 was followed by replacing tdcE in example 1 with pflB;
(3) p2A 4-ArR-omega TA; p2A 4-pflB; introducing p2A4-ldh into Escherichia coli (E.coli MG1655) respectively to obtain recombinant bacteria 1, recombinant bacteria 3 and recombinant bacteria 6;
(4) respectively fermenting the recombinant bacteria 1, the recombinant bacteria 3 and the recombinant bacteria 6 to obtain recombinant bacteria 1 fermentation liquor, recombinant bacteria 3 fermentation liquor and recombinant bacteria 6 fermentation liquor;
the fermentation process was the same as in example 1;
(5) respectively centrifuging the fermentation liquor obtained in the step (4) at 4 ℃ and 6500rpm, collecting precipitates, washing and washing the precipitates with 0.01M PBS (pH 7.5) to obtain recombinant bacterium 1 fermentation liquor precipitates, recombinant bacterium 3 fermentation liquor precipitates and recombinant bacterium 6 fermentation liquor precipitates;
(6) respectively re-suspending the recombinant bacterium 3 fermentation liquor sediment and the recombinant bacterium 6 fermentation liquor sediment obtained in the step (5) by using PBS (100mM, PH 7.5,) for cell re-suspension treatment, carrying out ultrasonic disruption treatment for 5s pulse and 10s interval, wherein the total working time is 20 minutes; obtaining a recombinant bacterium 3 crude enzyme solution (namely pflB crude enzyme solution) and ldh crude enzyme solution;
(7) re-suspending the recombinant bacterium 1 fermentation liquid precipitate obtained in the step (5) by PBS (the volume of which is 1/7 of the volume of the recombinant bacterium 1 fermentation liquid obtained in the step (4) and the pH value of which is 7.5 mM) and the concentration of which is 100mM to obtain a mixed liquid, taking 1m L mixed liquid, adding P L P with the final concentration of 1.5mM and NAD with the final concentration of 1mM to obtain a mixed liquid+Reacting at 40 ℃ and 220rpm for 20 minutes, adding 10U of pflB crude enzyme solution, 10U of ldh crude enzyme solution, 10U of formate dehydrogenase, 250mM D-alanine, 25mM benzyl acetone and 0.1mM CoA to obtain a reaction solution, adding 60% DMSO based on the volume of the reaction solution, reacting at 40 ℃ and 220rpm for 12 hours, adding 10M NADH to terminate the reaction, extracting with ethyl acetate, extracting twice, each adding 500 mu L, adding Na to the organic phase after extraction2SO4Drying, and detecting by gas chromatography.
Example 4
A method for increasing the conversion rate of chiral amine comprises the following steps:
(1) same as example 1, step (1);
(2) replacing tdcE in example 1 with pflD, otherwise the same as in step (2) of example 1;
(3) p2A 4-ArR-omega TA; p2A 4-pflD; introducing p2A4-ldh into Escherichia coli (E.coli MG1655) respectively to obtain recombinant bacteria 1, recombinant bacteria 4 and recombinant bacteria 6;
(4) respectively fermenting the recombinant bacteria 1, the recombinant bacteria 4 and the recombinant bacteria 6 to obtain recombinant bacteria 1 fermentation liquor, recombinant bacteria 4 fermentation liquor and recombinant bacteria 6 fermentation liquor;
the fermentation process was the same as in example 1;
(5) respectively centrifuging the fermentation liquor obtained in the step (4) at 4 ℃ and 6500rpm, collecting precipitates, washing and washing the precipitates with 0.01M PBS (pH 7.5), and obtaining recombinant bacterium 1 fermentation liquor precipitates, recombinant bacterium 4 fermentation liquor precipitates and recombinant bacterium 6 fermentation liquor precipitates;
(6) respectively re-suspending the recombinant bacterium 4 fermentation liquor sediment and the recombinant bacterium 6 fermentation liquor sediment obtained in the step (5) by using PBS (100mM, PH 7.5,) for cell re-suspension treatment, carrying out ultrasonic disruption treatment for 5s pulse and 10s interval, wherein the total working time is 20 minutes; obtaining crude enzyme solution (namely pflD crude enzyme solution) of recombinant bacteria 4 and ldh crude enzyme solution;
(7) re-suspending the recombinant bacterium 1 fermentation liquid precipitate obtained in the step (5) by PBS (the volume of which is 1/7 of the volume of the recombinant bacterium 1 fermentation liquid obtained in the step (4) and the pH value of which is 7.5 mM) and the concentration of which is 100mM to obtain a mixed liquid, taking 1m L mixed liquid, adding P L P with the final concentration of 1.5mM and NAD with the final concentration of 1mM to obtain a mixed liquid+Reacting at 25 ℃ and 180rpm for 40 minutes, adding 10U of pflD crude enzyme solution, 10U of ldh crude enzyme solution, 10U of formate dehydrogenase, 250mM D-alanine, 25mM substrate 2-pentanone and 0.1mM CoA to obtain a reaction solution, adding 15% DMSO by volume of the reaction solution, reacting at 25 ℃ and 180rpm for 12 hours, adding 10M NADH to terminate the reaction, extracting with ethyl acetate, extracting twice, each adding 500 mu L, adding Na to the organic phase after extraction2SO4Drying, and detecting by gas chromatography.
Sequence listing
<110> Tianjin university
<120> method for improving conversion rate of chiral amine
<160>18
<170>SIPOSequenceListing 1.0
<210>1
<211>330
<212>PRT
<213> Arthrobacter sp
<400>1
Met Ala Phe Ser Ala Asp Thr Ser Glu Ile Val Tyr Thr His Asp Thr
1 5 10 15
Gly Leu Asp Tyr Ile Thr Tyr Ser Asp Tyr Glu Leu Asp Pro Ala Asn
20 25 30
Pro Leu Ala Gly Gly Ala Ala Trp Ile Glu Gly Ala Phe Val Pro Pro
35 40 45
Ser Glu Ala Arg Ile Ser Ile Phe Asp Gln Gly Tyr Leu His Ser Asp
50 55 60
Val Thr Tyr Thr Val Phe His Val Trp Asn Gly Asn Ala Phe Arg Leu
65 70 75 80
Asp Asp His Ile Glu Arg Leu Phe Ser Asn Ala Glu Ser Met Arg Ile
85 90 95
Ile Pro Pro Leu Thr Gln Asp Glu Val Lys Glu Ile Ala Leu Glu Leu
100 105 110
Val Ala Lys Thr Glu Leu Arg Glu Ala Phe Val Ser Val Ser Ile Thr
115 120 125
Arg Gly Tyr Ser Ser Thr Pro Gly Glu Arg Asp Ile Thr Lys His Arg
130 135 140
Pro Gln Val Tyr Met Tyr Ala Val Pro Tyr Gln Trp Ile Val Pro Phe
145 150 155 160
Asp Arg Ile Arg Asp Gly Val His Ala Met Val Ala Gln Ser Val Arg
165 170 175
Arg Thr Pro Arg Ser Ser Ile Asp Pro Gln Val Lys Asn Phe Gln Trp
180 185 190
Gly Asp Leu Ile Arg Ala Val Gln Glu Thr His Asp Arg Gly Phe Glu
195 200 205
Ala Pro Leu Leu Leu Asp Gly Asp Gly Leu Leu Ala Glu Gly Ser Gly
210 215 220
Phe Asn Val Val Val Ile Lys Asp Gly Val Val Arg Ser Pro Gly Arg
225 230 235 240
Ala Ala Leu Pro Gly Ile Thr Arg Lys Thr Val Leu Glu Ile Ala Glu
245 250 255
Ser Leu Gly His Glu Ala Ile Leu Ala Asp Ile Thr Leu Ala Glu Leu
260 265 270
Leu Asp Ala Asp Glu Val Leu Gly Cys Thr Thr Ala Gly Gly Val Trp
275 280 285
Pro Phe Val Ser Val Asp Gly Asn Pro Ile Ser Asp Gly Val Pro Gly
290 295 300
Pro Val Thr Gln Ser Ile Ile Arg Arg Tyr Trp Glu Leu Asn Val Glu
305 310 315 320
Ser Ser Ser Leu Leu Thr Pro Val Gln Tyr
325 330
<210>2
<211>1001
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>2
catatggctt tctctgctga cacctctgaa atcgtttaca cccacgacac cggtctggac 60
tacatcacct actctgacta cgaactggac ccggctaacc cgctggctgg tggtgctgct 120
tggatcgaag gtgctttcgt tccgccgtct gaagctcgta tctctatctt cgaccagggt 180
tacctgcact ctgacgttac ctacaccgtt ttccacgttt ggaacggtaa cgctttccgt 240
ctggacgacc acatcgaacg tctgttctct aacgctgaat ctatgcgtat catcccgccg 300
ctgacccagg acgaagttaa agaaatcgct ctggaactgg ttgctaaaac cgaactgcgt 360
gaagcgtttg tatctgtaag catcacccgt ggttactctt ctaccccggg tgaacgtgac 420
atcaccaaac accgtccgca ggtttacatg tacgctgttc cgtaccagtg gatcgttccg 480
ttcgaccgta tccgtgacgg tgttcacgct atggttgctc agtctgttcg tcgtaccccg 540
cgttcttcta tcgacccgca ggttaaaaac ttccagtggg gtgacctgat ccgtgctgtt 600
caggaaaccc acgacagggg cttcgaagct ccgctcctgc tggacggtga cggtctgctg 660
gctgaaggtt ctggtttcaa cgttgttgtt atcaaagacg gtgttgttcg ttctccgggt 720
cgtgctgctc tgccgggtat cacccgtaaa accgttctgg aaatcgctga atctctgggt 780
cacgaagcta tcctggctga catcaccctg gctgaactgc tggacgctga cgaagttctg 840
ggttgcacca cagctggcgg tgtctggccg ttcgtctctg ttgacggtaa cccgatctct 900
gacggtgttc cgggtccggt tacccagtct atcatccgtc gttactggga actgaacgtt 960
gaatcttctt ctctgctgac cccggttcag tactaaagct t 1001
<210>3
<211>2454
<212>DNA
<213> Escherichia coli (Escherichia coli)
<400>3
ggaattccat atgatgacca cactgaaact ggacacgctc agcgaccgca ttaaagcgca 60
caaaaatgcg ctggtgcata ttgtgaaacc gccagtctgt accgagcgcg cgcagcacta 120
taccgagatg tatcaacaac atctcgataa gccgatcccg gtacgtcgcg cgctggcact 180
ggcgcatcac ctggcgaatc gcaccatctg gatcaaacac gatgagttga tcattggcaa 240
ccaggcaagc gaagttcgcg ccgcgccgat cttcccggaa tatactgtct cgtggatcga 300
aaaagagatt gatgatctgg cagatcgtcc cggtgctggc tttgcggtga gcgaagagaa 360
caaacgcgtt ctgcatgaag tgtgcccgtg gtggcgcggt cagaccgtac aggatcgctg 420
ctacggcatg tttaccgatg agcaaaaagg tctgctggcg accggaatca ttaaagcgga 480
aggcaatatg acctccggcg atgcgcacct ggcggtgaat ttcccgctgc tgctggaaaa 540
agggcttgat ggtctgcgcg aggaagtagc ggaacgtcgc tcgcgcatca acctgacggt 600
gctggaagat ttacacggtg agcaattcct gaaagcgatt gatatcgtgc tggtggcagt 660
cagtgaacac attgaacgtt tcgctgccct ggcgcgtgaa atggccgcga ccgaaacccg 720
cgaaagccgt cgcgatgaac tgctggcgat ggcagaaaac tgcgatctta tcgcccacca 780
gccgccgcag actttctggc aggcgctgca actgtgttac ttcatccagt tgattttgca 840
gatcgaatct aacggtcact cagtatcgtt tggtcgtatg gaccagtatc tctacccgta 900
ctatcgccgc gacgttgaac tcaaccagac gctggatcgc gaacacgcca tcgagatgct 960
gcatagctgc tggctgaaac tgctggaagt gaacaagatc cgctccggct cacactcaaa 1020
agcctctgcg ggaagtccgc tgtatcagaa cgtcactatt ggcgggcaaa atctggttga 1080
tggtcaacca atggacgcgg tgaatccact ctcttacgcg atcctcgaat cctgcggtcg 1140
cctgcgttcc actcagccta acctcagcgt gcgttaccat gcaggaatga gcaacgattt 1200
cctcgacgcc tgcgtacagg tgatccgttg cggcttcggg atgccggcgt tcaacaacga 1260
cgaaatcgtg atcccggaat ttattaaact cggtattgaa ccgcaggacg cttatgacta 1320
cgcagcgatt ggttgtatag aaaccgccgt cggtggcaaa tggggctatc gctgtaccgg 1380
catgagcttt atcaacttcg cccgcgtgat gctggcggcg ctggaaggcg ggcatgatgc 1440
caccagcggc aaagtgttcc tgccacaaga aaaagcgttg tcggcaggta acttcaacaa 1500
cttcgatgaa gtgatggacg cgtgggatac gcaaatccgt tactacaccc gcaaatcaat 1560
cgaaatcgaa tatgtcgtcg acaccatgct ggaagagaac gtgcacgata ttctctgctc 1620
ggcgctggtg gatgactgta ttgagcgagc gaaaagtatc aagcaaggcg gcgcgaaata 1680
tgactgggtt tctggcctgc aggtcggcat tgccaacctc ggcaacagcc tggcggcagt 1740
gaagaaactg gtgtttgaac aaggtgcgat tggtcagcaa cagcttgctg ccgcactggc 1800
agatgacttc gacggcctga ctcacgagca gctgcgtcag cggctgatta acggtgcgcc 1860
gaagtacggc aacgacgatg atactgtcga tacgctgctg gctcgcgctt atcagaccta 1920
tatcgacgaa ctgaaacagt accataatcc gcgctacggt cgtggtccgg ttggcggcaa 1980
ctattacgcg ggtacgtcat caatctccgc taacgtaccg tttggcgcgc agactatggc 2040
aacaccggac gggcgtaaag cccacacccc gctggcagaa ggcgcaagcc cggcctccgg 2100
tactgaccat cttggcccta ctgcggtcat tggctcagtg ggtaaactgc ctacggcagc 2160
gattctcggc ggcgtgttgc tcaaccagaa actgaatccg gcaacgctgg agaacgaatc 2220
tgacaagcag aaactgatga tcctgctgcg taccttcttt gaagtgcata aaggctggca 2280
tattcagtac aacatcgttt cccgcgaaac gctgctggat gcgaaaaaac atcccgatca 2340
gtatcgcgat ctggtagtgc gtgtcgcggg ctattccgcg ttcttcaccg cgctctctcc 2400
agacgctcag gacgatatca tcgcccgtac tgaacatatg ctgtaaacta gtcc 2454
<210>4
<211>2322
<212>DNA
<213> Escherichia coli (Escherichia coli)
<400>4
ggaattccat atgcatcacc atcatcacca catgtccgag cttaatgaaa agttagccac 60
agcctgggaa ggttttacca aaggtgactg gcagaatgaa gtaaacgtcc gtgacttcat 120
tcagaaaaac tacactccgt acgagggtga cgagtccttc ctggctggcg ctactgaagc 180
gaccaccacc ctgtgggaca aagtaatgga aggcgttaaa ctggaaaacc gcactcacgc 240
gccagttgac tttgacaccg ctgttgcttc caccatcacc tctcacgacg ctggctacat 300
caacaagcag cttgagaaaa tcgttggtct gcagactgaa gctccgctga aacgtgctct 360
tatcccgttc ggtggtatca aaatgatcga aggttcctgc aaagcgtaca accgcgaact 420
ggatccgatg atcaaaaaaa tcttcactga ataccgtaaa actcacaacc agggcgtgtt 480
cgacgtttac actccggaca tcctgcgttg ccgtaaatct ggtgttctga ccggtctgcc 540
agatgcatat ggccgtggcc gtatcatcgg tgactaccgt cgcgttgcgc tgtacggtat 600
cgactacctg atgaaagaca aactggcaca gttcacttct ctgcaggctg atctggaaaa 660
cggcgtaaac ctggaacaga ctatccgtct gcgcgaagaa atcgctgaac agcaccgcgc 720
tctgggtcag atgaaagaaa tggctgcgaa atacggctac gacatctctg gtccggctac 780
caacgctcag gaagctatcc agtggactta cttcggctac ctggctgctg ttaagtctca 840
gaacggtgct gcaatgtcct tcggtcgtac ctccaccttc ctggatgtgt acatcgaacg 900
tgacctgaaa gctggcaaga tcaccgaaca agaagcgcag gaaatggttg accacctggt 960
catgaaactg cgtatggttc gcttcctgcg tactccggaa tacgatgaac tgttctctgg 1020
cgacccgatc tgggcaaccg aatctatcgg tggtatgggc ctcgacggtc gtaccctggt 1080
taccaaaaac agcttccgtt tcctgaacac cctgtacacc atgggtccgt ctccggaacc 1140
gaacatgacc attctgtggt ctgaaaaact gccgctgaac ttcaagaaat tcgccgctaa 1200
agtgtccatc gacacctctt ctctgcagta tgagaacgat gacctgatgc gtccggactt 1260
caacaacgat gactacgcta ttgcttgctg cgtaagcccg atgatcgttg gtaaacaaat 1320
gcagttcttc ggtgcgcgtg caaacctggc gaaaaccatg ctgtacgcaa tcaacggcgg 1380
cgttgacgaa aaactgaaaa tgcaggttgg tccgaagtct gaaccgatca aaggcgatgt 1440
cctgaactat gatgaagtga tggagcgcat ggatcacttc atggactggc tggctaaaca 1500
gtacatcact gcactgaaca tcatccacta catgcacgac aagtacagct acgaagcctc 1560
tctgatggcg ctgcacgacc gtgacgttat ccgcaccatg gcgtgtggta tcgctggtct 1620
gtccgttgct gctgactccc tgtctgcaat caaatatgcg aaagttaaac cgattcgtga 1680
cgaagacggt ctggctatcg acttcgaaat cgaaggcgaa tacccgcagt ttggtaacaa 1740
tgatccgcgt gtagatgacc tggctgttga cctggtagaa cgtttcatga agaaaattca 1800
gaaactgcac acctaccgtg acgctatccc gactcagtct gttctgacca tcacttctaa 1860
cgttgtgtat ggtaagaaaa cgggtaacac cccagacggt cgtcgtgctg gcgcgccgtt 1920
cggaccgggt gctaacccga tgcacggtcg tgaccagaaa ggtgcagtag cctctctgac 1980
ttccgttgct aaactgccgt ttgcttacgc taaagatggt atctcctaca ccttctctat 2040
cgttccgaac gcactgggta aagacgacga agttcgtaag accaacctgg ctggtctgat 2100
ggatggttac ttccaccacg aagcatccat cgaaggtggt cagcacctga acgttaacgt 2160
gatgaaccgt gaaatgctgc tcgacgcgat ggaaaacccg gaaaaatatc cgcagctgac 2220
catccgtgta tctggctacg cagtacgttt caactcgctg actaaagaac agcagcagga 2280
cgttattact cgtaccttca ctcaatctat gtaaactagt cc 2322
<210>5
<211>2319
<212>DNA
<213> Escherichia coli (Escherichia coli)
<400>5
ggaattccat atgatgacga atcgtatctc tcgcctcaaa actgcactgt ttgccaatac 60
ccgtgaaatc tcgctggagc gggcgctgct ttataccgcc agccatcggc aaaccgaagg 120
cgaaccggtg atattgcgcc gggcgaaagc aacagcgtat atccttgaac atgttgaaat 180
ttcgattcgt gatgaagaac tgattgccgg taaccgcacc gtaaaaccgc gcgccgggat 240
tatgtcgccg gaaatggacc cttactggct gctgaaagag ctggatcaat tcccgacgcg 300
tccgcaggac cgctttgcta tcagcgaaga agataaacgt atctaccgtg aagagttgtt 360
cccgtactgg gaaaaacgtt cgatgaaaga tttcatcaac gggcagatga cagatgaagt 420
aaaagccgcg accaacacgc agattttcag catcaaccag acggataaag gccaggggca 480
cattattatt gattacccac gcctgttgaa tcacgggctg ggtgagctgg tggcacagat 540
gcagcaacat tgtcagcaac agccggagaa tcacttttat caggccgcgt tgttactgct 600
ggaagcctcg cagaaacaca ttttgcgtta cgccgaactg gcggaaacga tggcggcaaa 660
ctgcacagat gcccagcgtc gcgaagagct gctgactatt gcagagatct cccgccataa 720
cgcgcaacat aagccgcaga cgttctggca ggcgtgccag ttattctggt acatgaacat 780
cattctgcaa tacgaatcca acgccagttc gctatcgttg gggcgcttcg accagtatat 840
gttgccgttc tatcagacat cattaaccca gggcgaagat gcggcgttcc tgaaagaact 900
gctcgaatct ttatgggtga aatgcaacga catcgtgctg ttgcgctcca ccagtagcgc 960
gcgttatttc gccggtttcc cgaccggcta taccgcactg ctcggcgggt taaccgagaa 1020
cggacgtagc gcggtgaacg tgctttcgtt cctttgcctt gacgcctatc aaagcgtgca 1080
attaccgcaa ccgaacctcg gcgtgcgcac taacgccttg atcgacacgc cgttcctgat 1140
gaaaaccgcc gaaaccattc gcttcggtac cggtattccg caaatcttta acgatgaagt 1200
ggtggtgcca gcgttcctca accgtggcgt ttcgctggaa gatgcgcgcg actattccgt 1260
agtgggctgt gtggaattat ctattcccgg cagaacctac ggcttgcatg acatcgcgat 1320
gtttaatctg ctgaaagtga tggaaatctg cctgcatgaa aatgaaggca atgctgcgct 1380
gacttatgaa ggtttactgg agcagatccg cgccaagatc agccactaca tcaccctgat 1440
ggttgagggc agcaatattt gtgatatcgg ccatcgcgac tgggcacctg taccgctgct 1500
ctcatcgttt atcagcgatt gtctggaaaa aggccgcgat attaccgatg gcggcgcgcg 1560
ttataacttc tccggcgtac aggggatcgg tatcgccaac ctgagcgatt ctctccatgc 1620
gttgaaaggg atggtttttg agcaacagcg tttaagtttt gacgaattgc tgtcggtatt 1680
aaaagccaac ttcgcaacgc cagaaggcga aaaagtccgc gctcgcttaa ttaaccgctt 1740
cgagaaatac ggtaacgata tcgacgaggt ggataacatc agcgccgaac tgttgcgcca 1800
ctactgcaaa gaagtggaaa aataccagaa cccgcgcggc ggctacttca cgccgggatc 1860
gtataccgtt tctgctcacg tcccgttggg atcggtggtt ggcgcgacgc cagacggtcg 1920
ttttgccgga gaacagctgg cagacggcgg cttgtcaccc atgctgggcc aggacgcaca 1980
agggccaaca gcggtactga agtcagtcag taagctcgat aacacgctgc tgtctaacgg 2040
tacgttgctg aacgtgaaat tcactccggc gaccctggaa ggtgaagcag gattacgcaa 2100
actggccgac ttcttacggg cgtttaccca gcttaagtta caacatattc agtttaacgt 2160
ggtgaacgcc gacacgttgc gggaagcgca acagcgccca caagattatg ccgggctggt 2220
ggtgcgcgtt gccggataca gcgccttctt tgtcgaactg tcgaaggaga tccaggatga 2280
catcatccgc cggacagcgc atcagctgta aactagtcc2319
<210>6
<211>2316
<212>DNA
<213> Escherichia coli (Escherichia coli)
<400>6
ggaattccat atgatgaagg tagatattga taccagcgat aagctgtacg ccgacgcatg 60
gcttggcttt aaaggtacgg actggaaaaa cgaaattaat gtccgcgatt ttattcaaca 120
taactataca ccgtatgaag gcgatgaatc tttcctcgcc gaagcgacgc ctgccaccac 180
ggaattgtgg gaaaaagtaa tggaaggcat ccgtatcgaa aatgcaaccc acgcgccggt 240
tgatttcgat accaatattg ccaccacaat taccgctcat gatgcgggat atattaacca 300
gccgctggaa aaaattgttg gcctgcaaac ggatgcgccg ttgaaacgtg cgctacaccc 360
gttcggtggc attaatatga ttaaaagttc attccacgcc tatggccgag aaatggacag 420
tgaatttgaa tatctgttta ccgatctgcg taaaacccat aaccagggcg tatttgatgt 480
ttactcaccg gatatgctgc gctgccgtaa atctggcgtg ctgaccggtt taccagatgg 540
ctatggccgt gggcgcatta tcggtgacta tcgccgcgta gcgctgtatg gcatcagtta 600
tctggtacgt gaacgcgaac tgcaatttgc cgatctccag tctcgtctgg aaaaaggcga 660
ggatctggaa gccaccatcc gtctgcgtga ggagctggca gagcatcgtc atgcgctgtt 720
gcagattcag gaaatggcgg cgaaatatgg ctttgatatc tctcgcccgg cgcagaatgc 780
gcaggaagcg gtgcagtggc tctacttcgc ttatctggcg gcagtgaaat cgcaaaatgg 840
cggcgcgatg tcgctgggcc gcacggcatc gttcctcgat atctacattg agcgcgactt 900
taaagctggc gtactcaatg agcagcaggc acaggaactg atcgatcact tcatcatgaa 960
gatccgtatg gtacgcttcc tgcgtacacc ggaatttgat tcgctgttct ccggcgaccc 1020
aatctgggcg acggaagtga tcggcgggat ggggctggac ggtcgtacgc tggtgaccaa 1080
aaactccttc cgctatttgc acaccctgca cactatgggg ccggcaccgg aacctaacct 1140
gaccattctt tggtcggaag aattaccgat tgccttcaaa aaatatgccg cgcaggtgtc 1200
gatcgtcacc tcttccttgc agtatgaaaa tgacgatctg atgcgtactg acttcaacag 1260
cgacgattac gcgattgcct gctgcgtcag cccaatggtg attggtaagc aaatgcagtt 1320
ctttggtgca cgcgctaacc tggcgaaaac gctgctctac gcaattaacg gcggggtgga 1380
cgagaagctg aagattcagg tcgggccgaa aacagcaccg ctgatggacg acgtgctgga 1440
ttacgacaaa gtgatggaca gcctcgatca cttcatggac tggctggcgg tgcagtacat 1500
cagcgcgctg aatatcattc actacatgca cgacaagtac agctacgaag cttcgctgat 1560
ggcgctgcac gatcgtgatg tctatcgcac tatggcatgc ggcatcgcgg gcctgtcggt 1620
ggcgacggac tccctgtctg ccatcaaata tgcccgcgtg aaaccaatcc gtgacgaaaa 1680
cggcctggcg gtggactttg aaatcgacgg tgaatatccg cagtacggca acaacgacga 1740
gcgcgtagac agcattgcct gcgacctggt tgaacgcttt atgaagaaaa ttaaagcgct 1800
gccaacctat cgcaacgccg tccctaccca gtcgattctg actatcactt ctaacgtggt 1860
gtacggccag aaaaccggta atacgccgga cggtcgtcgc gccggaacac cgttcgcgcc 1920
gggcgctaac ccgatgcatg gtcgtgaccg caaaggtgcc gtggcctcat tgacgtcggt 1980
ggcgaaactg ccgttcacctacgccaaaga tgggatctcg tacaccttct caatcgttcc 2040
tgcggcgctg ggcaaagaag atccagtacg taaaaccaac cttgtcggcc tgctggatgg 2100
gtatttccac cacgaagcgg atgtcgaagg cggtcaacac ctcaacgtca acgtaatgaa 2160
tcgggaaatg ctgctggatg ccatcgagca cccggaaaaa tatcctaacc tgacaatccg 2220
tgtctctggc tacgccgtgc gcttcaacgc actgacccgt gaacagcaac aggatgttat 2280
ttcacgtacc tttacccagg cgctctgaac tagtcc 2316
<210>7
<211>990
<212>DNA
<213> Escherichia coli (Escherichia coli)
<400>7
atgaaactcg ccgtttatag cacaaaacag tacgacaaga agtacctgca acaggtgaac 60
gagtcctttg gctttgagct ggaatttttt gactttctgc tgacggaaaa aaccgctaaa 120
actgccaatg gctgcgaagc ggtatgtatt ttcgtaaacg atgacggcag ccgcccggtg 180
ctggaagagc tgaaaaagca cggcgttaaa tatatcgccc tgcgctgtgc cggtttcaat 240
aacgtcgacc ttgacgcggc aaaagaactg gggctgaaag tagtccgtgt tccagcctat 300
gatccagagg ccgttgctga acacgccatc ggtatgatga tgacgctgaa ccgccgtatt 360
caccgcgcgt atcagcgtac ccgtgatgct aacttctctc tggaaggtct gaccggcttt 420
actatgtatg gcaaaacggc aggcgttatc ggtaccggta aaatcggtgt ggcgatgctg 480
cgcattctga aaggttttgg tatgcgtctg ctggcgttcg atccgtatcc aagtgcagcg 540
gcgctggaac tcggtgtgga gtatgtcgat ctgccaaccc tgttctctga atcagacgtt 600
atctctctgc actgcccgct gacaccggaa aactatcatc tgttgaacga agccgccttc 660
gaacagatga aaaatggcgt gatgatcgtc aataccagtc gcggtgcatt gattgattct 720
caggcagcaa ttgaagcgct gaaaaatcag aaaattggtt cgttgggtat ggacgtgtat 780
gagaacgaac gcgatctatt ctttgaagat aaatccaacg acgtgatcca ggatgacgta 840
ttccgtcgcc tgtctgcctg ccacaacgtg ctgtttaccg ggcaccaggc attcctgaca 900
gcagaagctc tgaccagtat ttctcagact acgctgcaaa acttaagcaa tctggaaaaa 960
ggcgaaacct gcccgaacga actggtttaa 990
<210>8
<211>23
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>8
ggaattccat atgatgacca cac 23
<210>9
<211>30
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>9
ggactagttt acagcatatg ttcagtacgg 30
<210>10
<211>23
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>10
ggaattccat atgtccgagc tta 23
<210>11
<211>27
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>11
ggactagtta catagattga gtgaagg 27
<210>12
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>12
ggaattccat atgacgaatc gtatc 25
<210>13
<211>23
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>13
ggactagtta cagctgatgc gct 23
<210>14
<211>27
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>14
ggccgtccat atgaaggtag atattga 27
<210>15
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>15
ggactagttc agagcgcctg ggtaa 25
<210>16
<211>24
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>16
ggaattccat atgatgaaac tcgc 24
<210>17
<211>25
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>17
actagtttaa accagttcgt tcggg 25
<210>18
<211>2167
<212>DNA
<213> Artificial Sequence (Artificial Sequence)
<400>18
ggatccttga gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc 60
gctaccagcg gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac 120
tggcttcagc agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca 180
ccacttcaag aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt 240
ggctgctgcc agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc 300
ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg 360
aacgacctac accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc 420
cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac 480
gagggagctt ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct 540
ctgacttgag cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaagct 600
tgaagatcct ttgatctttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta 660
agggattttg gtcatgagat tatcaaaaag gatcttcacc tagatccttt taaattaaaa 720
atgaagtttt aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg 780
cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg 840
actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgctgc 900
aatgataccg cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc 960
cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa 1020
ttgttgccgg gaagctagag taagtagttc gccagttaat agtttgcgca acgttgttgc 1080
cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat tcagctccgg 1140
ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag cggttagctc 1200
cttcggtcct ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcatggttat 1260
ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt ctgtgactgg 1320
tgagtactca accaagtcat tctgagaata gtgtatgcgg cgaccgagtt gctcttgccc 1380
ggcgtcaata cgggataata ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg 1440
aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat ccagttcgat 1500
ataacccact cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg 1560
gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga cacggaaatg 1620
ttgaatactc atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct 1680
catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac 1740
atttccccga aaagtgccac ctgacgtcta agaaaccatt attatcatga cattaaccta 1800
taaaaatagg cgtatcacga ggcagaattt cagataaaaa aaatccttag ctttcgctaa 1860
ggatgatttc tggaattcgc ggccgcttct agagtactag tagcggccgc tgcagtccgg 1920
caaaaaaggg caaggtgtca ccaccctgcc ctttttcttt aaaaccgaaa agattacttc 1980
gcgttatgca ggcttcctcg ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag 2040
cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag 2100
gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc 2160
tggcgtt 2167

Claims (4)

1. A method for improving the conversion rate of chiral amine is characterized by comprising the following steps:
(1) in vitro synthesis and amplification of genes:
the amino acid sequence of an (R) -selective ω -transaminase derived from arthrobacter sp, abbreviated as: ArR- ω TA; the amino acid sequence of the ArR-omega TA is shown in SEQ ID NO. 1;
the amino acid sequence of ArR- ω TA is determined at the JCAT site by entering: avoiding restriction sites of XbaI, NdeI, SpeI and HindIII as conditions to obtain an optimized ArR-omega TA nucleotide sequence;
adding an XbaI restriction site and a HindIII restriction site before and after the optimized ArR-omega TA nucleotide sequence to obtain an optimized ArR-omega TA nucleotide sequence containing the restriction sites, wherein the optimized ArR-omega TA nucleotide sequence containing the restriction sites is shown as SEQ ID NO. 2;
(2) connecting the optimized ArR-omega TA nucleotide sequence containing the enzyme cleavage site obtained in the step (1) to a p2A4 vector to obtain p2A 4-ArR-omega TA; expressing the nucleotide sequence of the formate acetyltransferase by using FA, and connecting the FA into a p2A4 vector to obtain p2A 4-FA; ligating the nucleotide sequence of ldh into the p2A4 vector to give p2A 4-ldh;
the nucleotide sequence of the p2A4 vector is shown as SEQ ID NO. 18;
the nucleotide sequence of ldh is shown as SEQ ID NO. 7;
(3) p2A 4-ArR-omega TA; p2A 4-FA; introducing the p2A4-ldh into escherichia coli respectively to obtain a recombinant bacterium 1, a recombinant bacterium FA and a recombinant bacterium 6;
(4) respectively fermenting the recombinant bacteria 1, the recombinant bacteria FA and the recombinant bacteria 6 to obtain recombinant bacteria 1 fermentation liquor, recombinant bacteria FA fermentation liquor and recombinant bacteria 6 fermentation liquor;
(5) respectively centrifuging, collecting and washing the fermentation liquor obtained in the step (4) to obtain a recombinant bacterium 1 fermentation liquor precipitate, a recombinant bacterium FA fermentation liquor precipitate and a recombinant bacterium 6 fermentation liquor precipitate;
(6) respectively carrying out cell resuspension treatment on the recombinant bacterium FA fermentation liquor sediment obtained in the step (5) and the recombinant bacterium 6 fermentation liquor sediment by using PBS (phosphate buffer solution) and carrying out ultrasonic disruption treatment; obtaining FA crude enzyme solution and ldh crude enzyme solution;
(7) re-suspending the recombinant bacterium 1 fermentation liquid precipitate obtained in the step (5) by PBS to obtain a mixed solution, adding P L P, NAD into the mixed solution+Reacting for 20-40 minutes at 25-40 ℃ and 180-220 rpm; adding FA crude enzyme solution, ldh crude enzyme solution, formate dehydrogenase, D-alanine, substrate ketone and CoA to obtain reaction solution, adding cosolvent, reacting at 25-40 deg.C and 180-220rpm for 12-24 hr, adding NADH to terminate the reaction, extracting with ethyl acetate, adding Na into the extracted organic phase2SO4Drying, and detecting by gas chromatography.
2. The method for improving the conversion rate of chiral amine according to claim 1, wherein the FA is ybiw, pflB, pflD or tdcE, the nucleotide sequence of ybiw is shown as SEQ ID No.3, the nucleotide sequence of pflB is shown as SEQ ID No.4, the nucleotide sequence of pflD is shown as SEQ ID No.5, and the nucleotide sequence of tdcE is shown as SEQ ID No. 6.
3. The method for improving the conversion rate of chiral amine according to claim 1, wherein the step (7) is that the recombinant bacterium 1 fermentation liquid precipitate obtained in the step (5) is resuspended in PBS with a pH of 7.5 and a concentration of 100mM to obtain a mixed solution, the volume of the PBS is 1/7 of the volume of the recombinant bacterium 1 fermentation liquid obtained in the step (4), 1m L of the mixed solution is proportionally added with P L P with a final concentration of 1.5mM and NAD with a final concentration of 1mM+Reacting for 20-40 minutes at 25-40 ℃ and 180-220 rpm; then adding 10U of FA crude enzyme solution, 10U of ldh crude enzyme solution, 10U of formate dehydrogenase, D-alanine with the final concentration of 250mM, substrate ketone with the final concentration of 25mM and CoA with the final concentration of 0.1mM to obtain a reaction solution, adding DMSO with the volume of 15-60% of the reaction solution, reacting for 12-24 hours at the temperature of 25-40 ℃, 180-220rpm, adding NADH with the final concentration of 10M to terminate the reaction, extracting with ethyl acetate twice, adding Na into the organic phase after extraction2SO4Drying, and detecting by gas chromatography.
4. The method according to claim 1 or 3, wherein the ketone is 2-pentanone, cyclohexanone or benzyl acetone.
CN202010209530.2A 2020-03-23 2020-03-23 Method for improving conversion rate of chiral amine Expired - Fee Related CN111454971B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010209530.2A CN111454971B (en) 2020-03-23 2020-03-23 Method for improving conversion rate of chiral amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010209530.2A CN111454971B (en) 2020-03-23 2020-03-23 Method for improving conversion rate of chiral amine

Publications (2)

Publication Number Publication Date
CN111454971A true CN111454971A (en) 2020-07-28
CN111454971B CN111454971B (en) 2022-11-11

Family

ID=71675808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010209530.2A Expired - Fee Related CN111454971B (en) 2020-03-23 2020-03-23 Method for improving conversion rate of chiral amine

Country Status (1)

Country Link
CN (1) CN111454971B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875005A (en) * 2021-02-05 2022-08-09 上海交通大学 Construction and application of enantioselectively inverted omega-transaminase mutant
CN114875084A (en) * 2021-02-05 2022-08-09 上海交通大学 Method for synthesizing (1R,2R) -AMPP by using enzyme cascade reaction
WO2022166838A1 (en) * 2021-02-05 2022-08-11 浙江普洛康裕制药有限公司 CONSTRUCTION AND APPLICATIONS OF ENATIOSELECTIVE FLIPPED ω-TRANSAMINASE MUTANT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090288A1 (en) * 2016-11-16 2018-05-24 江南大学 SINGLE CELL FACTORY EFFICIENTLY SYNTHESIZING α-AMINOBUTYRIC ACID, AND CONSTRUCTION AND USE THEREOF
CN110669132A (en) * 2019-08-19 2020-01-10 天津大学前沿技术研究院 Method for improving IgG1 antibody yield

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090288A1 (en) * 2016-11-16 2018-05-24 江南大学 SINGLE CELL FACTORY EFFICIENTLY SYNTHESIZING α-AMINOBUTYRIC ACID, AND CONSTRUCTION AND USE THEREOF
CN110669132A (en) * 2019-08-19 2020-01-10 天津大学前沿技术研究院 Method for improving IgG1 antibody yield

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINHUA ZHANG ET AL: "Multi-enzyme pyruvate removal system to enhance (R)-selective reductive amination of ketones", 《THE ROYAL SOCIETY OF CHEMISTRY》 *
常胜军等: "大麦黄矮病毒GAV株系通读蛋白基因的序列分析及其在大肠杆菌中的表达", 《中国农业科学》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875005A (en) * 2021-02-05 2022-08-09 上海交通大学 Construction and application of enantioselectively inverted omega-transaminase mutant
CN114875084A (en) * 2021-02-05 2022-08-09 上海交通大学 Method for synthesizing (1R,2R) -AMPP by using enzyme cascade reaction
WO2022166838A1 (en) * 2021-02-05 2022-08-11 浙江普洛康裕制药有限公司 CONSTRUCTION AND APPLICATIONS OF ENATIOSELECTIVE FLIPPED ω-TRANSAMINASE MUTANT
CN114875084B (en) * 2021-02-05 2023-10-20 上海交通大学 Method for synthesizing (1R, 2R) -AMPP by utilizing enzyme cascade reaction
CN114875005B (en) * 2021-02-05 2023-11-24 上海交通大学 Construction and application of enantioselectively inverted omega-aminotransferase mutant

Also Published As

Publication number Publication date
CN111454971B (en) 2022-11-11

Similar Documents

Publication Publication Date Title
CN111454971B (en) Method for improving conversion rate of chiral amine
CN110669132B (en) Method for improving IgG1 antibody yield
CN103827309A (en) Oxidation and amination of secondary alcohols
CN106867952B (en) One plant of Recombinant organism and the method for producing L-threonine using it
CN111235080B (en) Gene recombination escherichia coli and production method of 5-hydroxytryptamine
CN103797124A (en) Oxidation and amination of primary alcohols
CN111154707B (en) Method for producing genetically engineered escherichia coli and melatonin
DK2753690T3 (en) MUTANTS OF GLUCOSE OXIDASE FROM PENICILLIUM AMAGAS ACTION
CN113388558A (en) Recombinant bacterium for high-yield IgG1 and construction method
CN109161536A (en) Prepare uridylic acid enzyme preparation and method that enzymatic prepares uridylic acid
CN113621638A (en) Method for constructing Escherichia coli producing L-serine
Pérez-Sánchez et al. Lipase Catalyzed In Situ Production of Acetaldehyde: A Controllable and Mild Strategy for Multi-Step Reactions.
CN101027403B (en) Method for producing primary alcohols
CN113388631B (en) Recombinant bacterium for high-yield IgG1 and construction method
KR102073308B1 (en) Method for Converting Non-Ethanol Producing Acetogen to Ethanol Producing Acetogen and Method for Preparing Ethanol Using Carbon Monoxide from the Ethanol Producing Acetogen
CN111848758B (en) Cellulosome docking protein mutant suitable for low calcium ion concentration and application
CN112481280A (en) Method for preparing rare ginsenoside CK by gene combination transformation and application
CN114875004B (en) High-stereoselectivity R-transketolase mutant and encoding gene and application thereof
CN114015723B (en) Duck tembusu virus plasmid vector, attenuated strain, preparation method and application thereof
CN115386528A (en) Engineering bacterium for producing indigo pigment
CN111909914B (en) High PAM compatibility truncated variant txCas9 of endonuclease SpCas9 and application thereof
FR2602519A1 (en) PROCESS AND PLANT FOR CONTINUOUS PRODUCTION OF FRUCTOSE-1,6-DIPHOSPHATE USING IMMOBILIZED YEAST
CN101098967B (en) Preparation of optically active alcohols with whole-cell catalysts
CN111254104B (en) Preparation method of genetically engineered escherichia coli and indole-3-acetic acid
CN110272881A (en) Endonuclease SpCas9 high specific truncates variant TSpCas9-V1/V2 and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221111

CF01 Termination of patent right due to non-payment of annual fee