CN111450882B - 一种光化学诱导合成聚噻吩微球光催化剂及其制备方法 - Google Patents

一种光化学诱导合成聚噻吩微球光催化剂及其制备方法 Download PDF

Info

Publication number
CN111450882B
CN111450882B CN202010301609.8A CN202010301609A CN111450882B CN 111450882 B CN111450882 B CN 111450882B CN 202010301609 A CN202010301609 A CN 202010301609A CN 111450882 B CN111450882 B CN 111450882B
Authority
CN
China
Prior art keywords
polythiophene
precursor solution
hydrochloric acid
synthesized
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010301609.8A
Other languages
English (en)
Other versions
CN111450882A (zh
Inventor
孙丰强
钟文钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202010301609.8A priority Critical patent/CN111450882B/zh
Publication of CN111450882A publication Critical patent/CN111450882A/zh
Application granted granted Critical
Publication of CN111450882B publication Critical patent/CN111450882B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种光化学诱导合成聚噻吩微球光催化剂的制备方法,用于解决现有合成聚合物方法中存在的条件复杂、反应不易控制等问题,并且其优良的光催化性使得聚合物在光催化方面的应用得到拓展。所述方法为室温下用功率为16W的紫外灯辐照含有噻吩单体的前驱液,反应24小时后,生成微球状聚噻吩催化剂;所述前驱液由有机溶剂和稀盐酸组成。本发明还提供了由上述方法制备而得的聚噻吩微球光催化剂。

Description

一种光化学诱导合成聚噻吩微球光催化剂及其制备方法
技术领域
本发明涉及光催化技术领域,尤其是一种光化学诱导合成聚噻吩微球光催化剂及其制备方法。
背景技术
光化学合成具有条件温和、成本低、容易控制和环境友好等特点,广泛应用于各种的材料制备。聚噻吩作为一种窄带隙导电聚合物,具有较宽的光响应范围,是一种极具潜力的光催化剂。目前合成聚噻吩的方法主要有氧化聚合法、电化学聚合法和金属催化偶联法。氧化聚合法可以合成结构较为规整的聚噻吩,但反应条件不易控制,产物易受氧化剂、反应时间、酸种类及各种因素的影响。电化学法和金属偶联法可合成导电性良好的聚噻吩,但都涉及到贵金属或复杂有机金属试剂的使用。光致合成聚噻吩在近几年得到发展,但都需要使用复杂的光引发剂。这些都在一定程度上限制了聚噻吩的应用。本发明采用温和的光化学法,在室温下用低功率紫外灯直接诱导噻吩单体聚合形成聚噻吩可有效克服前述种种问题,并且合成的聚噻吩为微球状,在水溶液中有良好的分散性,对可见光有良好的响应,在蓝光下对罗丹明B有快速的降解作用。
发明内容
本发明的目的之一在于提供一种光化学诱导合成聚噻吩微球光催化剂的方法,用于解决现有合成聚合物方法中存在的条件复杂、反应不易控制等问题,并且其优良的光催化性使得聚合物在光催化方面的应用得到拓展。
为实现上述目的,本发明提供的技术方案是这样的:一种光化学诱导合成聚噻吩微球光催化剂的方法,室温下用功率为16W的紫外灯辐照含有噻吩单体的前驱液,反应24小时后,生成微球状聚噻吩催化剂;所述前驱液由有机溶剂和稀盐酸组成。
所述紫外灯波长为254nm。
反应过程中需持续搅拌,转速为10r/min。
所述反应过程中光源距反应液面5cm,液面处的辐照强度为1.32mw/cm2
所述有机溶剂和稀盐酸的体积比为2:1。
所选用的有机溶剂选自异丙醇、乙腈、氯仿中的一种或几种。
所述的前驱液中噻吩单体的浓度为0.07g/ml,盐酸浓度为7%。
反应结束后用去离子水和乙醇分别洗涤三次,于室温晾干。
本发明的目的之二在于提供一种由上述方法制备而得的聚合物微球光催化剂。
本发明与现有技术相比,具有以下优点:
1)相较于现有技术,本发明提供一种采用光化学法制备聚合物微球光催化剂的方法及产品,通过低功率紫外灯直接诱导单体聚合的方法直接合成了聚噻吩,改善了目前合成聚合物过程中步骤复杂、反应条件剧烈、反应不易控制等方面的缺陷,从而简化了聚合物的合成流程,有助于获得高效、稳定的光催化剂。本发明提供的制备方法具有过程简单、易于操作、反应可控和易于重复生产等特点,且光诱导形成的聚噻吩具有良好的光降解活性以及稳定性。
2)相较于现有技术,本发明提供一种无模板合成聚合物微球的方法,在不添加任何表变活性剂的条件下合成聚噻吩微球,为聚合物微球的简便合成提供了思路。
3)本发明能够直接在低功率紫外灯下通过光化学诱导的方法得到水溶性良好聚噻吩微球光催化剂,有效克服聚合物在水中分散性差所导致的光活性低及重复性差等缺点,合成的聚噻吩微球在水溶液中有良好的分散性,且重复使用四次后仍保持较高的光催化活性。
附图说明
图1为实施例1所制备的由光化学诱导合成的聚噻吩微球的X射线衍射图谱;
图2为实施例1所制备的由光化学诱导合成的聚噻吩微球的扫描电镜图;
图3为实施例1~3所制备的由光化学诱导合成的聚噻吩在蓝光下对罗丹明B的降解速率图。
具体实施方式
下面对本发明的具体实施做详细说明,但不构成对本发明的任何限制。
实施例1
1)将5ml噻吩加入到50ml异丙醇中,超声分散20min,加入配置好的浓度为7%的稀盐酸,超声至形成均一稳定的前驱液;
2)将前驱液转移至125ml的表面皿中,加入磁力搅拌转子,在表面皿上方覆盖保鲜膜后转移至紫外灯下(16W,254nm),调整反应液面距光源高度为5cm,在连续磁力搅拌下辐照24小时;
3)将得到的固体先后用去离子水和乙醇各洗涤3次,置于室温下晾干,得到橙色聚噻吩颗粒。
实施例2
1)将5ml噻吩加入到50ml乙腈中,超声分散20min,加入配置好的浓度为7%的稀盐酸,超声至形成均一稳定的前驱液;
2)将前驱液转移至125ml的表面皿中,加入磁力搅拌转子,在表面皿上方覆盖保鲜膜后转移至紫外灯下(16W,254nm),调整反应液面距光源高度为5cm,在连续磁力搅拌下辐照24小时;
3)将得到的固体先后用去离子水和乙醇各洗涤3次,置于室温下晾干,得到棕黄色聚噻吩颗粒。
实施例3
1)将5ml噻吩加入到50ml氯仿中,超声分散20min,加入配置好的浓度为7%的稀盐酸,超声至形成均一稳定的前驱液;
2)将前驱液转移至125ml的表面皿中,加入磁力搅拌转子,在表面皿上方覆盖保鲜膜后转移至紫外灯下(16W,254nm),调整反应液面距光源高度为5cm,在连续磁力搅拌下辐照24小时;
3)将得到的固体先后用去离子水和乙醇各洗涤3次,置于室温下晾干,得到棕色聚噻吩颗粒。
下面对上述实施例制备的聚噻吩微球光催化剂作进一步的效果检测。
一、X射线衍射检测
将实施例1所制备的由光化学诱导合成的聚噻吩进行X射线衍射,结果如图1所示。由图可知,所得产品在2θ=24°处有衍射峰,与标准PDF卡对比显示其为聚噻吩的特征峰,因此确定噻吩单体成功聚合为聚噻吩,且衍射图谱中无其他峰出现,表明合成的产物纯度较高。
二、扫描电镜检测
将实施例1所制备的由光化学诱导合成的聚噻吩微球进行扫描电镜的表征,表征结果如图2所示。由图可知,当所采用的有机溶剂为异丙醇时,光化学诱导合成的聚噻吩呈球形,表面光滑,粒子尺寸分布在0.1-1μm之间。
三、光催化性能检测和重复性检测
将实施例1~3所制备的聚噻吩微球光催化剂3mg加入到50ml罗丹明B溶液中,超声20min使催化剂分散均匀,之后转移至暗箱中持续搅拌30min,达到催化剂与染料之间的降解-解吸平衡。暗反应结束后取5ml溶液于离心管内离心,取其上清液在λ=553处测记为C0,之后将溶液置于50W蓝灯下,每隔20min取出5ml溶液进行离心,取上清液测定吸光度计为C(t=1,2,…,t),由式(1)计算在每t时刻聚噻吩催化罗丹明B光降解速率的速率并绘制曲线,结果如图2所示。
Figure GDA0002524189830000041
由图3可知在蓝灯光源下,实施例1~3合成的聚噻吩均可使罗丹明B在120分钟内降解完全,说明光化学诱导合成的聚噻吩在蓝灯下对罗丹明B有良好的光降解性能。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (1)

1.一种光化学诱导合成聚噻吩微球光催化剂的制备方法,其特征在于,室温下用功率为16W、波长为254nm的紫外灯辐照含有噻吩单体的前驱液,所述的前驱液中噻吩单体的浓度为0.07g/ml,反应过程中光源距反应液面5cm,液面处的辐照强度为1.32mW/cm2,反应过程中持续搅拌,转速为10r/min,反应24小时后,生成微球状聚噻吩光催化剂;所述前驱液由噻吩单体、有机溶剂和稀盐酸组成,所述有机溶剂和稀盐酸的体积比为2:1,所述有机溶剂为异丙醇,稀盐酸浓度为7%。
CN202010301609.8A 2020-04-16 2020-04-16 一种光化学诱导合成聚噻吩微球光催化剂及其制备方法 Expired - Fee Related CN111450882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010301609.8A CN111450882B (zh) 2020-04-16 2020-04-16 一种光化学诱导合成聚噻吩微球光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010301609.8A CN111450882B (zh) 2020-04-16 2020-04-16 一种光化学诱导合成聚噻吩微球光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN111450882A CN111450882A (zh) 2020-07-28
CN111450882B true CN111450882B (zh) 2022-10-14

Family

ID=71672716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010301609.8A Expired - Fee Related CN111450882B (zh) 2020-04-16 2020-04-16 一种光化学诱导合成聚噻吩微球光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111450882B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515629A (zh) * 2003-01-10 2004-07-28 中国科学院成都有机化学研究所 具有导电性和磁性的纳米高分子微球及制备方法
CN1834155A (zh) * 2006-03-01 2006-09-20 武汉化工学院 一种制备孔内含纳米光催化剂三维有序多孔聚合物的方法
CN106540748A (zh) * 2016-11-25 2017-03-29 陕西品达石化有限公司 聚噻吩‑二氧化锡复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632472B2 (en) * 2000-06-26 2003-10-14 Agfa-Gevaert Redispersable latex comprising a polythiophene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1515629A (zh) * 2003-01-10 2004-07-28 中国科学院成都有机化学研究所 具有导电性和磁性的纳米高分子微球及制备方法
CN1834155A (zh) * 2006-03-01 2006-09-20 武汉化工学院 一种制备孔内含纳米光催化剂三维有序多孔聚合物的方法
CN106540748A (zh) * 2016-11-25 2017-03-29 陕西品达石化有限公司 聚噻吩‑二氧化锡复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Morphology effect of polythiophene catalysts on photo-degradation of methylene blue;Yue Yu,et al.;《RSC Adv.》;20160801;第6卷;第74968-74972页,论文补充材料第1-7页 *
Photo-Initiated Dispersion Polymerization of Copolymer Microspheres in a Closed System: Poly(MMA-co-MAA);Huang, ZX,et al.;《MACROMOLECULAR CHEMISTRY AND PHYSICS》;20100901;第1868-1878页 *
室温低功率紫外光辐照法制备聚苯乙烯微球;庄泽锋等;《华南师范大学学报(自然科学版)》;20170430;第61-67页 *

Also Published As

Publication number Publication date
CN111450882A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
Reddy et al. Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts
Khataee et al. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17
Zhou et al. Facile preparation and enhanced photocatalytic H2-production activity of Cu (OH) 2 nanospheres modified porous g-C3N4
CN101717122B (zh) 一种微波法制备四氧化三铁纳米片的方法
CN108855131B (zh) 一种银-镍双金属掺杂二氧化钛纳米复合材料的制备和应用
Nagaraju et al. Ionic liquid-assisted hydrothermal synthesis of TiO 2 nanoparticles and its application in photocatalysis
Meng et al. Sonocatalytic degradation of Rhodamine B in the presence of C60 and CdS coupled TiO2 particles
CN107790159B (zh) 一种高选择性催化氧化醇成醛的光催化剂及其制备与应用
CN113683771B (zh) 人造真菌黑色素材料的制备及紫外防护应用
Tan et al. Anatase TiO2 mesocrystals: green synthesis, in situ conversion to porous single crystals, and self‐doping Ti3+ for enhanced visible light driven photocatalytic removal of NO
Xu et al. Improving the photocatalytic performance of conducting polymer polythiophene sensitized TiO 2 nanoparticles under sunlight irradiation
Liu et al. Enhanced photocatalytic performance of carbon-coated TiO2–x with surface-active carbon species
Wu et al. Crafting carbon sphere-titania core–shell interfacial structure to achieve enhanced visible light photocatalysis
Rao et al. In situ fabricated Ag/AgCl—Polymer nanocomposite thin film: An appraisal of the efficient and reusable photocatalyst
Zheng et al. Hollow titania spheres loaded with noble metal nanoparticles for photocatalytic water oxidation
Ahmad et al. Supported nanocatalysts: recent developments in microwave synthesis for application in heterogeneous catalysis
Yang et al. Fabrication of carbon nanotube-loaded TiO 2@ AgI and its excellent performance in visible-light photocatalysis
CN103657628B (zh) 一种SnO2-TiO2复合纳米光催化剂的制备方法
CN111450882B (zh) 一种光化学诱导合成聚噻吩微球光催化剂及其制备方法
Shashikala et al. Core–shell synergistic effect of (PANI-NaBiO 2) incorporated polycarbonate films to photodegradation of MG dye and photovoltaic activity
CN103626226B (zh) 一种无模板制备中空纳米二氧化钛的方法
CN108745336A (zh) 二氧化钛纳米片/还原石墨烯复合光催化剂及其制备方法
CN102145920A (zh) 一种两步法制备油溶性锐钛矿型二氧化钛纳米颗粒的方法
CN106670499A (zh) 一种以抗坏血酸和***胶作为还原剂和保护剂的纳米铜的绿色化制备方法
Qin et al. Acid-Assisted One-Step In-Situ Polymerization Synthesis of PANI/α-Fe2O3/β-FeOOH Composites and Its Formation Mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221014