CN111426281A - Flexible three-dimensional automatic measurement system and method for large-size flange sealing surface - Google Patents

Flexible three-dimensional automatic measurement system and method for large-size flange sealing surface Download PDF

Info

Publication number
CN111426281A
CN111426281A CN201811573159.7A CN201811573159A CN111426281A CN 111426281 A CN111426281 A CN 111426281A CN 201811573159 A CN201811573159 A CN 201811573159A CN 111426281 A CN111426281 A CN 111426281A
Authority
CN
China
Prior art keywords
sealing surface
robot
data
size
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811573159.7A
Other languages
Chinese (zh)
Inventor
郝庆军
李莉
钱艳平
帅三娥
张高剑
崔建新
龚雪琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Nuclear Power Operation
China Nuclear Power Operation Technology Corp Ltd
Original Assignee
Research Institute of Nuclear Power Operation
China Nuclear Power Operation Technology Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Nuclear Power Operation, China Nuclear Power Operation Technology Corp Ltd filed Critical Research Institute of Nuclear Power Operation
Priority to CN201811573159.7A priority Critical patent/CN111426281A/en
Publication of CN111426281A publication Critical patent/CN111426281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Manipulator (AREA)

Abstract

The invention relates to the technical field of nondestructive testing of sealing surfaces, and particularly discloses a flexible three-dimensional automatic measuring system and method for a large-size flange sealing surface. The system comprises a data acquisition system, a robot motion platform, a control and analysis terminal and a mounting bracket, wherein the robot motion platform is arranged above a large-size flange sealing surface to be detected through the mounting bracket, the robot platform is provided with the data acquisition system, and the acquired sealing surface data is analyzed and processed through the control and analysis terminal which is low in price compared with the data acquisition system. The system and the method can realize real-time communication and automatic data acquisition of the robot and the scanner, carry out simplification, denoising and point cloud-three-dimensional model matching on the measured data, generate an error chromatogram, calculate the size error and the form and position error of the sealing surface, and verify the feasibility and the effectiveness of the system and the method by carrying out test testing on a processed 100D type main pump flange sealing surface 1/5 simulation sample.

Description

Flexible three-dimensional automatic measurement system and method for large-size flange sealing surface
Technical Field
The invention belongs to the technical field of nondestructive testing of sealing surfaces, and particularly relates to a flexible three-dimensional automatic measuring system and method for a large-size flange sealing surface.
Background
The flange sealing surface is used as a pressure bearing boundary of main equipment of a pressure vessel of a nuclear power plant, and form and position, size errors and surface defects of the sealing surface need to be periodically overhauled. The main failure modes of the sealing surface of the flange comprise micro-deformation in shape and size caused by thermal stress and mechanical stress impact, and defects such as peeling, pits, scratches and the like caused by hydraulic corrosion or mechanical damage in the assembling and disassembling process.
The traditional detection mode adopts special diameter microcallipers, plug gauges and the like to measure shape/size errors, adopts naked eyes to identify surface defects, and is low in detection efficiency, large in random factor influence, poor in reliability and not beneficial to guarantee of sealing performance. Meanwhile, only data measurement such as diameter, depth and the like can be formed, and a sealing surface measurement historical information base which is visual and has clear contrast cannot be established.
Disclosure of Invention
The invention aims to provide a flexible three-dimensional automatic measurement system and method for a large-size flange sealing surface, which can detect the form and position size error of a main pump flange sealing surface characteristic structure and identify surface defects with a certain size, and achieve the aim of ensuring the safe and reliable operation of a nuclear power station.
The technical scheme of the invention is as follows: the flexible three-dimensional automatic measuring system comprises a data acquisition system, a robot motion platform, a control and analysis terminal and a mounting bracket, wherein the robot motion platform is arranged above a large-size flange sealing surface to be detected through the mounting bracket, the data acquisition system is carried on the robot platform, and the acquired sealing surface data is analyzed and processed through the control and analysis terminal which is low in price compared with the data acquisition system.
The data acquisition system comprises a grating type area array scanner (1), a precise calibration plate, a standard single/double ball and a mark point, wherein the precise calibration plate and the standard single/double ball are used for evaluating and calibrating the grating type area array scanner; the mark points are arranged on the sealing surface to be measured and used for splicing single-chip data.
The robot motion platform comprises a six-axis robot and a robot controller, wherein the six-axis robot can perform multi-degree-of-freedom flexible motion to acquire detection data at multiple angles and multiple positions; the robot controller is connected with the six-axis robot, controls the grating type area array scanner on the six-axis robot to move to the corresponding position of the flange part of the main pump, collects data and is connected with the control and analysis terminal through the switch connected with the grating type area array scanner.
The robot controller is connected with the control and analysis terminal through the switch, and the control and analysis terminal can be used for remotely controlling the control of the robot motion platform.
The control and analysis terminal can analyze and process complete point cloud data acquired by the grating type area array scanner, and form shape error distribution, key size and surface defect identification of a main pump flange part sealing surface characteristic structure through merging, simplification, registration and characteristic data extraction of the point cloud; the control and analysis terminal analyzes and processes the point cloud data, and comprises data merging, point cloud simplification, point cloud three-dimensional model matching, 3D comparison, error chromatographic analysis, section contour analysis, 2D size and deviation calculation, roundness and planeness calculation and defect identification.
A flexible three-dimensional automatic measurement method for a large-size flange sealing surface specifically comprises the following steps:
step 1, building a flexible three-dimensional automatic measuring system for a large-size flange sealing surface;
step 2, scanning and planning a sealing surface;
step 3, automatically scanning and measuring a flange sealing surface to be detected, and processing point cloud data of the measurement;
3.1, driving a grating type area array scanner by a robot to scan and measure the sealing surface of the flange to be measured according to a set motion path;
step 3.2, processing the measured point cloud data;
step 4, carrying out error analysis on the measured data;
step 4.1, forming an error chromatogram by using the measurement data, and obtaining the error distribution rule and the defect distribution condition of the sealing groove;
and 4.2, forming a reference section, and generating a corresponding measurement size and form and position errors according to the sectional view of the measurement point cloud.
The specific steps of processing the measured point cloud data in the step 3.2 are as follows:
step 3.2.1, simplifying the point cloud of the sealing groove;
step 3.2.2, merging the single-acquisition point cloud data automatically measured by the sensor on the basis of complete measurement data;
and 3.3, matching the model with the set model for times, and removing noise point clouds in the matching process.
The step 1 specifically comprises:
step 1.1, a robot operation platform is built above a large-size flange sealing surface to be measured, and a grating type area array scanner is arranged at the tail end of the robot;
step 1.2, calibrating the grating type area array scanner;
step 1.3, setting mark points on a sealing surface of a large-size flange to be measured;
placing attaching devices with attached mark points on the inner side and the outer side of an annular region to be detected of a flange seal groove of a pump shell of a main pump, wherein the attaching distribution and placing positions of the mark points ensure that at least 3 same mark points can be acquired under adjacent scanning angles of a grating type area array scanner; under the condition that the condition allows, the denser the identification points are, the higher the multi-view measurement point cloud splicing precision is;
step 1.4, carrying out developer spraying treatment on the flange sealing surface;
the nuclear environment developer is used for carrying out automatic or manual spraying treatment on the sealing surface of the flange, so that the developer spraying thickness is uniform.
The step 2 specifically comprises:
step 2.1, planning a motion path of the robot carrying the grating type area array scanning;
according to the reference path of the robot movement, and the real field environment and the test environment, scanning path adjustment is carried out;
and 2.2, adjusting parameters of the grating type area array scanner according to the field illumination and the actual trial shooting effect to enable data acquisition to reach the optimal state.
The step 4 specifically comprises:
step 4.1, forming an error chromatogram by using the measurement data, and obtaining the error distribution rule and the defect distribution condition of the sealing groove;
setting a maximum critical value, a maximum nominal value, a minimum critical value, a minimum nominal value and the number of color segments, automatically generating an error chromatogram, and obtaining an error distribution rule and a defect distribution condition of the sealing groove;
step 4.2, forming a reference section, and generating a corresponding measurement size and form and position errors according to a section diagram of the measurement point cloud;
generating a corresponding reference section according to the actual measurement requirement, intercepting and comparing section profile measurement point clouds of the concerned position through the reference section, and projecting the section profile measurement point clouds on the reference section; and on the reference section, generating a corresponding measurement size and form and position errors according to the sectional view of the measurement point cloud.
The invention has the following remarkable effects: the flexible three-dimensional automatic measurement system and method for the large-size flange sealing surface can detect the 100D type main pump flange sealing surface, utilize a scanning path planning and motion control method of a detection system to realize real-time communication and automatic data acquisition of a robot and a scanner, perform simplification, denoising and point cloud-three-dimensional model matching on measured data, generate an error chromatogram, calculate the size error and the form and position error of the sealing surface, and verify the feasibility and the effectiveness of the system and method by performing test testing on a processed 1/5 simulation sample piece of the 100D type main pump flange sealing surface.
Drawings
FIG. 1 is a schematic structural diagram of a flexible three-dimensional automatic measurement system for a large-size flange sealing surface according to the present invention;
in the figure: 1. an area array scanner; 2. a six-axis robot; 3. a robot controller; 4. a switch; 5. a control and analysis terminal; 6. mounting a bracket; 7. main pump flange part.
Detailed Description
The invention is described in further detail below with reference to the figures and the embodiments.
As shown in fig. 1, a flexible three-dimensional automatic measurement system for a large-size flange sealing surface comprises a data acquisition system, a robot motion platform, a control and analysis terminal and a mounting bracket, wherein the robot motion platform is supported and mounted above a main pump flange part 7 to be detected through the mounting bracket, the robot motion platform is provided with the data acquisition system, and the acquired sealing surface data of the main pump flange part 7 is analyzed and processed through the control and analysis terminal connected with the data acquisition system; the data acquisition system comprises a grating type area array scanner 1, a precision calibration plate, a standard single/double ball and a mark point, wherein the area array scanner 1 is arranged on a six-axis robot 2 in a robot motion platform, and multi-degree-of-freedom flexible motion can be realized through the six-axis robot 2, so that detection data can be obtained at multiple angles and multiple positions; the precise calibration plate and the standard single/double balls are used for evaluating and calibrating the grating type area array scanner; the mark points can be used for splicing each single piece of data and forming a three-dimensional model for final measurement; the robot motion platform also comprises a robot controller 3, the robot controller 3 is connected with a six-axis robot 2, and controls a grating type area array scanner 1 on the six-axis robot 2 to move to a corresponding position of a main pump flange part 7 and carry out data acquisition, and is connected with a control and analysis terminal 5 through a switch 4 connected with the grating type area array scanner 1, meanwhile, the robot controller 3 is connected with the switch 4, and the motion control of the robot motion platform is realized by using the control and analysis terminal 5, wherein the control and analysis terminal 5 can carry out analysis processing on complete point cloud data acquired by the grating type area array scanner 1 from the main pump flange part 7, and the shape error distribution of a sealing surface characteristic structure of the main pump flange part 7 is formed through data analysis and processing such as point cloud merging, simplification, registration, characteristic data extraction and the like, Critical dimension and surface defect identification; the analysis processing of the point cloud data by the control and analysis terminal 5 comprises data merging, point cloud simplification, point cloud three-dimensional model matching, 3D comparison, error chromatographic analysis, section contour analysis, 2D size and deviation calculation, roundness and flatness calculation and defect identification.
A flexible three-dimensional automatic measurement method for a large-size flange sealing surface specifically comprises the following steps:
step 1, building a flexible three-dimensional automatic measuring system for a large-size flange sealing surface;
step 1.1, a robot operation platform is built above a large-size flange sealing surface to be measured, and a grating type area array scanner is arranged at the tail end of the robot;
step 1.2, calibrating the grating type area array scanner;
step 1.3, setting mark points on a sealing surface of a large-size flange to be measured;
placing attaching devices with attached mark points on the inner side and the outer side of an annular region to be detected of a flange seal groove of a pump shell of a main pump, wherein the attaching distribution and placing positions of the mark points ensure that at least 3 same mark points can be acquired under adjacent scanning angles of a grating type area array scanner; under the condition that the condition allows, the denser the identification points are, the higher the multi-view measurement point cloud splicing precision is;
step 1.4, carrying out developer spraying treatment on the flange sealing surface;
the nuclear environment developer is used for carrying out automatic or manual spraying treatment on the sealing surface of the flange, so that the developer spraying thickness is uniform;
step 2, scanning and planning a sealing surface;
step 2.1, planning a motion path of the robot carrying the grating type area array scanning;
according to the reference path of the robot movement, and the real field environment and the test environment, scanning path adjustment is carried out;
2.2, adjusting parameters of the grating type area array scanner according to the field illumination and the actual trial shooting effect to enable data acquisition to reach an optimal state;
step 3, automatically scanning and measuring a flange sealing surface to be detected, and processing point cloud data of the measurement;
3.1, driving a grating type area array scanner by a robot to scan and measure the sealing surface of the flange to be measured according to a set motion path;
step 3.2, processing the measured point cloud data;
step 3.2.1, simplifying the point cloud of the sealing groove;
step 3.2.2, merging the single-acquisition point cloud data automatically measured by the sensor on the basis of complete measurement data;
3.3.3, matching the set model for times, and removing noise point clouds in the matching process;
step 4, carrying out error analysis on the measured data;
step 4.1, forming an error chromatogram by using the measurement data, and obtaining the error distribution rule and the defect distribution condition of the sealing groove;
setting a maximum critical value, a maximum nominal value, a minimum critical value, a minimum nominal value and the number of color segments, automatically generating an error chromatogram, and obtaining an error distribution rule and a defect distribution condition of the sealing groove;
step 4.2, forming a reference section, and generating a corresponding measurement size and form and position errors according to a section diagram of the measurement point cloud;
generating a corresponding reference section according to the actual measurement requirement, intercepting and comparing section profile measurement point clouds of the concerned position through the reference section, and projecting the section profile measurement point clouds on the reference section; and on the reference section, generating a corresponding measurement size and form and position errors according to the sectional view of the measurement point cloud.

Claims (10)

1. A flexible three-dimensional automatic measurement system for a large-size flange sealing surface is characterized in that: the system comprises a data acquisition system, a robot motion platform, a control and analysis terminal (5) and a mounting bracket (6), wherein the robot motion platform is arranged above a large-size flange sealing surface to be detected through the mounting bracket (6), the data acquisition system is carried on the robot platform, and the acquired sealing surface data is analyzed and processed through the control and analysis terminal (5) which is low in price compared with the data acquisition system.
2. The flexible three-dimensional automatic measuring system for the sealing surface of the large-size flange according to claim 1, wherein: the data acquisition system comprises a grating type area array scanner (1), a precise calibration plate, a standard single/double ball and a mark point, wherein the precise calibration plate and the standard single/double ball are used for evaluating and calibrating the grating type area array scanner; the mark points are arranged on the sealing surface to be measured and used for splicing single-chip data.
3. The flexible three-dimensional automatic measuring system for the sealing surface of the large-size flange according to claim 1, wherein: the robot motion platform comprises a six-axis robot (2) and a robot controller (3), wherein the six-axis robot (2) can perform multi-degree-of-freedom flexible motion to acquire detection data at multiple angles and multiple positions; the robot controller (3) is connected with the six-axis robot (2), controls the grating type area array scanner (1) on the six-axis robot (2) to move to the corresponding position of the main pump flange part (7), acquires data, and is connected with the control and analysis terminal (5) through the switch (4) connected with the grating type area array scanner (1).
4. The flexible three-dimensional automatic measuring system for the sealing surface of the large-size flange as claimed in claim 3, wherein: the robot controller (3) is connected with the control and analysis terminal (5) through the switch (4), and the control and analysis terminal (5) can be used for remotely controlling the control of the robot motion platform.
5. The flexible three-dimensional automatic measuring system for the sealing surface of the large-size flange as claimed in any one of claims 1 to 4, wherein: the control and analysis terminal (5) can analyze and process complete point cloud data acquired by the grating type area array scanner (1), and form shape error distribution, key size and surface defect identification of a sealing surface characteristic structure of the main pump flange part (7) by merging, simplifying, registering and extracting characteristic data of the point cloud; the analysis processing of the point cloud data by the control and analysis terminal (5) comprises data merging, point cloud simplification, point cloud three-dimensional model matching, 3D comparison, error chromatographic analysis, section contour analysis, 2D size and deviation calculation, roundness and flatness calculation and defect identification.
6. A flexible three-dimensional automatic measurement method for a large-size flange sealing surface is characterized by comprising the following steps: the method specifically comprises the following steps:
step 1, building a flexible three-dimensional automatic measuring system for a large-size flange sealing surface;
step 2, scanning and planning a sealing surface;
step 3, automatically scanning and measuring a flange sealing surface to be detected, and processing point cloud data of the measurement;
3.1, driving a grating type area array scanner by a robot to scan and measure the sealing surface of the flange to be measured according to a set motion path;
step 3.2, processing the measured point cloud data;
step 4, carrying out error analysis on the measured data;
step 4.1, forming an error chromatogram by using the measurement data, and obtaining the error distribution rule and the defect distribution condition of the sealing groove;
and 4.2, forming a reference section, and generating a corresponding measurement size and form and position errors according to the sectional view of the measurement point cloud.
7. The method for flexible three-dimensional automatic measurement of the sealing surface of the large-size flange according to claim 6, wherein the method comprises the following steps: the specific steps of processing the measured point cloud data in the step 3.2 are as follows:
step 3.2.1, simplifying the point cloud of the sealing groove;
step 3.2.2, merging the single-acquisition point cloud data automatically measured by the sensor on the basis of complete measurement data;
and 3.3, matching the model with the set model for times, and removing noise point clouds in the matching process.
8. The method for flexible three-dimensional automatic measurement of the sealing surface of the large-size flange according to claim 6, wherein the method comprises the following steps: the step 1 specifically comprises:
step 1.1, a robot operation platform is built above a large-size flange sealing surface to be measured, and a grating type area array scanner is arranged at the tail end of the robot;
step 1.2, calibrating the grating type area array scanner;
step 1.3, setting mark points on a sealing surface of a large-size flange to be measured;
placing attaching devices with attached mark points on the inner side and the outer side of an annular region to be detected of a flange seal groove of a pump shell of a main pump, wherein the attaching distribution and placing positions of the mark points ensure that at least 3 same mark points can be acquired under adjacent scanning angles of a grating type area array scanner; under the condition that the condition allows, the denser the identification points are, the higher the multi-view measurement point cloud splicing precision is;
step 1.4, carrying out developer spraying treatment on the flange sealing surface;
the nuclear environment developer is used for carrying out automatic or manual spraying treatment on the sealing surface of the flange, so that the developer spraying thickness is uniform.
9. The method for flexible three-dimensional automatic measurement of the sealing surface of the large-size flange according to claim 6, wherein the method comprises the following steps: the step 2 specifically comprises:
step 2.1, planning a motion path of the robot carrying the grating type area array scanning;
according to the reference path of the robot movement, and the real field environment and the test environment, scanning path adjustment is carried out;
and 2.2, adjusting parameters of the grating type area array scanner according to the field illumination and the actual trial shooting effect to enable data acquisition to reach the optimal state.
10. The method for flexible three-dimensional automatic measurement of the sealing surface of the large-size flange according to claim 6, wherein the method comprises the following steps: the step 4 specifically comprises:
step 4.1, forming an error chromatogram by using the measurement data, and obtaining the error distribution rule and the defect distribution condition of the sealing groove;
setting a maximum critical value, a maximum nominal value, a minimum critical value, a minimum nominal value and the number of color segments, automatically generating an error chromatogram, and obtaining an error distribution rule and a defect distribution condition of the sealing groove;
step 4.2, forming a reference section, and generating a corresponding measurement size and form and position errors according to a section diagram of the measurement point cloud;
generating a corresponding reference section according to the actual measurement requirement, intercepting and comparing section profile measurement point clouds of the concerned position through the reference section, and projecting the section profile measurement point clouds on the reference section; and on the reference section, generating a corresponding measurement size and form and position errors according to the sectional view of the measurement point cloud.
CN201811573159.7A 2018-12-21 2018-12-21 Flexible three-dimensional automatic measurement system and method for large-size flange sealing surface Pending CN111426281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811573159.7A CN111426281A (en) 2018-12-21 2018-12-21 Flexible three-dimensional automatic measurement system and method for large-size flange sealing surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811573159.7A CN111426281A (en) 2018-12-21 2018-12-21 Flexible three-dimensional automatic measurement system and method for large-size flange sealing surface

Publications (1)

Publication Number Publication Date
CN111426281A true CN111426281A (en) 2020-07-17

Family

ID=71545549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811573159.7A Pending CN111426281A (en) 2018-12-21 2018-12-21 Flexible three-dimensional automatic measurement system and method for large-size flange sealing surface

Country Status (1)

Country Link
CN (1) CN111426281A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033970A (en) * 2022-06-30 2022-09-09 中建三局第一建设安装有限公司 Method for eliminating errors of fully-prefabricated assembled machine room
CN117371254A (en) * 2023-12-04 2024-01-09 季华实验室 Flange face identification method, device, equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987344A (en) * 2006-11-04 2007-06-27 大连海事大学 Flexible three dimension holographic measuring system
US20150015701A1 (en) * 2013-07-10 2015-01-15 Faro Technologies, Inc. Triangulation scanner having motorized elements
CN105403183A (en) * 2015-12-23 2016-03-16 南车眉山车辆有限公司 Work template metering detection method for examining coupler
CN108801142A (en) * 2018-07-27 2018-11-13 复旦大学 A kind of super workpiece double-movement measurement robot system and method
CN108827155A (en) * 2018-07-27 2018-11-16 复旦大学 A kind of robot vision measuring system and method
CN108876777A (en) * 2018-06-14 2018-11-23 重庆科技学院 A kind of visible detection method and system of wind electricity blade end face of flange characteristic size

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987344A (en) * 2006-11-04 2007-06-27 大连海事大学 Flexible three dimension holographic measuring system
US20150015701A1 (en) * 2013-07-10 2015-01-15 Faro Technologies, Inc. Triangulation scanner having motorized elements
CN105403183A (en) * 2015-12-23 2016-03-16 南车眉山车辆有限公司 Work template metering detection method for examining coupler
CN108876777A (en) * 2018-06-14 2018-11-23 重庆科技学院 A kind of visible detection method and system of wind electricity blade end face of flange characteristic size
CN108801142A (en) * 2018-07-27 2018-11-13 复旦大学 A kind of super workpiece double-movement measurement robot system and method
CN108827155A (en) * 2018-07-27 2018-11-16 复旦大学 A kind of robot vision measuring system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郝庆军 等: ""法兰密封面三维光学检测***设计"", 《机械与电子》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033970A (en) * 2022-06-30 2022-09-09 中建三局第一建设安装有限公司 Method for eliminating errors of fully-prefabricated assembled machine room
CN117371254A (en) * 2023-12-04 2024-01-09 季华实验室 Flange face identification method, device, equipment and storage medium
CN117371254B (en) * 2023-12-04 2024-02-27 季华实验室 Flange face identification method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
CN109900712B (en) Wind power blade mechanical fault on-line detection system and method based on camera measurement
US8085296B2 (en) Method and apparatus for measuring an operating position in a remote inspection
CN111426282B (en) Method for identifying sealing surface error evaluation defects of optical measurement point cloud
CN111174721A (en) Hoisting mechanical structure deformation detection method based on three-dimensional laser scanning
CN105865368B (en) A kind of pressure vessel form variations detection method based on 3 D laser scanning
CN110774294A (en) Positioning and laminating system and method for ultrasonic partial discharge probe of GIS detection robot
CN104964886A (en) Welded member fatigue stress and strain real-time non-contact type monitoring method
US11092432B2 (en) Reference plate and method for calibrating and/or checking a deflectometry sensor system
CN111426281A (en) Flexible three-dimensional automatic measurement system and method for large-size flange sealing surface
CN108398091B (en) Accurate visual measurement method for three-dimensional displacement of blade tip
CN105583825A (en) Track detecting device for industrial robot
CN107328368A (en) Gap measurement device and method, the production line using this device between stator and rotor
CN110763136B (en) High-precision three-dimensional workpiece size detection system and method
Yan et al. Multi-line laser structured light fast visual positioning system with assist of TOF and CAD
CN108180871B (en) method for quantitatively evaluating composite insulator surface pulverization roughness
CN113567451A (en) Cable defect detection and diameter measurement method
CN210998738U (en) Probe location laminating system is put in GIS inspection robot supersound office
CN115684269A (en) Surface defect identification system and method for pressure container design
CN108050935B (en) Method for rapidly detecting error modulus of precision front axle forging piece on line
CN110553597A (en) three-dimensional laser scanning detection method for deformation of coke tower barrel
CN202614189U (en) Non-contact laser detecting device
Anisimov et al. AIRTuB: towards automated inspection of leading edge erosion of wind turbine blades by shape analysis
KR20000060369A (en) A automatic tester and method of grid of eggcrate iv vapor
US20220333914A1 (en) Method for Measuring Gap and Flush of Vehicle Parts and Measuring Tunnel
CN108534968B (en) disease remote inspection instrument and inspection method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200717

WD01 Invention patent application deemed withdrawn after publication