CN111410741A - Alignment film material, preparation method of alignment film, display panel and preparation method of display panel - Google Patents

Alignment film material, preparation method of alignment film, display panel and preparation method of display panel Download PDF

Info

Publication number
CN111410741A
CN111410741A CN202010270611.3A CN202010270611A CN111410741A CN 111410741 A CN111410741 A CN 111410741A CN 202010270611 A CN202010270611 A CN 202010270611A CN 111410741 A CN111410741 A CN 111410741A
Authority
CN
China
Prior art keywords
alignment film
liquid crystal
display panel
film material
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010270611.3A
Other languages
Chinese (zh)
Other versions
CN111410741B (en
Inventor
兰松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Huaxing Photoelectric Technology Co Ltd
Original Assignee
TCL Huaxing Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL Huaxing Photoelectric Technology Co Ltd filed Critical TCL Huaxing Photoelectric Technology Co Ltd
Priority to CN202010270611.3A priority Critical patent/CN111410741B/en
Publication of CN111410741A publication Critical patent/CN111410741A/en
Application granted granted Critical
Publication of CN111410741B publication Critical patent/CN111410741B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • C08G73/127Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/125Unsaturated polyimide precursors the unsaturated precursors containing atoms other than carbon, hydrogen, oxygen or nitrogen in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The invention discloses an alignment film material, a preparation method of the alignment film, a display panel and a preparation method of the display panel. The alignment film material comprises a polyimide main body and a branched chain, the display panel comprises two substrates, an alignment film and a liquid crystal layer which are oppositely arranged, the alignment film material is the alignment film material, and the branched chain in the alignment film material extends into liquid crystal molecules of the liquid crystal layer. The invention has the technical effects of reducing the rotation viscosity of the liquid crystal layer, increasing the liquid crystal elastic constant of the liquid crystal layer and realizing the purpose of improving the response time of the display panel.

Description

Alignment film material, preparation method of alignment film, display panel and preparation method of display panel
Technical Field
The invention relates to the field of display, in particular to an alignment film material, a preparation method of an alignment film, a display panel and a preparation method of the display panel.
Background
VA is mainly classified into MVA (Multi-domian Vertical Alignment) technology, PVA (Patterned Vertical Alignment) technology, and CPA (Continuous pinwheel Alignment). these VA technologies all require a projection or a Slit to be designed on the color filter substrate side, and reduce the light transmittance of the display screen while increasing the cost, and a new VA display technology called Polymer stabilized Vertical Alignment (Polymer Alignment) technology is created to solve the problem that the color filter is controlled from point control to surface control by the substrate side.
The VA technology is mainly characterized in that the purpose of vertical arrangement of liquid crystal molecules is achieved by means of branched chains on an alignment film, and the molecular structure change of the branched chains also affects the characteristics of the liquid crystal material.
Disclosure of Invention
The invention aims to solve the technical problem that the response time of liquid crystal in the conventional liquid crystal display panel is short.
In order to achieve the above object, the present invention provides an alignment film material, which comprises a polyimide main body and a branched chain; the structural general formula of the branched chain is as follows:
Figure BDA0002443007820000011
In the branches, Sp has the general formula: - (CH) 2) n-is 1-8; a comprises at least one of cycloparaffin, benzene ring, aromatic ring or directionally fused ring; b comprises 1-3 cycloalkanes; c comprises a double or triple bond group; r comprises a linear or branched alkane having 0 to 6C atoms.
Further, the structural formula of the polyimide main body is as follows:
Figure BDA0002443007820000021
Wherein A and A' comprise at least one of cycloalkane, benzene ring, aromatic ring or directionally fused ring.
Further, in the ring structure of the polyimide main body, one or more H atoms on the ring are substituted with a halogen atom, a hydrocarbon group, an alkyl group, or an ester group.
Further, in Sp, a CH 2by-O-, -S-, -CO-O-, -O-CO-O-, -OCH 2-,-CH2O-is substituted with any one of O-; one H atom is substituted by a F group.
Further, in the R, a CH 2The radicals being substituted by-O-, -CO NH-, -COO-, -O-CO-, -CO-and an H atom is substituted by an F, Cl group.
In order to achieve the above object, the present invention further provides a method for preparing an alignment film, comprising the steps of: dissolving a dianhydride monomer and a diamine monomer in a molar ratio of 1:1 in a solvent, and reacting at room temperature for 24 hours to obtain a polyamic acid solution; and coating the polyamic acid solution on a substrate to form an alignment film.
Further, in the step of forming the alignment film, the step of forming the alignment film is baked for 20 to 50 minutes at 150 to 200 ℃ so that the polyamic acid solution is dehydrated into a ring.
To achieve the above object, the present invention also provides a display panel including: two substrates arranged oppositely; the alignment films are arranged on two opposite surfaces of the substrate, and the materials of the alignment films are the alignment film materials as described above; the liquid crystal layer is arranged between the alignment films of the two substrates; wherein the branched chains in the alignment film material extend into liquid crystal molecules of the liquid crystal layer.
In order to achieve the above object, the present invention further provides a method for manufacturing a display panel, which is used to manufacture the display panel, and the method includes the following steps: respectively coating the alignment film materials on one surface of the two substrates to form alignment films; dropping liquid crystal on the upper surface of an alignment film; and mutually attaching the sides of the two substrates, which are provided with the alignment films, wherein branched chains in the alignment film materials extend into the liquid crystal molecules.
Further, after liquid crystal is dripped on the upper surface of an alignment film, the preparation method of the display panel further comprises the steps of coating a sealant on the periphery of the liquid crystal, and coating a conductive adhesive on the periphery of the sealant; and after the sides of the two substrates provided with the alignment films are mutually attached, curing the sealant.
The invention has the technical effects of reducing the rotation viscosity of the liquid crystal layer, increasing the liquid crystal elastic constant of the liquid crystal layer and realizing the purpose of improving the response time of the display panel.
Drawings
The technical solution and other advantages of the present invention will become apparent from the following detailed description of specific embodiments of the present invention, which is to be read in connection with the accompanying drawings.
Fig. 1 is a schematic structural diagram of a display panel according to an embodiment of the invention;
FIG. 2 is a flowchart illustrating a method for fabricating a display panel according to an embodiment of the present invention;
Fig. 3 is a flowchart of a method for manufacturing an alignment film according to an embodiment of the invention.
Some of the components are identified as follows:
1. A first substrate; 2. a second substrate; 3. an alignment film; 4. a liquid crystal layer;
31. A polyimide body; 32. and (4) branching.
Detailed Description
The technical solution in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. It is to be understood that the described embodiments are merely exemplary of the invention, and not restrictive of the full scope of the invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
In the description of the present invention, it is to be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", "top", "bottom", "inner", "outer", "clockwise", "counterclockwise", and the like, indicate orientations and positional relationships based on those shown in the drawings, and are used only for convenience of description and simplicity of description, and do not indicate or imply that the device or element being referred to must have a particular orientation, be constructed and operated in a particular orientation, and thus, should not be considered as limiting the present invention. Furthermore, the terms "first", "second" and "first" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defined as "first", "second", may explicitly or implicitly include one or more of the described features. In the description of the present invention, "a plurality" means two or more unless specifically defined otherwise.
In the description of the present invention, it should be noted that, unless otherwise explicitly specified or limited, the terms "mounted," "connected," and "connected" are to be construed broadly, e.g., as meaning either a fixed connection, a removable connection, or an integral connection; may be mechanically connected, may be electrically connected or may be in communication with each other; either directly or indirectly through intervening media, either internally or in any other relationship. The specific meanings of the above terms in the present invention can be understood by those skilled in the art according to specific situations.
In the present invention, unless otherwise expressly stated or limited, "above" or "below" a first feature means that the first and second features are in direct contact, or that the first and second features are not in direct contact but are in contact with each other via another feature therebetween. Also, the first feature being "on," "above" and "over" the second feature includes the first feature being directly on and obliquely above the second feature, or merely indicating that the first feature is at a higher level than the second feature. A first feature being "under," "below," and "beneath" a second feature includes the first feature being directly under and obliquely below the second feature, or simply meaning that the first feature is at a lesser elevation than the second feature.
The following disclosure provides many different embodiments or examples for implementing different features of the invention. To simplify the disclosure of the present invention, the components and arrangements of specific examples are described below. Of course, they are merely examples and are not intended to limit the present invention. Furthermore, the present invention may repeat reference numerals and/or letters in the various examples, such repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. In addition, the present invention provides examples of various specific processes and materials, but one of ordinary skill in the art may recognize applications of other processes and/or uses of other materials.
Specifically, referring to fig. 1, an embodiment of the invention provides a display panel, which includes a first substrate 1, a second substrate 2, an alignment film 3, and a liquid crystal layer 4.
The first substrate 1 and the second substrate 2 are arranged oppositely, and the first substrate 1 and the second substrate 2 are an array substrate and a color film substrate respectively.
The alignment films 3 are respectively disposed on two opposite surfaces of the first substrate 1 and the second substrate 2, that is, as shown in fig. 1, the alignment films 3 are attached to the upper surface of the first substrate 1, and the alignment films 3 are attached to the lower surface of the second substrate 2. The alignment film 3 performs an alignment function on the liquid crystal molecules so that the liquid crystal molecules can be arranged in sequence.
In this embodiment, the alignment film 3 is made of an alignment film material, and the alignment film material includes a polyimide main body and a branched chain.
The overall structural formula of the alignment film material is as follows:
Figure BDA0002443007820000051
The structural formula of the polyimide main body is as follows:
Figure BDA0002443007820000052
Wherein A and A' comprise at least one of cycloalkane, benzene ring, aromatic ring or directionally fused ring. In the ring structure of the polyimide body, one or more H atoms on the ring may be substituted with a halogen atom, a hydrocarbon group, an alkyl group, or an ester group, for example:
Figure BDA0002443007820000053
The structural formula of the branched chain is as follows:
Figure BDA0002443007820000054
Wherein Sp has the formula: - (CH) 2) n-is 1-8; one of them CH 2May be substituted by-O-, -S-, -CO-O-, -O-CO-O-, -OCH 2-,-CH2O-is substituted with any one of O-; wherein a certain H atom may be substituted by a F group.
A includes at least one of cycloalkane, benzene ring, aromatic ring, or directionally condensed ring. In the branched chain, one or more H atoms on the ring may be substituted with a halogen atom, a hydrocarbon group, an alkyl group, or an ester group, for example:
Figure BDA0002443007820000055
B comprises 1-3 cycloalkanes, such as:
Figure BDA0002443007820000061
C includes double or triple bond groups such as: -CH ═ CH-, -C ≡ C-.
R comprises a linear or branched alkane having 0 to 6C atoms, wherein a CH 2The groups may be substituted by-O-, -CONH-, -COO-, -O-CO-, -CO-groups, wherein a certain H atom may be substituted by an F, Cl group.
The specific structure of the branched chain is, for example, as follows:
Figure BDA0002443007820000062
As shown in fig. 1, the polyimide main body 31 of the alignment film material is respectively attached to the surfaces of the first substrate 1 and the second substrate 2, and the branched chains 32 of the alignment film material extend into the liquid crystal molecules of the liquid crystal layer 4.
Because of rotational viscosity (r) 1) Providing the liquid crystal molecules with resistance to rotational movement, rotational viscosity (r) 1) Is the main parameter used by liquid crystal manufacturers to predict the response time in the development stage.
At a certain magnitude of moment Under the action of the rotating viscosity (r) 1) Small liquid crystal molecules will rotate faster and may help reduce response time. Switching response time and rotational viscosity (r) of liquid crystal 1) In direct proportion, the formula is as follows:
Figure BDA0002443007820000063
Wherein, T offFor the switching response time of the liquid crystal, d is the cell thickness of the liquid crystal cell, and K33 is the liquid crystal elastic constant. Therefore, in order to improve the switching response time of the liquid crystal, the liquid crystal requires a smaller rotational viscosity and a larger liquid crystal elastic constant.
Therefore, in this embodiment, the branched chains 32 are introduced into the liquid crystal layer 4, which not only can perform the alignment function, but also can reduce the overall rotational viscosity (r) of the liquid crystal layer 4 1),r1The value range of (A) is 47-75 mPas, the liquid crystal elastic constant (K33) of the liquid crystal layer 4 is increased, and the value range of K33 is 15-25, so that the aim of improving the response time of the display panel is fulfilled.
The display panel has the technical effects of reducing the rotation viscosity of the liquid crystal layer, increasing the liquid crystal elastic constant of the liquid crystal layer and achieving the purpose of improving the response time of the display panel.
As shown in fig. 2, the present embodiment further provides a method for manufacturing a display panel, which includes steps S101 to S104.
S101, providing two substrates, namely a first substrate and a second substrate, wherein the first substrate and the second substrate are respectively an array substrate and a color film substrate. Coating a layer of alignment film material on one surface of each of the two substrates, and carrying out rubbing treatment on the substrates to ensure that the alignment film materials can be directionally arranged to form alignment films.
S102 drops liquid crystal molecules on the upper surface of any alignment film by liquid crystal drop filling (ODF) to form a liquid crystal layer.
S103, coating a sealant on the substrate at the periphery of the liquid crystal layer, and coating a conductive adhesive at the periphery of the sealant.
S104, in a vacuum environment, mutually attaching the sides of the two substrates, provided with the alignment films, and curing the sealant to obtain the liquid crystal box in directional arrangement, wherein branched chains in the alignment film materials extend into liquid crystal molecules.
As shown in fig. 3, the present embodiment further includes a method for preparing an alignment film, and the prepared alignment film is used in the step S101, which specifically includes steps S201 to S202.
S201, a dianhydride monomer and a diamine monomer are dissolved in a solvent in a molar ratio of 1:1, wherein the solvent comprises one or more of N-methylpyrrolidone solution, N-ethylpyrrolidine, gamma-caprolactone, dimethyl sulfoxide and dichloromethane, and the reaction is carried out at room temperature for 24 hours to obtain polyamide acid solution (PAA), and the specific reaction process is as follows:
Figure BDA0002443007820000071
Wherein n is 50-100.
S202, coating the polyamic acid solution on a substrate, and baking for 20-50 minutes at 150-200 ℃ to dehydrate the polyamic acid solution into a ring to form an alignment film, wherein the structure is as follows:
Figure BDA0002443007820000081
Wherein n is 50-100.
The technical effect of the method for manufacturing the display panel is that the rotational viscosity r of the liquid crystal layer is reduced 1The numerical range of the dielectric constant is 47-75 mPas, the liquid crystal elastic constant of the liquid crystal layer is increased, the numerical range of K33 is 15-25, and the purpose of improving the response time of the display panel is achieved.
In the foregoing embodiments, the descriptions of the respective embodiments have respective emphasis, and for parts that are not described in detail in a certain embodiment, reference may be made to related descriptions of other embodiments.
The alignment film material, the preparation method of the alignment film, the display panel and the preparation method of the display panel provided by the embodiment of the invention are described in detail above, a specific example is applied in the description to explain the principle and the implementation mode of the invention, and the description of the above embodiment is only used for helping to understand the technical scheme and the core idea of the invention; those of ordinary skill in the art will understand that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.

Claims (10)

1. An alignment film material is characterized by comprising a polyimide main body and a branched chain;
The structural general formula of the branched chain is as follows:
Figure FDA0002443007810000011
Among the branched chains, in the case of the branched chain,
Sp has the formula: - (CH) 2) n-is 1-8;
A comprises at least one of cycloparaffin, benzene ring, aromatic ring or directionally fused ring;
B comprises 1-3 cycloalkanes;
C comprises a double or triple bond group;
R comprises a linear or branched alkane having 0 to 6C atoms.
2. The alignment film material of claim 1,
The structural formula of the polyimide main body is as follows:
Figure FDA0002443007810000012
Wherein A and A' comprise at least one of cycloalkane, benzene ring, aromatic ring or directionally fused ring.
3. The alignment film material of claim 2,
In the ring-shaped structure of the polyimide body,
One or more of the H atoms on the ring is substituted with a halogen atom, a hydrocarbon group, an alkyl group, or an ester group.
4. The alignment film material of claim 1,
In the Sp, a CH 2by-O-, -S-, -CO-O-, -O-CO-O-, -OCH 2-,-CH2O-is substituted with any one of O-; one H atom is substituted by a F group.
5. The alignment film material of claim 1,
In the R, a CH 2The groups are substituted by-O-, -CONH-, -COO-, -O-CO-, -CO-groups, and an H atom is substituted by an F, Cl group.
6. A preparation method of an alignment film is characterized by comprising the following steps:
Dissolving a dianhydride monomer and a diamine monomer in a molar ratio of 1:1 in a solvent, and reacting at room temperature for 24 hours to obtain a polyamic acid solution;
And coating the polyamic acid solution on a substrate to form an alignment film.
7. The method of preparing an alignment film according to claim 6,
In the step of forming the alignment film, the step of forming the alignment film is baked for 20 to 50 minutes at a temperature of 150 to 200 ℃ so that the polyamic acid solution is dehydrated into a ring.
8. A display panel, comprising:
Two substrates arranged oppositely;
An alignment film disposed on two opposite sides of the substrate, wherein the alignment film is made of the alignment film material according to any one of claims 1 to 6; and
The liquid crystal layer is arranged between the alignment films of the two substrates;
Wherein the branched chains in the alignment film material extend into liquid crystal molecules of the liquid crystal layer.
9. A method for manufacturing a display panel according to claim 8, comprising the steps of:
Respectively coating the alignment film materials on one surface of the two substrates to form alignment films;
Dropping liquid crystal on the upper surface of an alignment film; and
And mutually attaching the sides of the two substrates provided with the alignment films, wherein branched chains in the alignment film materials extend into the liquid crystal molecules.
10. The method for manufacturing a display panel according to claim 9,
After liquid crystal is dripped on the upper surface of an alignment film, the preparation method of the display panel further comprises the steps of coating sealant on the periphery of the liquid crystal, and coating conductive adhesive on the periphery of the sealant;
And after the sides of the two substrates provided with the alignment films are mutually attached, curing the sealant.
CN202010270611.3A 2020-04-08 2020-04-08 Alignment film material, preparation method of alignment film, display panel and preparation method of display panel Active CN111410741B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010270611.3A CN111410741B (en) 2020-04-08 2020-04-08 Alignment film material, preparation method of alignment film, display panel and preparation method of display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010270611.3A CN111410741B (en) 2020-04-08 2020-04-08 Alignment film material, preparation method of alignment film, display panel and preparation method of display panel

Publications (2)

Publication Number Publication Date
CN111410741A true CN111410741A (en) 2020-07-14
CN111410741B CN111410741B (en) 2023-01-24

Family

ID=71488250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010270611.3A Active CN111410741B (en) 2020-04-08 2020-04-08 Alignment film material, preparation method of alignment film, display panel and preparation method of display panel

Country Status (1)

Country Link
CN (1) CN111410741B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234955A1 (en) * 2008-11-27 2011-09-29 Masanobu Mizusaki Orientation film, liquid crystal display having orientation film, and method for forming orientation film
US20120113370A1 (en) * 2009-07-08 2012-05-10 Takako Nakai Liquid Crystal Display Panel and Process for Production Thereof
US20150022750A1 (en) * 2012-03-30 2015-01-22 Dic Corporation Liquid crystal display device and method for producing the same
CN106085464A (en) * 2016-06-02 2016-11-09 深圳市华星光电技术有限公司 Alignment film material, the manufacture method of display panels and display panels
CN106188540A (en) * 2016-07-12 2016-12-07 深圳市华星光电技术有限公司 Alignment film material and the manufacture method of alignment film, display panels and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110234955A1 (en) * 2008-11-27 2011-09-29 Masanobu Mizusaki Orientation film, liquid crystal display having orientation film, and method for forming orientation film
US20120113370A1 (en) * 2009-07-08 2012-05-10 Takako Nakai Liquid Crystal Display Panel and Process for Production Thereof
US20150022750A1 (en) * 2012-03-30 2015-01-22 Dic Corporation Liquid crystal display device and method for producing the same
CN106085464A (en) * 2016-06-02 2016-11-09 深圳市华星光电技术有限公司 Alignment film material, the manufacture method of display panels and display panels
CN106188540A (en) * 2016-07-12 2016-12-07 深圳市华星光电技术有限公司 Alignment film material and the manufacture method of alignment film, display panels and preparation method thereof

Also Published As

Publication number Publication date
CN111410741B (en) 2023-01-24

Similar Documents

Publication Publication Date Title
US7968670B2 (en) Polyimide resin and liquid crystal alignment layer and polyimide film using the same
TWI393732B (en) Liquid crystal alignment solution
US6111059A (en) Diaminobenzene derivatives, polyimides prepared therefrom, and alignment film for liquid crystals
JP4891411B2 (en) Polyimide resin, liquid crystal alignment film and polyimide film using the same
US20100048861A1 (en) Polyimide resin and liquid crystal alignment layer and polyimide film using the same
US10173242B2 (en) Method of manufacturing aromatic polyketone film, aromatic polyketone film, substrate provided with aromatic polyketone film, optical element, and image display device
US6720040B2 (en) Material for liquid-crystal alignment film, liquid-crystal display element, process for its production and liquid-crystal display unit
WO2013041017A1 (en) Prepolymer, oriented film and preparation method thereof, and liquid crystal display device
US11630342B2 (en) Image display device and circularly polarizing plate with photosensitive adhesive
US8173040B2 (en) Composition including benzoxazine-based compound for forming board and board fabricated using the same
KR20230048163A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPH0853675A (en) Conductive liquid crystal composition,its production and conductive aligned liquid crystal film made thereof
TW201319124A (en) Polyimide precursor, resin composition, polyimide, polyimide formed article and method for fabricating the same, transparent substrate, protective film, electronic component, display device and solar cell module
CN111410741B (en) Alignment film material, preparation method of alignment film, display panel and preparation method of display panel
CN108885375B (en) Liquid crystal alignment film, method for preparing the same, and liquid crystal display device using the same
CN111333346B (en) Transparent conductive film with horizontal alignment function, liquid crystal display and preparation method
JP3681083B2 (en) Liquid crystal alignment agent
TWI477479B (en) Benzene diamine, polymer, composition for alignment film, alignment film, and liquid crystal display device
TW201727341A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR0148406B1 (en) Lcd element
JPH08239456A (en) Fluorinated organic high-molecular oriented film material and liquid crystal display element made by using it
CN114702403B (en) Semi-alicyclic diamine monomer containing ester bond, preparation method thereof, polyamic acid liquid crystal aligning agent, alignment film, preparation method and application thereof, and liquid crystal box
CN113703228B (en) Liquid crystal display panel and manufacturing method thereof
JPS63231316A (en) Liquid crystal display device
CN114058384A (en) Polyimide photo-alignment agent solution and preparation method thereof, photo-alignment film and liquid crystal box

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant