CN111409284B - 一种基于4d打印的柔性压电传感器及其制备方法 - Google Patents

一种基于4d打印的柔性压电传感器及其制备方法 Download PDF

Info

Publication number
CN111409284B
CN111409284B CN202010158697.0A CN202010158697A CN111409284B CN 111409284 B CN111409284 B CN 111409284B CN 202010158697 A CN202010158697 A CN 202010158697A CN 111409284 B CN111409284 B CN 111409284B
Authority
CN
China
Prior art keywords
magnetic
printing
substrates
powder
piezoelectric sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010158697.0A
Other languages
English (en)
Other versions
CN111409284A (zh
Inventor
苏彬
伍宏志
闫春泽
史玉升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202010158697.0A priority Critical patent/CN111409284B/zh
Publication of CN111409284A publication Critical patent/CN111409284A/zh
Priority to US17/037,745 priority patent/US11938680B2/en
Priority to JP2020183590A priority patent/JP7049431B2/ja
Application granted granted Critical
Publication of CN111409284B publication Critical patent/CN111409284B/zh
Priority to US18/391,682 priority patent/US20240157649A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/122Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/16Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in the magnetic properties of material resulting from the application of stress
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Powder Metallurgy (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明属于增材制造相关技术领域,其公开了一种基于4D打印的柔性压电传感器及其制备方法。该传感器包括磁性部分和导电性部分,其中:导电性部分包括相对设置的两块基板和设置该两块基板之间的螺旋结构,两块基板和螺旋结构均为导电的金属材质;磁性部分呈柔性的多孔结构,设置在两块基板之间,用于产生磁场;当基板受到外界压力时,设置在弹簧和磁性部分同时被压缩,穿过螺旋结构的磁通量发生变化,两块基板的电压发生变化,通过测量基板之间的电压变化反映外界压力的变化,以此实现压力测量过程。通过本发明,基于磁电材料组合的思想成功实现了性能、功能变化的4D打印,并为压电传感器提供了新的材料/结构设计思路和制造方法。

Description

一种基于4D打印的柔性压电传感器及其制备方法
技术领域
本发明属于增材制造相关技术领域,更具体地,涉及一种基于4D打印的柔性压电传感器及其制备方法。
背景技术
4D打印的概念自2013年提出以来备受关注。4D打印在提出的时候被定义为“3D打印+时间”,即3D打印的构件,随着时间的推移,在外界环境的刺激(如热能、磁场、电场、湿度和pH值等)下,能够自驱动地发生形状的改变。最初的4D打印概念主要体现在现象演示方面,注重的是构件形状的改变,并且认为4D打印是智能材料的3D打印,关键要在3D打印中应用智能材料。在这一概念的指导下,有关4D打印材料的专利大量涌现,如201710882123.6、201810667838.4、201810465965.6、201811059250.7等。这些专利的4D打印成形件能在外界环境的刺激下,其形状随时间发生变化。
随着研究的深入,4D打印的概念和内涵得到了深化,目前得到学界公认的4D打印概念是3D打印的构件的形状、性能或功能能够在外界预定的刺激(热能、水、光、pH值等)下,随时间或空间发生可控变化。相比于最初的4D打印概念,最新的概念表明4D打印构件随外界刺激的变化不仅仅是形状,还包括构件的性能和功能,这使得4D的内涵更丰富,有利于推动4D打印的研究从现象演示逐渐走向实际应用,只有性能和功能发生了变化才具有功能化、智能化的意义,才具备应用价值。因此,我们十分有必要探索如何实现4D打印成形件性能和功能的随时空的可控变化。
然而,尽管4D打印的概念得到了进步,但关于4D打印的研究仍停留在成形件形状的变化。如201810652872.4公开了一种可控变形的连续纤维嵌入复合材料的4D打印方法,利用纤维取向的高可控性实现任意可展曲面形状的可控变形;201910807448.7公开了一种基于温度驱动的4D打印机器人,利用温度驱动形状记忆合金的变形以实现机器人的运动;201910342885.6公开了一种基于液晶弹性体及4D打印的制备方法及产品,实现复杂变形液晶弹性体零件的制备。总之,这些关于4D打印的专利所关注的仍是成形件的变形,忽视了或是未能成功实现件的变性能、变功能。这主要是由于研究者们惯性地在传统的3D打印工艺中应用智能材料的结果,如形状记忆材料等。因此,为实现变性能、变功能4D打印,我们应当突破原有的思维,采用新的制造思想,通过材料和结构设计以实现在外界环境刺激下产生原来不具有的性能和功能,由此达到性能、功能的变化。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于4D打印的柔性压电传感器及其制备方法,其结合增材制造工艺,基于磁电组合的思想、电磁感应原理而产生的压电效应,制备获得具有压电性能的压电传感器,即在外力的作用下,器件能产生电信号,具有感知压力的功能。在3D打印的基础上,器件由于材料和结构的设计而获得一种具有原磁性部分和导电性部分均不具有的压电性能和感知外压力的功能,即实现了性能变化和功能变化的4D打印。
为实现上述目的,按照本发明的一个方面,提供了一种基于4D打印的柔性压电传感器,该传感器包括磁性部分和导电性部分,其中:
所述导电性部分包括相对设置的两块基板和设置该两块基板之间的螺旋结构,两块所述基板和螺旋结构均为导电的金属材质;
所述磁性部分呈柔性的多孔结构,设置在两块所述基板之间,用于产生磁场;
当所述基板受到外界压力时,所述螺旋结构和磁性部分同时被压缩,穿过所述螺旋结构的磁通量发生变化,两块所述基板的电压发生变化,通过测量所述基板之间的电压变化反映外界压力的变化,以此实现压力测量过程。
进一步优选地,所述磁性部分的原材料为聚合物粉末和磁性粉末混合形成的复合粉末,其中,聚合物粉末优选为热塑性聚氨酯或聚二甲基硅氧烷,所述磁性粉末优选为钕铁硼磁性粉末、铁铬钴系永磁合金粉末或永磁铁氧体粉末。
进一步优选地,所述磁性粉末的质量分数为10%~40%,既保证磁性部分的柔性,也保证所述磁性部分的磁性。
进一步优选地,所述螺旋结构的压缩模量与所述磁性部分的压缩模量的比值为0.1~10。
进一步优选地,所述基板上设置有卡槽,用于固定所述磁性部分。
进一步优选地,所述压电传感器为一个单元,通过多个单元的串联或并联,获得多单元压电传感器,该多单元的压电传感器用于放大单个压电传感器的信号。
按照本发明的另一个方面,提供了一种上述所述的压电传感器的制备方法,该方法包括下列步骤:
S1选取聚合物粉末和磁性粉末作为原料,将二者混合形成复合粉末,计算并获得所述导电性部分中螺旋结构的压缩模量,构建所述磁性部分的多孔结构,并计算获得该多孔结构的压缩模量,利用3D打印成形的方法成形所述多孔结构,以此获得所需的磁性部分;对所述磁性部分进行充磁,使得所述磁性部分获得永磁性;
S2构建导电性部分的三维结构,同时根据所述多孔结构的压缩模量构建所述螺旋结构的压缩模量,使得所述导电性部分螺旋结构的压缩模量与该多孔结构的压缩模量的比值为0.1~10,选取导电性部分的原材料,利用该原材料根据所述三维模型进行3D打印成形,以此获得所需的导电性部分;
S3将所述具有永磁性的磁性部分组装在所述导电性部分的基板之间,以此获得所需的压电传感器。
进一步优选地,在步骤S1中,所述3D打印成形方法优选为激光选区熔化、电子束熔化或激光近净成形等金属3D打印工艺。
进一步优选地,在步骤S3中,所述3D打印成形方法优选为激光选区烧结、熔融沉积成形或光固化等聚合物3D打印工艺。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,本发明具有以下有益效果:
1.本发明通过采用3D打印的方法成形磁性部分和导电性部分,二者分开成形,组装后获得的最终产品具备压电性能,该压电性能是磁性部分和导电性部分均不具备的,实现了1+1>2的功效,即实现4D打印;
2.本发明为压电传感器提供了新的材料/结构设计思路和制造方法,增材制造工艺十分有利于压电传感器材料/结构的定量控制,从而精确控制4D打印的压电传感器性能和功能的变化。
附图说明
图1是按照本发明的优选实施例所构建的压电传感器的成形流程示意图;
图2是按照本发明的优选实施例所构建的压电传感器结构以及成形过程示意图;
图3是按照本发明的优选实施例所构建的磁性部分结构示意图,其中,(a)是磁性部分三维模型,(b)磁性部分成形后获得的实体结构;
图4是按照本发明的优选实施例所构建的导电性部分结构示意图,其中,(a)是导电性部分三维模型,(b)导电性部分成形后获得的实体结构;
图5是按照本发明的优选实施例所构建的压电传感器产生压电信号的原理图;
图6是按照本发明的优选实施例所构建的压电传感器的压电信号图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1和2所示,一种基于4D打印的柔性压电传感器的材料/结构设计方法,同时包含材料的设计和结构的设计。本发明所制备的压电传感器基于材料组合的思想,因此,柔性压电传感器包括增材制造制备的磁性部分和导电性部分,两部分适当组合在一起得到柔性压电传感器。
磁性部分的材料设计为柔性聚合物材料和永磁粉末材料,磁性粉末的质量分数为10%-40%,结构设计为三维周期性多孔结构,这样尤其适用于增材制造工艺并有利于性能的控制;导电性部分设计为金属导电材料,结构设计为螺旋结构和两块平行板的组合体,并且螺旋结构部分和三维周期性多孔结构的高度相同,本实施例中,螺旋结构采用的为弹簧。
磁性部分应具有产生磁场的特性,采用聚合物材料和磁性粉末的复合材料作为增材制造的原材料;导电性部分应具有导电性,采用导电性优良的材料(主要是金属材料)作为增材制造的原材料。为达到器件柔性的效果,便于器件的压缩,聚合物材料采用模量低的材料,并设计为多孔结构以留出可供压缩的空间。通过计算获得该多孔结构的压缩模量,磁性多孔结构和金属导电性部分的压缩模量(弹簧部分的劲度系数k)的比值应为0.1~10。螺旋结构的劲度系数k根据如下公式计算,由此可以为螺旋结构采用的结构参数提供依据。
Figure BDA0002404980910000061
其中G是所选用金属材料的切变模量,d是弹簧的线径,n是弹簧的有效圈数,D是弹簧螺旋中线直径。
在弹簧的两端设计两块平行板,便于施加外压力,两块平行板的高度即为磁性聚合物多孔结构的高度,使得磁性部分紧贴两块平行板,并在平行板上设计一对卡槽,宽度和磁性部分宽度一致,使得在压缩过程中磁性部分不会相对平行板移动。
按照本发明的另一个方面,本发明提供了一种柔性压电传感器的4D打印制造方法,该方法包含下列步骤:
(1)磁性部分原材料的制备与增材制造成形。磁性部分采用的柔性聚合物材料优选为热塑性聚氨酯TPU、聚二甲基硅氧烷PDMS等柔性好、模量低的材料,所采用的磁性粉末优选为钕铁硼磁性粉末、铁铬钴系永磁合金粉末和永磁铁氧体粉末等一经磁化即能保持永磁性的粉末。增材制造成形优选采用常用于聚合物材料的工艺,如激光选区烧结、熔融沉积成形和光固化,依据所采用的增材制造工艺,将上述选用的原材料制备成不同的形态,如适用于SLS工艺的粉末材料、适用于FDM工艺的丝状材料和适用于SLA工艺的光敏树脂材料。进一步地,采用经过优化的工艺参数使上述设计好的多孔结构成形,得到磁性部分。
(2)磁性部分磁化。将步骤(1)中得到的磁性部分放置在充磁机上,设置适当的充磁电压,启动开关瞬间,磁性部分即获得永磁性,磁场的方向可以根据在充磁机上放置的方向不同而改变。
(3)导电性部分增材制造成形。导电性部分采用的导电性优良的材料优选为金属材料,如不锈钢、铝合金、铜合金等。优选应用常见的金属增材制造工艺,如激光选区熔化、电子束熔化和激光近净成形等,采用经过优化的参数,使上述导电部分的螺旋结构连同两块平行板和一对卡槽一体化成形,得到导电性部分。
(4)磁性部分和导电性部分组装得到柔性压电传感器。
以上述4D打印成形的压电传感器为基本单元,通过对多个该压电传感器适当的连接,将多个压电传感器进行串联与并联,可以实现压电信号的放大。
对于导电性部分和磁性部分的制备是独立的,二者的制备没有先后顺序,任何一部分制备后,可以根据制备的这一部分确定另外一部分未制备的压缩模量。
该柔性压电传感器在外压力作用下发生形变,穿过螺旋结构的磁通量发生变化,根据法拉第电磁感应定律,两块平行板之间会产生电压,因而电信号产生,导致新的压电性能产生,并且该压电传感器具有感知外压力的功能,所以4D打印构件的性能和功能发生了变化,由此实现了变性能、变功能的4D打印。
在具体的实施例中,三维周期性多孔结构的单元尺寸优选为3mm~5mm,体积分数优选为15%~20%,高度优选为15mm~25mm。
两块平行板的长度优选为35mm~45mm,宽度优选为15mm~25mm。弹簧的线径d优选为1mm~1.2mm,弹簧的有效圈数n优选为4~8,弹簧螺旋中线直径D优选为8mm~10mm。
下面结合具体的实施例对本发明进行进一步地说明。
柔性压电传感器的材料/结构设计方法:
磁性部分材料为TPU和NdFeB粉末,NdFeB粉末的质量分数为40%,所采用的三维周期性多孔结构(三维CAD模型如图3中(a)所示)单元尺寸为5mm,体积分数为20%,高度为20mm。导电性部分材料为316L不锈钢,磁性部分(三维CAD模型如图4中(a)所示)中弹簧的高度和多孔结构的高度相同,即20mm,两块平行板的长度为40mm,宽度为20mm。弹簧的线径d为1mm,弹簧的有效圈数n优选为7,弹簧螺旋中线直径D优选为8mm。验证可知导电性部分和磁性部分的压缩模量为2.5,处在0.1~10的范围,因而可以实现同步压缩。
如图2所示,本实施例的柔性压电传感器的4D打印制造方法按以下步骤进行:
(1)磁性部分原材料的制备与增材制造成形。磁性部分采用激光选区烧结SLS的增材制造工艺成形,因此,需要将原材料制备成粉末状态,如图3中(a)所示,设计磁性部分的结构,然后采用经优化后的工艺参数使磁性部分成形,最终SLS工艺成形的磁性部分如图3中(b)所示。
(2)磁性部分磁化。将步骤(1)中得到的磁性部分放置在充磁机上,设置适当的充磁电压,启动开关瞬间,磁性部分即获得永磁性,磁场的方向可以根据在充磁机上放置的方向不同而改变。
(3)导电性部分增材制造成形。导电性部分采用316L不锈钢粉末的激光选区熔化SLM工艺成形,如图4中(a)所示,设计导电性部分的结构,采用经过优化的参数,使上述导电部分的螺旋结构连同两块平行板和一对卡槽一体化成形,得到导电性部分如图4中(b)。
(4)磁性部分和导电性部分组装得到柔性压电传感器。
如图5所示,该柔性压电传感器在外压力作用下发生形变,穿过螺旋结构的磁通量发生变化,根据法拉第电磁感应定律,两块平行板之间会产生电压,因而电信号产生,如图6所示,图中为产生的电信号,导致新的压电性能产生,并且该压电传感器具有感知外压力的功能,所以4D打印构件的性能和功能发生了变化,由此实现了变性能、变功能的4D打印。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于4D打印的柔性压电传感器,其特征在于,该传感器包括磁性部分和导电性部分,其中:
所述导电性部分包括相对设置的两块基板和设置该两块基板之间的螺旋结构,两块所述基板和螺旋结构均为导电的金属材质;
所述磁性部分与所述螺旋结构并列设置在两块所述基板之间,该磁性部分呈柔性的三维周期性多孔结构,用于产生磁场;所述磁性部分的原材料为聚合物粉末和磁性粉末混合形成的复合粉末,所述聚合物粉末为热塑性聚氨酯或聚二甲基硅氧烷,所述磁性粉末为钕铁硼磁性粉末、铁铬钴系永磁合金粉末或永磁铁氧体粉末;
当所述基板受到外界压力时,所述螺旋结构和磁性部分同时被压缩,穿过所述螺旋结构的磁通量发生变化,两块所述基板的电压发生变化,通过测量所述基板之间的电压变化反映外界压力的变化,以此实现压力测量过程。
2.如权利要求1所述的一种基于4D打印的柔性压电传感器,其特征在于,所述磁性粉末的质量分数为10%~40%,既保证磁性部分的柔性,也保证所述磁性部分的磁性。
3.如权利要求1所述的一种基于4D打印的柔性压电传感器,其特征在于,所述螺旋结构的压缩模量与所述磁性部分的压缩模量的比值为0.1~10。
4.如权利要求1所述的一种基于4D打印的柔性压电传感器,其特征在于,所述基板上设置有卡槽,用于固定所述磁性部分。
5.如权利要求1所述的一种基于4D打印的柔性压电传感器,其特征在于,所述压电传感器为一个单元,通过多个单元的串联或并联,获得多单元压电传感器,该多单元的压电传感器用于放大单个压电传感器的信号。
6.一种权利要求1-5任一项所述的压电传感器的制备方法,其特征在于,该方法包括下列步骤:
S1 选取聚合物粉末和磁性粉末作为原料,将二者混合形成复合粉末,计算并获得所述导电性部分中螺旋结构的压缩模量,构建所述磁性部分的三维周期性多孔结构,并计算获得该多孔结构的压缩模量,利用3D打印成形的方法成形所述多孔结构,以此获得所需的磁性部分;对所述磁性部分进行充磁,使得所述磁性部分获得永磁性;
S2 构建导电性部分的三维模型,同时根据所述多孔结构的压缩模量构建所述螺旋结构的压缩模量,使得所述导电性部分螺旋结构的压缩模量与该多孔结构的压缩模量的比值为0.1~10,选取导电性部分的原材料,利用该原材料根据所述三维模型进行3D打印成形,以此获得所需的导电性部分;
S3 将具有永磁性的所述磁性部分组装在所述导电性部分的基板之间,以此获得所需的压电传感器。
7.如权利要求6所述的制备方法,其特征在于,在步骤S1中,所述3D打印成形方法为激光选区熔化、电子束熔化或激光近净成形金属3D打印工艺。
8.如权利要求6所述的制备方法,其特征在于,在步骤S3中,所述3D打印成形方法为激光选区烧结、熔融沉积成形或光固化聚合物3D打印工艺。
CN202010158697.0A 2020-03-09 2020-03-09 一种基于4d打印的柔性压电传感器及其制备方法 Active CN111409284B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010158697.0A CN111409284B (zh) 2020-03-09 2020-03-09 一种基于4d打印的柔性压电传感器及其制备方法
US17/037,745 US11938680B2 (en) 2020-03-09 2020-09-30 Flexible piezoelectric sensor based on 4D printing and preparation method thereof
JP2020183590A JP7049431B2 (ja) 2020-03-09 2020-11-02 3dプリンティングに基づくフレキシブル圧電センサおよびその製造方法
US18/391,682 US20240157649A1 (en) 2020-03-09 2023-12-21 Flexible piezoelectric sensor based on 4d printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010158697.0A CN111409284B (zh) 2020-03-09 2020-03-09 一种基于4d打印的柔性压电传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN111409284A CN111409284A (zh) 2020-07-14
CN111409284B true CN111409284B (zh) 2021-07-27

Family

ID=71487610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010158697.0A Active CN111409284B (zh) 2020-03-09 2020-03-09 一种基于4d打印的柔性压电传感器及其制备方法

Country Status (3)

Country Link
US (2) US11938680B2 (zh)
JP (1) JP7049431B2 (zh)
CN (1) CN111409284B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255188B2 (en) * 2020-05-01 2022-02-22 Saudi Arabian Oil Company Logging tool with 4D printed sensing system
CN112140535A (zh) * 2020-07-23 2020-12-29 西安交通大学 一种基于4d打印的可调声学超材料的制备方法
CN112183519B (zh) * 2020-09-25 2023-02-10 华中科技大学 一种基于4d打印的仿神经视觉传感器
CN113121256B (zh) * 2021-04-22 2022-08-02 华中科技大学 一种超声响应的4d打印多孔陶瓷件及其制备方法
CN114850492B (zh) * 2021-12-13 2023-12-12 南京联空智能增材研究院有限公司 基于增材制造的构件原位传感器制备方法
CN114921085A (zh) * 2022-05-12 2022-08-19 华中科技大学 4d打印磁性复合粉材、仿食管软体机器人及其制备方法
CN114875661A (zh) * 2022-05-27 2022-08-09 中钢集团南京新材料研究院有限公司 具备力-电转换效应的柔性磁电纤维及其制法与相关产品
CN117429058B (zh) * 2023-12-04 2024-05-10 江南大学 一种集成传感功能的结构件的混合3d打印快速制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB860214A (en) * 1958-09-19 1961-02-01 Vyzk A Zkusebni Letecky Ustav An electromagnetic pressure gauge
KR20040021213A (ko) * 2002-09-03 2004-03-10 한국과학기술연구원 천이금속계 자기변형 복합체 제조방법
CN101660959A (zh) * 2009-09-26 2010-03-03 大连理工大学 一种超磁致伸缩力传感器
CN104919271A (zh) * 2013-01-15 2015-09-16 东洋橡胶工业株式会社 传感器及其制造方法
CN105811727A (zh) * 2016-03-15 2016-07-27 重庆大学 基于力敏弹性体材料的振动发动机
CN110600254A (zh) * 2019-09-29 2019-12-20 华中科技大学 一种适用于磁性复合材料的4d打印制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222524A (ja) * 1988-07-12 1990-01-25 Sankyo Seiki Mfg Co Ltd アモルファス応力センサ
JP3499844B2 (ja) * 2001-08-27 2004-02-23 株式会社前川製作所 変位検出方法とその変位センサ
JP4080438B2 (ja) * 2004-02-26 2008-04-23 Tdk株式会社 超磁歪ユニット
JP4327640B2 (ja) * 2004-03-26 2009-09-09 Tdk株式会社 圧力センサ及びその磁気ヒステリシス低減方法
DE102009010144A1 (de) * 2009-02-23 2010-08-26 Li-Tec Battery Gmbh Verfahren und Ladevorrichtung zum Aufladen einer Kraftfahrzeugbatterie
WO2015095720A1 (en) * 2013-12-19 2015-06-25 Great Plains Diesel Technologies, L.C. Fuel pressure detection by fast magnetostrictive actuator
JP2015154681A (ja) * 2014-02-18 2015-08-24 国立大学法人東北大学 発電装置及び方法並びに電子機器
US20190013675A9 (en) * 2014-03-11 2019-01-10 Vamell M. Castor Combined renewable energy and compressed gas energy storage and generator microgrid system using reciprocating piezoelectric generators
WO2018085936A1 (en) * 2016-11-10 2018-05-17 Polyvalor, Limited Partnership Piezoelectric composite, ink and ink cartridge for 3d printing, bifunctional material comprising the piezoelectric composite, manufacture and uses thereof
US11014268B2 (en) * 2017-07-24 2021-05-25 The Board Of Regents Of The University Of Texas System 3D printing of piezoelectric ceramic particle/fluoropolymer nanocomposites with in-situ poling for sensor applications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB860214A (en) * 1958-09-19 1961-02-01 Vyzk A Zkusebni Letecky Ustav An electromagnetic pressure gauge
KR20040021213A (ko) * 2002-09-03 2004-03-10 한국과학기술연구원 천이금속계 자기변형 복합체 제조방법
CN101660959A (zh) * 2009-09-26 2010-03-03 大连理工大学 一种超磁致伸缩力传感器
CN104919271A (zh) * 2013-01-15 2015-09-16 东洋橡胶工业株式会社 传感器及其制造方法
CN105811727A (zh) * 2016-03-15 2016-07-27 重庆大学 基于力敏弹性体材料的振动发动机
CN110600254A (zh) * 2019-09-29 2019-12-20 华中科技大学 一种适用于磁性复合材料的4d打印制造方法

Also Published As

Publication number Publication date
US20210280767A1 (en) 2021-09-09
JP2021139881A (ja) 2021-09-16
US11938680B2 (en) 2024-03-26
US20240157649A1 (en) 2024-05-16
CN111409284A (zh) 2020-07-14
JP7049431B2 (ja) 2022-04-06

Similar Documents

Publication Publication Date Title
CN111409284B (zh) 一种基于4d打印的柔性压电传感器及其制备方法
Wu et al. A material combination concept to realize 4D printed products with newly emerging property/functionality
Taylor et al. Fully 3D-printed, monolithic, mini magnetic actuators for low-cost, compact systems
Constantinou et al. A 3D printed electromagnetic nonlinear vibration energy harvester
Tang et al. Recent advances of 4D printing technologies toward soft tactile sensors
US10553342B2 (en) Deformable inductor having a liquid magnetic core
Kohls et al. Compliant electromagnetic actuator architecture for soft robotics
CN110843163A (zh) 一种软材料中复杂磁畴编程的快速实现方法
Zhang et al. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities
Li et al. 3D-printed magnetic porous structures with different poisson’s ratios and their mechanoelectrical conversion capabilities
CN110459376A (zh) 具有磁性相和非磁性相的整体式结构
Tiismus et al. Technologies for additive manufacturing of electrical machines
Li et al. Regulation of nanocrystals structure for high-performance magnetic triboelectric nanogenerator
Ehrmann et al. Magnetic 3D-printed composites—production and applications
JP2019022435A (ja) 発電ディバイス、磁気的硬質粘弾性材料の製造方法及び発電ディバイスの使用方法
KR102612505B1 (ko) 자기코어를 위한 입자-기반 비등방성 복합재료
CN114952938A (zh) 磁控仿生机器人的生产方法
Gabdullin et al. Next generation autofocus and optical image stabilization system for camera modules using magnetic shape memory actuators
Zhang et al. Pitch effect of helical coils of electromagnetic forming
US20210399618A1 (en) Thermomagnetic apparatus for electric power generation and method thereof
KR20170065331A (ko) 3d 프린터를 이용한 마찰 전기 에너지 발전 소자의 제조 방법
CN106191820A (zh) 一种制备银导电导热图案的方法
Rudder Motor protein inspired" artificial muscle" actuator
CN110416740A (zh) 一种基于微螺旋结构的超材料及其制造方法
Pan et al. Analytical modeling of a magnetoactive elastomer unimorph

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant