CN111393167A - 一种新型max相复合材料及其制备方法 - Google Patents

一种新型max相复合材料及其制备方法 Download PDF

Info

Publication number
CN111393167A
CN111393167A CN202010216651.XA CN202010216651A CN111393167A CN 111393167 A CN111393167 A CN 111393167A CN 202010216651 A CN202010216651 A CN 202010216651A CN 111393167 A CN111393167 A CN 111393167A
Authority
CN
China
Prior art keywords
max phase
composite material
novel
alc
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010216651.XA
Other languages
English (en)
Other versions
CN111393167B (zh
Inventor
宋育杰
张健宁
黄庆
陈科
何流
黄政仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Bay Research Institute Of Ningbo Institute Of Materials
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Hangzhou Bay Research Institute Of Ningbo Institute Of Materials
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Bay Research Institute Of Ningbo Institute Of Materials, Ningbo Institute of Material Technology and Engineering of CAS filed Critical Hangzhou Bay Research Institute Of Ningbo Institute Of Materials
Priority to CN202010216651.XA priority Critical patent/CN111393167B/zh
Publication of CN111393167A publication Critical patent/CN111393167A/zh
Application granted granted Critical
Publication of CN111393167B publication Critical patent/CN111393167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5603Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/486Boron containing organic compounds, e.g. borazine, borane or boranyl
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种新型MAX相复合材料及其制备方法。所述新型MAX相复合材料的制备方法包括:将MAX相、陶瓷先驱体混合并固化成型,之后在惰性气氛中于500‑1300℃烧结处理,再经后处理获得新型MAX相复合材料。本发明提供的方法首次将陶瓷先驱体用来对MAX相进行成型,在低温常压条件下实现MAX相的烧结,且所得的MAX相复合材料具有近净型成型、易加工、高强度、抗腐蚀性和抗氧化性等特性,同时该复合材料在核能、航空、高耗能工业与环境、国防等领域具有广泛的应用前景。

Description

一种新型MAX相复合材料及其制备方法
技术领域
本发明属于复合材料技术领域,具体涉及一种新型MAX相复合材料及其制备方法。
背景技术
MAX相材料是一种新型的可加工陶瓷材料,由于兼具了金属材料和陶瓷材料的各自的一些优良性能,因此称为金属陶瓷材料。MAX相是具有六方晶格结构的纳米层状三元化合物,分子式为Mn+1AXn,其中M为III B、IV B、V B、VI B族的前过渡金属元素,A主要为ⅢA和ⅣA族元素,X为碳和/或氮,n=1~3。MAX相的晶胞由Mn+1Xn单元与A原子面交替堆垛而成,n=1、2或3,通常简称为211,312和413相,目前合成的MAX相约有70余种。这类材料具备特殊的纳米层状的晶体结构,它们也因此而具有了良好的导电性、较高的韧性、良好的自润滑性等性能;并且这类材料在电极材料,高温结构材料,高温发热材料和化学防腐材料等方面也开始了广泛的应用。MAX相的这一系列优异的性能使得该陶瓷材料在未来的使用方面具有了非常广阔的前景,同时也引起了全世界研究者们对MAX相的广泛关注。传统的MAX相烧结方法采用热等静压法(HIP)、热压烧结法(HP)、放电等离子烧结法(SPS)等,这些制备方法一般都需要在高温高压下才能进行。
发明内容
本发明的主要目的在于提供一种新型MAX相复合材料及其制备方法,以克服现有技术的不足。
本发明提供的方法不需要高温高压,同时还能提高材料的硬度等力学性能。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种新型MAX相复合材料的制备方法,其包括:
将MAX相、陶瓷先驱体混合并固化成型,之后在惰性气氛中于500-1300℃烧结处理,再经后处理获得新型MAX相复合材料。
本发明实施例还提供了前述方法制得的新型MAX相复合材料。
与现有技术相比,本发明的有益效果在于:
(1)本发明中首次实现MAX相与陶瓷先驱体的混合成型,且合成方法简单,具有普适性;
(2)本发明中首次实现MAX在低温常压的条件下进行烧结,且合成方法简单,具有普适性;
(3)本发明首次实现MAX相与陶瓷先驱体的混合,且具有流动性,粘度10cp~250000cp,实现了MAX相复杂形状的成型;
(4)本发明制备的MAX相复合材料,兼具金属和陶瓷的特点,具有高强度、抗腐蚀性、抗氧化等特点。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中新型MAX相复合材料的XRD图;
图2为本发明实施例1中新型MAX相复合材料的SEM图;
图3a-3c为本发明实施例1中新型MAX相复合材料的线扫描图;
图4a-4f为本发明实施例1中新型MAX相复合材料的元素分布图;
图5为本发明实施例2中新型MAX相复合材料的XRD图;
图6为本发明实施例2中新型MAX相复合材料的SEM图;
图7a-7c为本发明实施例2中新型MAX相低温烧结方法Ti3AlC2的线扫描图;
图8a-8f为本发明实施例2中新型MAX相复合材料的元素分布图。
具体实施方式
鉴于现有技术的缺陷,本案发明人经长期研究和大量实践,得以提出本发明的技术方案,下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的一个方面提供了一种新型MAX相复合材料的制备方法,其包括:将MAX相、陶瓷先驱体混合并固化成型,之后在惰性气氛中于500-1300℃烧结处理,再经后处理获得新型MAX相复合材料。
进一步的,所述烧结处理的温度为500~1200℃,时间为0~6h。
进一步的,所述惰性气氛包括氩气气氛,且不限于此。
在一些较为具体的实施方案中,所述MAX相与陶瓷先驱体的质量比为1~19:1~19。
在一些较为具体的实施方案中,所述陶瓷先驱体包括有机硅陶瓷先驱体、有机硼陶瓷先驱体、有机氮陶瓷先驱体中的任意一种或两种以上的组合,且不限于此。
进一步的,所述陶瓷先驱体包括聚碳硅烷、聚硅氮烷、聚硅氧烷、聚硅硼碳烷、聚硅硼碳氮烷、聚硅烷中的任意一种或两种以上的组合,且不限于此。
进一步的,所述聚硅氧烷包括SiOC陶瓷先驱体聚硅氧烷、SiC先驱体聚碳硅烷、SiBCN先驱体聚硅硼碳烷中的任意一种或两种以上的组合,且不限于此。
进一步的,所述陶瓷先驱体包括液体或固体陶瓷先驱体,且不限于此。
在一些较为具体的实施方案中,所述MAX相的分子式为Mn+1AXn,其中M选自III B、IV B、V B、VI B族元素中的任意一种或两种以上的组合,A选自III A、IV A族元素中的任意一种或两种以上的组合,X为C、N中的任意一种或两种的组合,n为1、2、3或4。
进一步的,所述的X为CxNy,其中x+y=1、2、3或4。
进一步的,所述MAX相包括Ti2AlC、Ti3SiC2、V2AlC、Ti3AlC2、Cr2AlC、Nb4AlC3、V2AsC中的任意一种或两种以上的组合,且不限于此。
进一步的,所述MAX相具有六方晶系结构,空间群为P63/mmc(194),晶胞由Mn+1Xn单元与A层原子交替堆垛而成。
进一步的,所述MAX相为粉体材料,且不限于此。
进一步的,所述MAX相的粉体粒度为10nm~200μm。
在一些较为具体的实施方案中,所述的后处理包括:在所述的烧结处理完成后,对所获产物的表面进行粗磨、抛光处理,再经超声、干燥处理,获得所述新型MAX相复合材料。
进一步的,进行粗磨处理使用的为砂布,且不限于此。
进一步的,进行粗磨处理使用的为抛光布,且不限于此。
进一步的,所述超声处理包括水中超声处理、乙醇中超声处理。
下面结合若干优选实施例及附图对本发明的技术方案做进一步详细说明,本实施例在以发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
下面所用的实施例中所采用的实验材料,如无特殊说明,均可由常规的生化试剂公司购买得到。
实施例1
本实施例中,选用的MAX相材料为Ti3AlC2粉体材料,陶瓷先驱体为SiOC陶瓷先驱体聚硅氧烷,该新型MAX相复合材料制备方法如下:
(1)将Ti3AlC2粉和SiOC陶瓷先驱体聚硅氧烷按照质量比4:6的比例混合,将上述材料充分的搅拌混合,得到混合产物;
(2)将混合物置于聚四氟乙烯的模具中,放入烘箱内进行固化,取出后放入管式炉中进行烧结,反应条件为:700℃,240min,氩气保护,待管式炉温度降到室温后,取出样品;
(3)用砂纸对样品进行初步粗磨,随后用抛光布进行抛光,用去离子水和乙醇洗涤样品:将样品放入烧杯中,加入去离子水,超声清洗15min,倒掉去离子水,再倒入乙醇,超声清洗15min后,取出样品将其放入50℃的烘箱内,12h后取出,得到所述新型MAX相复合材料。
性能表征:图1为实施例1中新型MAX相复合材料的XRD图,从XRD图中可以看出,得到的相出现的还是Ti3AlC2相典型的特征峰,说明烧结后的样品主要还是是Ti3AlC2;图2为实施例1中新型MAX相复合材料的SEM图,图中可以看出Ti3AlC2的颗粒被结合在一起,说明MAX相已经被结合在一起成型;图3a-3c是实施例1中新型MAX相复合材料的线扫描图,图中可以看出Ti3AlC2与SiOC陶瓷结合在一起,形成了中间相,说明MAX相的成型并不是单纯的物理成型;图4a-4f是实施例1中新型MAX相复合材料的元素分布图,图中可以看出Ti元素和Si元素有一个相互扩散的现象,说明Ti3AlC2与SiOC陶瓷有中间相的形成;其维氏硬度为478。
实施例2
本实施例中,选用的MAX相材料为Ti3AlC2粉体材料,陶瓷先驱体为SiOC陶瓷先驱体聚硅氧烷,该新型MAX相复合材料制备方法如下:
(1)将Ti3AlC2粉和SiOC陶瓷先驱体聚硅氧烷按照质量比5:5的比例混合,将上述材料充分的搅拌混合,得到混合产物;
(2)将混合物置于聚四氟乙烯的模具中,放入烘箱内进行固化,取出后放入管式炉中进行烧结,反应条件为:700℃,240min,氩气保护,待管式炉温度降到室温后,取出反应产物;
(3)用砂纸对样品进行初步粗磨,随后用抛光布进行抛光,用去离子水和乙醇洗涤样品:将样品放入烧杯中,加入去离子水,超声清洗15min,倒掉去离子水,再倒入乙醇,超声清洗15min后,取出样品将其放入50℃的烘箱内,12h后取出,得到所述新型MAX相复合材料。
性能表征:图5为实施例2中新型MAX相复合材料的XRD图,从XRD图中可以看出,得到的相出现还是Ti3AlC2相典型的特征峰,说明烧结后的样品主要还是Ti3AlC2;图6为实施例2中新型MAX相复合材料的SEM图,图中可以看出Ti3AlC2的颗粒被结合在一起,说明MAX相已经被结合在一起成型;图7a-7c是实施例2中新型MAX相低温烧结方法Ti3AlC2的线扫描图,图中可以看出Ti3AlC2与SiOC陶瓷结合在一起,形成了中间相,说明MAX相的成型并不是单纯的物理成型;图8a-8f是实施例2中新型MAX相复合材料的元素分布图,图中可以看出Ti元素和Si元素有一个相互扩散的现象,说明Ti3AlC2与SiOC陶瓷有中间相的形成;其维氏硬度为352。
实施例3
本实施例中,选用的MAX相材料为Ti3SiC2粉体材料,陶瓷先驱体为SiC先驱体聚碳硅烷,该新型MAX相复合材料制备方法如下:
(1)将Ti3SiC2粉和SiC先驱体聚碳硅烷按照质量比1:19的比例混合,将上述材料充分的搅拌混合,得到混合产物;
(2)将混合物置于聚四氟乙烯的模具中,放入烘箱内于100℃进行固化,取出后放入管式炉中进行烧结,反应条件为:1000℃,6h,氩气保护,待管式炉温度降到室温后,取出反应产物;
(3)用砂纸对样品进行初步粗磨,随后用抛光布进行抛光,用去离子水和乙醇洗涤样品:将样品放入烧杯中,加入去离子水,超声清洗15min,倒掉去离子水,再倒入乙醇,超声清洗15min后,取出样品将其放入50℃的烘箱内,12h后取出,得到所述新型MAX相复合材料。
实施例4
本实施例中,选用的MAX相材料为Cr2AlC粉体材料,陶瓷先驱体为SiBCN先驱体聚硅硼碳烷,该新型MAX相复合材料制备方法如下:
(1)将Cr2AlC粉和SiBCN先驱体聚硅硼碳烷按照质量比1:10的比例混合,将上述材料充分的搅拌混合,得到混合产物;
(2)将混合物置于聚四氟乙烯的模具中,放入烘箱内于200℃进行固化,取出后放入管式炉中进行烧结,反应条件为:800℃,60min,氩气保护,待管式炉温度降到室温后,取出反应产物;
(3)用砂纸对样品进行初步粗磨,随后用抛光布进行抛光,用去离子水和乙醇洗涤样品:将样品放入烧杯中,加入去离子水,超声清洗15min,倒掉去离子水,再倒入乙醇,超声清洗15min后,取出样品将其放入50℃的烘箱内,12h后取出,得到所述新型MAX相复合材料。
实施例5
本实施例中,选用的MAX相材料为V2AlC粉体材料,陶瓷先驱体为SiC先驱体聚碳硅烷,该新型MAX相复合材料制备方法如下:
(1)将V2AlC粉和SiC先驱体聚碳硅烷按照质量比19:1的比例混合,将上述材料充分的搅拌混合,得到混合产物;
(2)将混合物置于聚四氟乙烯的模具中,放入烘箱内于150℃进行固化,取出后放入管式炉中进行烧结,反应条件为:1200℃,2h,氩气保护,待管式炉温度降到室温后,取出反应产物;
(3)用砂纸对样品进行初步粗磨,随后用抛光布进行抛光,用去离子水和乙醇洗涤样品:将样品放入烧杯中,加入去离子水,超声清洗15min,倒掉去离子水,再倒入乙醇,超声清洗15min后,取出样品将其放入50℃的烘箱内,12h后取出,得到所述新型MAX相复合材料。
此外,本案发明人还参照前述实施例,以本说明书述及的其它原料、工艺操作、工艺条件进行了试验,并均获得了较为理想的结果。
本发明的各方面、实施例、特征及实例应视为在所有方面为说明性的且不打算限制本发明,本发明的范围仅由权利要求书界定。在不背离所主张的本发明的精神及范围的情况下,所属领域的技术人员将明了其它实施例、修改及使用。
在本发明案中标题及章节的使用不意味着限制本发明;每一章节可应用于本发明的任何方面、实施例或特征。
在本发明案通篇中,在将组合物描述为具有、包含或包括特定组份之处或者在将过程描述为具有、包含或包括特定过程步骤之处,预期本发明教示的组合物也基本上由所叙述组份组成或由所叙述组份组成,且本发明教示的过程也基本上由所叙述过程步骤组成或由所叙述过程步骤组组成。
应理解,各步骤的次序或执行特定动作的次序并非十分重要,只要本发明教示保持可操作即可。此外,可同时进行两个或两个以上步骤或动作。
尽管已参考说明性实施例描述了本发明,但所属领域的技术人员将理解,在不背离本发明的精神及范围的情况下可做出各种其它改变、省略及/或添加且可用实质等效物替代所述实施例的元件。另外,可在不背离本发明的范围的情况下做出许多修改以使特定情形或材料适应本发明的教示。因此,本文并不打算将本发明限制于用于执行本发明的所揭示特定实施例,而是打算使本发明将包含归属于所附权利要求书的范围内的所有实施例。此外,除非具体陈述,否则术语第一、第二等的任何使用不表示任何次序或重要性,而是使用术语第一、第二等来区分一个元素与另一元素。

Claims (10)

1.一种新型MAX相复合材料的制备方法,其特征在于包括:
将MAX相、陶瓷先驱体混合并固化成型,之后在惰性气氛中于500~1300℃烧结处理,再经后处理获得新型MAX相复合材料。
2.根据权利要求1所述的制备方法,其特征在于:所述烧结处理的温度为500~1200℃,时间为0~6h;
和/或,所述固化成型的温度为100~200℃。
3.根据权利要求1所述的制备方法,其特征在于:所述MAX相与陶瓷先驱体的质量比为1~19:1~19。
4.根据权利要求1所述的制备方法,其特征在于:所述陶瓷先驱体包括有机硅陶瓷先驱体、有机硼陶瓷先驱体、有机氮陶瓷先驱体中的任意一种或两种以上的组合;优选为聚碳硅烷、聚硅氮烷、聚硅氧烷、聚硅硼碳烷、聚硅硼碳氮烷、聚硅烷中的任意一种或两种以上的组合,尤其优选为SiOC陶瓷先驱体聚硅氧烷、SiC先驱体聚碳硅烷、SiBCN先驱体聚硅硼碳烷中的任意一种或两种以上的组合;
和/或,所述陶瓷先驱体包括液体陶瓷先驱体和/或固体陶瓷先驱体。
5.根据权利要求1所述的制备方法,其特征在于:所述MAX相的分子式为Mn+1AXn,其中M选自III B、IV B、V B、VI B族元素中的任意一种或两种以上的组合,A选自III A、IV A族元素中的任意一种或两种以上的组合,X包括C和/或N,n为1、2、3或4。
6.根据权利要求5所述的制备方法,其特征在于:所述的X为CxNy,其中x+y=1、2、3或4。
7.根据权利要求1所述的制备方法,其特征在于:所述MAX相包括Ti2AlC、Ti3SiC2、V2AlC、Ti3AlC2、Cr2AlC、Nb4AlC3、V2AsC中的任意一种或两种以上的组合。
8.根据权利要求1所述的制备方法,其特征在于:所述MAX相为粉体材料;优选的,所述MAX相的粉体粒度为10nm~200μm。
9.根据权利要求1所述的制备方法,其特征在于,所述的后处理包括:在所述的烧结处理完成后,对所获产物的表面进行粗磨、抛光、超声、干燥处理,获得所述新型MAX相复合材料。
10.由权利要求1-9中任一项所述方法制得的新型MAX相复合材料。
CN202010216651.XA 2020-03-25 2020-03-25 一种max相复合材料及其制备方法 Active CN111393167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010216651.XA CN111393167B (zh) 2020-03-25 2020-03-25 一种max相复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010216651.XA CN111393167B (zh) 2020-03-25 2020-03-25 一种max相复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111393167A true CN111393167A (zh) 2020-07-10
CN111393167B CN111393167B (zh) 2022-04-19

Family

ID=71427516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010216651.XA Active CN111393167B (zh) 2020-03-25 2020-03-25 一种max相复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111393167B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213960A (zh) * 2021-05-24 2021-08-06 苏长全 一种高韧性、高硬度耐磨陶瓷及其制备方法
CN113248260A (zh) * 2021-05-21 2021-08-13 北京航空航天大学 含氮新型max相材料和二维材料的制备方法及用途

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173122A (ja) * 1992-12-01 1994-06-21 Mitsui Mining Co Ltd 高伸度炭素繊維及びその製造方法
CN104628395A (zh) * 2013-11-07 2015-05-20 中国科学院宁波材料技术与工程研究所 一种核燃料包壳元件的制备方法
WO2016202892A1 (en) * 2015-06-15 2016-12-22 Katholieke Universiteit Leuven Max phase ceramics and methods for producing the same
US20180057914A1 (en) * 2015-02-09 2018-03-01 Office National D'etudes Et De Recherches Aerospatiales (Onera) Cermet Materials and Method for Making Such Materials
CN108821291A (zh) * 2018-07-10 2018-11-16 中国科学院宁波材料技术与工程研究所 一种新型三元层状max相材料、其制备方法及应用
CN108910884A (zh) * 2018-07-10 2018-11-30 中国科学院宁波材料技术与工程研究所 一种新型max相材料、其制备方法及应用
CN109437177A (zh) * 2018-12-04 2019-03-08 中国科学院宁波材料技术与工程研究所 以Cl为表面基团的MXene材料及其制备方法与应用
CN109608217A (zh) * 2018-12-13 2019-04-12 湖南博翔新材料有限公司 一种含MAX相界面层的SiCf/SiC复合材料的制备方法
CN110683586A (zh) * 2019-10-25 2020-01-14 南昌大学 一种一步合成金属氧化物负载的过渡族金属碳化物的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173122B2 (ja) * 2013-08-23 2017-08-02 キヤノン株式会社 画像再生装置および画像再生方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173122A (ja) * 1992-12-01 1994-06-21 Mitsui Mining Co Ltd 高伸度炭素繊維及びその製造方法
CN104628395A (zh) * 2013-11-07 2015-05-20 中国科学院宁波材料技术与工程研究所 一种核燃料包壳元件的制备方法
US20180057914A1 (en) * 2015-02-09 2018-03-01 Office National D'etudes Et De Recherches Aerospatiales (Onera) Cermet Materials and Method for Making Such Materials
WO2016202892A1 (en) * 2015-06-15 2016-12-22 Katholieke Universiteit Leuven Max phase ceramics and methods for producing the same
CN108821291A (zh) * 2018-07-10 2018-11-16 中国科学院宁波材料技术与工程研究所 一种新型三元层状max相材料、其制备方法及应用
CN108910884A (zh) * 2018-07-10 2018-11-30 中国科学院宁波材料技术与工程研究所 一种新型max相材料、其制备方法及应用
CN109437177A (zh) * 2018-12-04 2019-03-08 中国科学院宁波材料技术与工程研究所 以Cl为表面基团的MXene材料及其制备方法与应用
CN109608217A (zh) * 2018-12-13 2019-04-12 湖南博翔新材料有限公司 一种含MAX相界面层的SiCf/SiC复合材料的制备方法
CN110683586A (zh) * 2019-10-25 2020-01-14 南昌大学 一种一步合成金属氧化物负载的过渡族金属碳化物的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248260A (zh) * 2021-05-21 2021-08-13 北京航空航天大学 含氮新型max相材料和二维材料的制备方法及用途
CN113213960A (zh) * 2021-05-24 2021-08-06 苏长全 一种高韧性、高硬度耐磨陶瓷及其制备方法

Also Published As

Publication number Publication date
CN111393167B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
Zhang et al. Dense high-entropy boride ceramics with ultra-high hardness
Heydari et al. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN111393167B (zh) 一种max相复合材料及其制备方法
CN108950280B (zh) 一种石墨烯/碳化硅增强铝基复合材料及其制备方法
CN101967594A (zh) 一种以镍钼合金为粘结剂的碳化钛基硬质合金及其制备方法
Xu et al. Synthesis and characterization of quarternary Ti3Si (1− x) AlxC2 MAX phase materials
WO2015066952A1 (zh) 一种高性能粉末冶金不锈钢及其制备方法
CN102976760A (zh) 添加稀土氧化物的硼化锆-碳化硅复相陶瓷材料及其制备方法
CN114574789B (zh) 碳化硅纤维及中高熵陶瓷增强金属基复合材料及制备方法
CN110747378B (zh) 一种Ti3AlC2-Al3Ti双相增强Al基复合材料及其热压制备方法
CN108178636B (zh) 一种Si3N4/SiC复合吸波陶瓷及其制备方法
CN108017392B (zh) 梯度及非梯度SiCw增韧硼化物基复合陶瓷材料及其制备方法
Wang et al. Pressureless densification and properties of high-entropy boride ceramics with B4C additions
CN106498255A (zh) 一种硬质复合金属材料及其制备方法
Chen et al. Porous nano-Al2O3/Fe–Cr–Ni composites fabricated by pressureless reactive sintering
Rudianto et al. Sintering behavior of hypereutectic aluminum-silicon metal matrix composites powder
CN102070340B (zh) 碳纳米管增强三硅化五钛基复合材料及其制备方法
CN111763089A (zh) 具有层状结构的三元硼化物陶瓷材料制备方法及其制品
CN110981489A (zh) 一种TiNx-Ti3SiC2复合材料及其制备方法
CN115259901A (zh) 一种炭材料表面TaC保护涂层材料的制备方法
Liang et al. Fabrication and Wear Performance of (Cu–Sn) Solution/TiC x Bonded Diamond Composites
El-Wazery et al. Preparation and mechanical properties of zirconia/nickel functionally graded materials
CN106591747A (zh) 一种β‑Si3N4晶须和Ni3Al粘结相协同增韧的WC复合材料及其制备方法
CN102492886B (zh) 一种碳化钨铝-铁镍硬质合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant