CN111386616A - 制造二次电池用电极的方法和制造二次电池的方法 - Google Patents

制造二次电池用电极的方法和制造二次电池的方法 Download PDF

Info

Publication number
CN111386616A
CN111386616A CN201880075804.4A CN201880075804A CN111386616A CN 111386616 A CN111386616 A CN 111386616A CN 201880075804 A CN201880075804 A CN 201880075804A CN 111386616 A CN111386616 A CN 111386616A
Authority
CN
China
Prior art keywords
layer
slurry
active material
layer slurry
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880075804.4A
Other languages
English (en)
Other versions
CN111386616B (zh
Inventor
吉田登
乙幡牧宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN111386616A publication Critical patent/CN111386616A/zh
Application granted granted Critical
Publication of CN111386616B publication Critical patent/CN111386616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明的一个目在于,在制造集电器上层叠有第一层和第二层的二次电池电极时,在所述第一层干燥之前涂布所述第二层,同时抑制所述第一层与所述第二层的混合。所述二次电池电极的制造方法包括:用包含第一粘合剂的第一层浆料涂布集电器的表面的步骤;在所述第一层浆料干燥之前用包含第二粘合剂的第二层浆料涂布所述第一层浆料的步骤;和在用所述第一层浆料和所述第二层浆料涂布之后,使所述第一层浆料和所述第二层浆料干燥,以获得其中所述第一层和所述第二层依次层叠在集电器上的层叠结构的步骤。所述第二层浆料的固体含量比大于50质量%并且所述第二粘合剂的组成比大于2质量%。

Description

制造二次电池用电极的方法和制造二次电池的方法
技术领域
本发明涉及一种制造用作二次电池的正极和负极的电极的方法。
背景技术
二次电池广泛用作例如智能电话、平板电脑、笔记本电脑、数码相机等便携式电子装置的电源。另外,二次电池已经扩展其作为电动车辆电源和家用电源的应用。其中,由于锂离子二次电池的能量密度高且重量轻,因此它们是当前生活中必不可少的蓄电装置。
包括二次电池的常规电池具有如下结构,其中作为电极的正极和负极隔着***其间的隔膜彼此相对。正极和负极各自具有片状集电器和形成在所述集电器两侧上的活性材料层。隔膜用于防止正极和负极之间的短路并有效地在正极和负极之间移动离子。常规上,主要使用由聚丙烯或聚乙烯材料制成的聚烯烃类微孔隔膜作为隔膜。然而,聚丙烯和聚乙烯材料的熔点通常为110℃至160℃。因此,当聚烯烃类隔膜用于具有高能量密度的电池时,隔膜在电池的高温下熔化,并且电极之间可能发生大面积短路,这导致电池冒烟和着火。
因此,为了改善二次电池的安全性,已知以下技术。专利文献1(日本专利第3622383号)描述了一种制造二次电池的电极的技术,所述二次电池的电极具有如下结构,其中通过在集电器上同时施涂用于电极材料层和保护层的涂布液,并干燥所述涂布液来将集电器、电极材料层和保护层层压。
引用列表
专利文献
专利文献1:日本专利第3622383号
发明内容
技术问题
然而,在专利文献1中描述的技术中,由于在干燥活性材料层用涂布液之前施涂绝缘层用涂布液,因此两种涂布液在活性材料层和绝缘层之间的界面附近混合,并且活性材料层和绝缘层在界面处形成混合部。两个层的局部混合对于改善两个层的粘附性是理想的。然而,显著的混合可能导致充电/放电容量降低、电池电阻增加、绝缘效果降低等。
本发明的一个目的在于提供一种制造二次电池用电极的方法和一种制造二次电池的方法,所述电极被以如下方式制造:在制造集电器上层压有第一层和第二层的二次电池用电极时,在干燥第一层之前施涂第二层时,抑制第一层与第二层的混合,同时当所述电极用于电池中时不使电池特性劣化。
解决问题的方案
根据本发明的制造用作二次电池的正极和负极的电极的方法包括:
将含有第一粘合剂的第一层浆料施涂至集电器的表面,
在所述第一层浆料干燥之前在所述第一层浆料上施涂含有第二粘合剂的第二层浆料,和
在施涂所述第一层浆料和所述第二层浆料之后干燥所述第一层浆料和所述第二层浆料,以获得其中第一层和第二层依次层压在所述集电器上的层压结构,
其中所述第二层浆料具有的固体含量比为大于50质量%、且所述第二粘合剂的组成比为大于2质量%。
本发明的有益效果
根据本发明,能够有效制造具有其中第一层和第二层层压在集电器上的结构的电极,其中当在干燥第一层之前通过涂布形成第二层时,抑制第一层与第二层之间的界面处的混合,同时用作电池时不使电池特性劣化。
附图说明
[图1]图1是根据本发明的一个实施方式的二次电池的分解透视图。
[图2]图2是图1中所示的电池元件的示意性截面图。
[图3]图3是示出图2中所示的正极和负极的构造的示意性截面图。
[图4A]图4A是示出电池元件中的正极和负极的一个配置例的截面图。
[图4B]图4B是示出电池元件中的正极和负极的另一个配置例的截面图。
[图4C]图4C是示出电池元件中的正极和负极的另一个配置例的截面图。
[图5]图5是根据本发明的另一个实施方式的二次电池的分解透视图。
[图6]图6是用于制造具有图2中所示的结构的电极的电极制造设备的一个实施方式的示意图。
[图6A]图6A是电极制造设备的另一个实施方式的示意图。
[图6B]图6B是电极制造设备的另一个实施方式的示意图。
[图7]图7是示出配备有二次电池的电动车辆的一个实施方式的示意图。
[图8]图8是示出配备有二次电池的蓄电装置的一个示例的示意图。
具体实施方式
参考图1,示出了根据本发明的一个实施方式的二次电池1的分解透视图,包含电池元件10和将电池元件10与电解液一起封装在内的壳。所述壳具有壳构件21、22,壳构件21、22在电池元件10的厚度方向上从两侧将其封装并密封其外周部,从而密封电池元件10和电解液。正极端子31和负极端子32分别有一部分从壳突出而连接至电池元件10。
如图2中所示,电池元件10具有如下构造,其中多个正极11和多个负极12设置成彼此面对,从而交替地定位。另外,隔膜13设置在正极11和负极12之间,以确保正极11和负极12之间的离子传导,并防止正极11和负极12之间的短路。然而,在本实施方式中,隔膜13不是必需的。
将进一步参考图3描述正极11和负极12的结构。在图3中所示的结构中,正极11和负极12没有特别加以区分,但是所述结构可应用于正极11和负极12两者。正极11和负极12(在它们不加以区分的情况下统称为“电极”)包含可由金属箔形成的集电器110、在集电器110的一个或两个表面上形成的活性材料层111。活性材料层111优选在俯视图中形成为矩形形状,并且集电器110具有如下形状:具有从形成活性材料层111的区域延伸的延长部110a。
在正极11和负极12层压的状态下,正极11的延长部110a和负极12的延长部110a形成在彼此不重叠的位置处。然而,正极11的延长部110a定位成彼此重叠,并且负极12的延长部110a也相似地定位成彼此重叠。利用这样的延长部110a的配置,在多个正极11中的每一个中,各个延长部110a被汇集并焊接在一起以形成正极极耳10a。同样,在多个负极12中,各个延长部110a被汇集并焊接在一起以形成负极极耳10b。正极端子31电连接至正极极耳10a,并且负极端子32电连接至负极极耳10b。
正极11和负极12中的至少一者还包含形成在活性材料层111上的绝缘层112。绝缘层112在使活性材料层111在俯视图中不暴露的区域中形成并且可以形成为覆盖延长部110a的一部分。在活性材料层111形成在集电器110的两个表面上的情况下,绝缘层112可以形成在两个活性材料层111上或仅形成在单侧的活性材料层111上。
具有这样的结构的正极11和负极12的配置的一些实例示于图4A至4C中。在图4A中所示的配置中,两侧都具有绝缘层112的正极11和不具有绝缘层的负极12交替层压。在图4B中所示的配置中,仅在一侧上具有绝缘层112的正极11和负极12以各个绝缘层112不彼此面对的方式交替层压。在图4C中所示的配置中,两个表面上都具有绝缘层112的正极11和两个表面上都具有绝缘层112的负极12交替层压。
在图4A至4C中所示的结构中,由于绝缘层112存在于正极11和负极12之间,因此可以省略隔膜13。正极11和负极12通过冲压等形成为预定形状,此时,可能产生大的毛刺。因此,当不需要隔膜时,为了防止由于这种大的毛刺引起的正极11和负极12之间的短路,正极11和负极12优选在两侧都具有绝缘层112。
正极11和负极12的结构和配置不限于上述示例,并且可以进行各种修改,只要绝缘层112设置在正极11和负极12中的至少一者的至少一个表面上,并且正极11和负极12配置成使得绝缘层112存在于正极11和负极12之间即可。例如,在图4A和4B中所示的结构中,正极11和负极12之间的关系可以颠倒。
由于具有如图示的平面层压结构的电池元件10没有具有小曲率半径的部分(靠近卷绕结构的卷绕芯的区域),因此电池元件10与具有卷绕结构的电池元件相比,具有不易受由于充电和放电引起的电极体积变化影响的优点。也就是说,具有平面层压结构的电池元件对于使用易于引起体积膨胀的活性材料的电极组件是有效的。
在图1和图2中所示的实施方式中,正极端子31和负极端子32在相反方向上引出,但是正极端子31和负极端子32被引出的方向可以是任意的。例如,如图5中所示,正极端子31和负极端子32可以从电池元件10的同一边引出。虽然未示出,但是正极端子31和负极端子32也可以从电池元件10的两个相邻边引出。在上述两种情况下,正极极耳10a和负极极耳10b可以在与正极端子31和负极端子32引出的方向相对应的位置处形成。
此外,在所图示的实施方式中,示出了具有层压结构的电池元件10,所述层压结构具有多个正极11和多个负极12。然而,具有卷绕结构的电池元件可以具有一个正极11和一个负极12。
在下文中,将详细描述构成电池元件10的各部分和电解液。在以下描述中,尽管没有特别限制,但将描述锂离子二次电池中的元件。
[1]负极
负极具有以下结构,其中,例如,负极活性材料通过负极粘合剂粘附至负极集电器,并且负极活性材料层压在负极集电器上作为负极活性材料层。只要不显著损害本发明的效果,任何能够随着充电和放电吸收和解吸锂离子的材料都可以用作本实施方式中的负极活性材料。通常,与正极的情况一样,负极也通过在集电器上设置负极活性材料层来构造。与正极相似,负极也可以适当地具有其它层。
负极活性材料没有特别限制,只要是能够吸收和解吸锂离子的材料即可,并且可以任意使用已知的负极活性材料。例如,优选使用碳质材料,如焦炭、乙炔黑、中间相碳微球、石墨等;锂金属;锂合金,如锂-硅、锂-锡;钛酸锂等作为负极活性材料。其中,从良好循环特性和安全性以及优异的连续充电特性的观点出发,最优选使用碳质材料。可以单独使用一种负极活性材料,或者可以以任意组合和比率组合使用两种以上的负极活性材料。
此外,负极活性材料的粒径可以是任意的,只要不显著损害本发明的效果即可。然而,就优异的电池特性,如初始效率、倍率特性、循环特性等而言,粒径通常为1μm以上,优选为15μm以上,且通常为约50μm以下,优选为约30μm以下。此外,例如,作为碳质材料也可以使用例如如下材料:通过用有机物质如沥青等涂布碳质材料,然后煅烧所述碳质材料而获得的材料;或通过使用CVD方法等在表面上形成无定形碳而获得的材料。用于涂布的有机物质的示例包括从软沥青到硬沥青的煤焦油沥青;煤类重质油,如干馏液化油;直馏重质油,如常压渣油和减压渣油;石油类重质油,如在原油、石脑油等热分解时作为副产物产生的分解的重质油(例如,乙烯重质馏分)。也可以将通过在200℃至400℃下蒸馏这些重质油以产生固体残余物,然后将所述固体残余物粉碎至1μm至100μm的尺寸而获得的固体残余物用作所述有机物质。另外,氯乙烯树脂、酚醛树脂、酰亚胺树脂等也可以用作所述有机物质。
在本发明的一个实施方式中,所述负极包含金属和/或金属氧化物和碳作为负极活性材料。所述金属的示例包括Li、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La,以及这些中的两种以上的合金。这些金属或合金可以作为两种以上的混合物使用。另外,这些金属或合金可以含有一种以上非金属元素。
所述金属氧化物的示例包括硅氧化物、氧化铝、锡氧化物、铟氧化物、氧化锌、氧化锂及其复合物。在本实施方式中,优选含有锡氧化物或硅氧化物作为负极活性材料,且更优选含有硅氧化物。这是因为硅氧化物相对稳定并且几乎不会引起与其它化合物的反应。而且,例如,可以将0.1质量%至5质量%的选自氮、硼和硫中的一种或多种元素添加到金属氧化物中。以这种方式,能够改善金属氧化物的电导率。而且,通过气相沉积等用碳等导电材料涂布金属或金属氧化物,能够相似地改善电导率。
所述碳的示例包括石墨、无定形碳、类金刚石碳、碳纳米管及其复合物。结晶度高的石墨具有高导电性,并且对于由金属如铜制成的负极集电器的粘附性和电压平坦性是优异的。另一方面,由于具有低结晶度的无定形碳具有相对小的体积膨胀,因此减轻整个负极的体积膨胀的效果高,并且几乎不会发生由于不均匀性如晶粒边界和缺陷而引起的劣化。
所述金属和金属氧化物具有接收锂的能力远大于碳的特征。因此,通过使用大量的金属和金属氧化物作为负极活性材料,能够改善电池的能量密度。为了实现高能量密度,优选负极活性材料中金属和/或金属氧化物的含量比率高。较大量的金属和/或金属氧化物是优选的,因为这增加了负极整体的容量。负极中金属和/或金属氧化物的含量优选为负极活性材料的0.01质量%以上,更优选为0.1质量%以上,进一步优选为1质量%以上。然而,与碳相比,所述金属和/或金属氧化物在吸收和解吸锂时具有大的体积变化,并且可能失去电接合。因此,负极活性材料中金属和/或金属氧化物的量为99质量%以下,优选为90质量%以下,更优选为80质量%以下。如上所述,所述负极活性材料是能够随着负极中的充电和放电而可逆地吸收和解吸锂离子的材料,并且不包括其它粘合剂等。
例如,所述负极活性材料层可以通过将上述负极活性材料辊压成形而形成为片状电极,或者可以通过压缩成形而形成为颗粒电极。然而,通常,负极活性材料层可以通过在集电器上施涂并干燥施涂液来形成,其中所述施涂液可以通过用溶剂将上述负极活性材料、粘合剂(粘合试剂)和必要时包含的各种助剂制成浆料来获得。
所述负极粘合剂没有特别限制,并且其示例包括聚偏二氟乙烯、偏二氟乙烯-六氟丙烯共聚物、偏二氟乙烯-四氟乙烯共聚物、苯乙烯-丁二烯共聚物橡胶、聚四氟乙烯、聚丙烯、聚乙烯、丙烯酸类、丙烯酸、丙烯酸钠、聚酰亚胺、聚酰胺酰亚胺等。除上述之外,还可以包括苯乙烯丁二烯橡胶(SBR)等。当使用水性粘合剂如SBR乳液时,也可以使用增稠剂如羧甲基纤维素(CMC)。从“足够的粘合强度”和“高能量”之间折衷的观点来看,相对于100质量份的负极活性材料,所使用的负极粘合剂的量优选为0.5至20质量份。可以混合并使用负极粘合剂。
作为负极集电器的材料,可以任意使用已知的材料,例如,从电化学稳定性观点来看,优选使用金属材料,例如铜、镍、不锈钢、铝、铬、银及其合金。其中,从易加工性和成本的观点来看,特别优选铜。还优选负极集电器也预先进行表面粗糙化处理。此外,集电器的形状也是任意的,并且其示例包括箔状、平板状和网眼状。也可以使用穿孔型集电器,例如拉制金属或冲孔金属。
所述负极可以例如通过在负极集电器上形成含有负极活性材料和负极粘合剂的负极活性材料层来制造。用于形成负极活性材料层的方法的示例包括刮刀法、模涂法、CVD法、溅射法等。在预先形成负极活性材料层之后,可以通过例如气相沉积、溅射等的方法形成铝、镍或其合金的薄膜,以获得负极集电器。
为了降低阻抗,可以在含有负极活性材料的涂层中添加导电辅助材料。导电辅助材料的示例包括片状、煤状、纤维状碳质微粒等,例如石墨、炭黑、乙炔黑、气相生长碳纤维(例如,由昭和电工公司(Showa Denko K.K.)制造的VGCF(注册商标))等。
[2]正极
正极是指电池中高电位侧的电极。作为一个示例,所述正极包含能够随着充电和放电而可逆地吸收和解吸锂离子的正极活性材料,并且具有其中正极活性材料作为用正极粘合剂一体化的正极活性材料层而层压在集电器上的结构。在本发明的一个实施方式中,正极的每单位面积的充电容量为3mAh/cm2以上,优选3.5mAh/cm2以上。从安全性等的观点来看,正极的每单位面积的充电容量优选为15mAh/cm2以下。这里,每单位面积的充电容量由活性材料的理论容量计算。也就是说,通过(用于正极的正极活性材料的理论容量)/(正极的面积)计算每单位面积的正极的充电容量。注意,正极的面积是指正极的一个表面而不是两个表面的面积。
本实施方式中的正极活性材料没有特别限制,只要其是能够吸收和解吸锂的材料即可,并且可以从几个观点来选择。从高能量密度的观点来看,优选含有高容量化合物。所述高容量化合物的示例包括镍酸锂(LiNiO2)和通过用其它金属元素部分代替镍酸锂的Ni而获得的锂镍复合氧化物,并且优选由下式(A)表示的层状锂镍复合氧化物。
LiyNi(1-x)MxO2(A)
(条件是0≤x<1,0<y≤1.2,并且M是选自由Co、Al、Mn、Fe、Ti和B组成的组的至少一种元素。)
从高容量的观点来看,Ni含量优选高,或者说,在式(A)中x小于0.5,且更优选为0.4以下。这种化合物的示例包括LiαNiβCoγMnδO2(0<α≤1.2,优选1≤α≤1.2,β+γ+δ=1,β≥0.7,并且γ≤0.2)和LiαNiβCoγAlδO2(0<α≤1.2,优选1≤α≤1.2,β+γ+δ=1,β≥0.6,优选β≥0.7,γ≤0.2),特别是LiNiβCoγMnδO2(0.75≤β≤0.85,0.05≤γ≤0.15,0.10≤δ≤0.20)。更具体地,例如,可以优选使用LiNi0.8Co0.05Mn0.15O2、LiNi0.8Co0.1Mn0.1O2、LiNi0.8Co0.15Al0.05O2和LiNi0.8Co0.1Al0.1O2
从热稳定性的观点来看,还优选Ni含量不超过0.5,或者说,在式(A)中x为0.5以上。还优选特定的过渡金属不超过一半。这种化合物的示例包括LiαNiβCoγMnδO2(0<α≤1.2,优选1≤α≤1.2,β+γ+δ=1,0.2≤β≤0.5,0.1≤γ≤0.4,0.1≤δ≤0.4)。更具体的示例包括LiNi0.4Co0.3Mn0.3O2(缩写为NCM433)、LiNi1/3Co1/3Mn1/3O2、LiNi0.5Co0.2Mn0.3O2(缩写为NCM523)和LiNi0.5Co0.3Mn0.2O2(缩写为NCM532)(条件是这些化合物包括其中各种过渡金属的含量以约10%波动的那些)。
而且,可以使用两种以上由式(A)表示的化合物作为混合物,例如,还优选使用NCM532或NCM523与NCM433的混合物,其比例为9:1至1:9(典型的示例是2:1)。此外,通过将在式(A)中具有高Ni含量的材料(x为0.4以下)与具有不超过0.5的Ni含量的材料(x为0.5以上,例如NCM433)混合,可以形成具有高容量和高热稳定性的电池。
除上述正极活性材料之外,示例还包括具有层状结构或尖晶石结构的锰酸锂,例如LiMnO2、LixMn2O4(0<x<2)、Li2MnO3和LixMn1.5Ni0.5O4(0<x<2);LiCoO2和用其它金属部分地代替这些过渡金属而得的材料;基于这些锂过渡金属氧化物中的化学计量组成计具有过量的Li的材料;和具有橄榄石结构的材料如LiFePO4。此外,还可以使用通过用Al、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等部分地代替这些金属氧化物而获得的材料。上述正极活性材料中的一种可以单独使用,或者可以组合使用两种以上。
如在负极活性材料层的情况下那样,例如,所述正极活性材料层可以通过将上述正极活性材料辊压成形而形成为片状电极,或者可以通过压缩成形而形成为颗粒电极。然而,通常,可以通过在集电器上施涂并干燥施涂液来形成正极活性材料层,其中所述施涂液可以通过用溶剂将上述正极活性材料、粘合剂(粘合试剂)和必要时包含的各种助剂制成浆料来获得。
可以使用与负极粘合剂相似的正极粘合剂。其中,从通用性和低成本的观点来看,优选聚偏二氟乙烯或聚四氟乙烯,且更优选聚偏二氟乙烯。从“足够的粘合强度”和“高能量”之间折衷的观点来看,相对于100质量份的正极活性材料,所使用的正极粘合剂的量优选为2至15质量份。
为了降低阻抗,可以在含有正极活性材料的涂层中添加导电辅助材料。导电辅助材料的示例包括片状、煤状、纤维状碳质微粒等,例如石墨、炭黑、乙炔黑、气相生长碳纤维(例如,昭和电工公司制造的VGCF)等。
可以使用与负极集电器相似的正极集电器。特别地,作为正极,优选使用铝、铝合金、铁、镍、铬、钼型不锈钢的集电器。
为了降低阻抗,可以向包含正极活性材料的正极活性材料层中添加导电辅助材料。导电辅助材料的示例包括碳质细粒,例如石墨、炭黑和乙炔黑。
[3]绝缘层
(材料和制造方法等)
可以通过施涂绝缘层浆料组合物从而覆盖正极或负极的活性材料层的一部分,并干燥和除去溶剂,来形成绝缘层。尽管绝缘层可以仅形成在活性材料层的一侧上,但通过在两侧上形成绝缘层(特别是作为对称结构),存在能够减小电极翘曲的优点。
绝缘层浆料是用于形成多孔绝缘层的浆料组合物。因此,“绝缘层”也可以被称为“多孔绝缘层”。绝缘层浆料包含非导电粒子和具有特定组成的粘合剂(或粘合试剂),并且非导电粒子、粘合剂和任选的成分作为固体成分均匀地分散在溶剂中。
期望非导电粒子稳定地存在于锂离子二次电池的使用环境中并且是电化学稳定的。作为所述非导电粒子,例如,可以使用各种无机粒子、有机粒子和其它粒子。其中,优选无机氧化物粒子或有机粒子,特别地,从粒子的高热稳定性的观点来看,更优选使用无机氧化物粒子。粒子中的金属离子有时在电极附近形成盐,这可能导致电极的内阻增加和二次电池的循环特性降低。所述其它粒子包括通过用非导电物质对细粉表面进行表面处理而赋予导电性的粒子。所述细粉可以由炭黑、石墨、SnO2、ITO和金属粉等导电金属、化合物和氧化物制成。可以组合使用两种以上的上述粒子作为非导电粒子。
所述无机粒子的示例包括无机氧化物粒子,例如氧化铝、硅氧化物、氧化镁、钛氧化物、BaTiO2、ZrO、氧化铝-二氧化硅复合氧化物;无机氮化物粒子,如氮化铝和氮化硼;共价晶体粒子,如硅、金刚石等;难溶的离子晶体粒子,如硫酸钡、氟化钙、氟化钡等;粘土细粒,如滑石和蒙脱石。根据需要,可以对这些粒子进行元素置换、表面处理、固溶体处理等,并且可以单独使用或者组合使用两种以上。其中,从电解液中的稳定性和电位稳定性的观点来看,优选无机氧化物粒子。
所述非导电粒子的形状没有特别限制,并且可以是球状、针状、棒状、纺锤状、板状等。
优选使用的板状非导电粒子、尤其是无机粒子的示例包括各种市售产品,例如AGCSi-Tech公司制造的“SUNLOVELY”(SiO2),石原产业公司(Ishihara Sangyo Kaisha,Ltd.)制造的“NST-B1”的粉碎品(TiO2),堺化学工业公司(Sakai Chemical Industry Co.,Ltd.)制造的板状硫酸钡“H系列”、“HL系列”,林化成公司(Hayashi Kasei Co.,Ltd.)制造的“Micron White”(滑石),林化成公司制造的“Benger”(膨润土),河合石灰工业公司(KawaiiLime Industry Co.,Ltd.)制造的“BMM”和“BMT”(勃姆石),河合石灰工业公司制造的“Serasur BMT-B”[氧化铝(Al2O3)],Kinsei Matec公司制造的“Serath”(氧化铝),住友化学公司(Sumitomo Chemical Co.,Ltd.)制造的“AKP系列”(氧化铝)和斐川矿业公司(HikawaMining Co.,Ltd.)制造的“Hikawa Mica Z-20”(绢云母)。另外,SiO2、Al2O3和ZrO可以通过日本专利公开第2003-206475号中公开的方法制造。
当所述非导电粒子的形状是球形时,所述非导电粒子的平均粒径优选在0.005μm至10μm的范围内,更优选为0.1μm至5μm,特别优选为0.3μm至2μm。当非导电粒子的平均粒径在上述范围内时,容易控制多孔绝缘层浆料的分散状态,从而易于制造具有均匀且预定的厚度的多孔绝缘层。另外,这种平均粒径提供以下优点。改善了对粘合剂的粘附性,并且即使在卷绕多孔绝缘层时,也可以防止非导电粒子剥落,结果,即使多孔绝缘层薄化也能够实现足够的安全性。由于可以抑制多孔绝缘层中的粒子填充率的增加,因此可以抑制多孔绝缘层中的离子传导性的降低。此外,能够将多孔绝缘层制造得薄。
可以通过从SEM(扫描电子显微镜)图像中在任意视野中任意选择50个一次粒子,进行图像分析,并获得各个粒子的当量圆直径的平均值,从而获得非导电粒子的平均粒径。
非导电粒子的粒径分布(CV值)优选为0.5%至40%,更优选为0.5%至30%,特别优选为0.5%至20%。通过将非导电粒子的粒径分布设定在上述范围内,可以保持非导电粒子之间的预定间隙,从而可以抑制由于锂的移动被抑制而导致的电阻增加。非导电粒子的粒径分布(CV值)可以通过以下方式来确定:用电子显微镜观察非导电粒子,测量200个以上粒子的粒径,确定平均粒径和粒径的标准偏差,并计算(粒径的标准偏差)/(平均粒径)。CV值越大意味着粒径变化越大。
当包含在绝缘层浆料中的溶剂是非水溶剂时,分散或溶解在非水溶剂中的聚合物可以用作粘合剂。作为分散或溶解在非水溶剂中的聚合物,可以使用聚偏二氟乙烯(PVdF)、聚四氟乙烯(PTFE)、聚六氟丙烯(PHFP)、聚氯三氟乙烯(PCTFE)、聚全氟烷氧基氟乙烯、聚酰亚胺、聚酰胺酰亚胺等作为粘合剂,但不限于此。
另外,也可以使用用于活性材料层的粘合的粘合剂。
当绝缘层浆料中所含的溶剂是水性溶剂(使用水或含有水作为主成分的混合溶剂作为粘合剂的分散介质的溶液)时,可以使用分散或溶解在水性溶剂中的聚合物作为粘合剂。分散或溶解在水性溶剂中的聚合物包括例如丙烯酸类树脂。作为所述丙烯酸类树脂,优选使用通过将单体如丙烯酸、甲基丙烯酸、丙烯酰胺、甲基丙烯酰胺、丙烯酸2-羟基乙酯、甲基丙烯酸2-羟基乙酯、甲基丙烯酸甲酯、丙烯酸乙基己酯、丙烯酸丁酯聚合而获得的均聚物。丙烯酸类树脂可以是通过将两种以上上述单体聚合而获得的共聚物。此外,可以混合所述均聚物和共聚物中的两种以上。除了上述丙烯酸类树脂之外,还可以使用苯乙烯丁二烯橡胶(SBR)和聚乙烯(PE)等聚烯烃树脂、聚四氟乙烯(PTFE)等。这些聚合物可以单独使用,或者组合使用两种以上。其中,优选使用丙烯酸类树脂。粘合剂的形式没有特别限制,并且可以直接使用粒子(粉末)形式的粒子,或者可以使用制备成溶液状态或乳液状态的粘合剂。可以以不同形式使用两种以上粘合剂。
根据需要,所述绝缘层可以含有除上述非导电填料和粘合剂之外的材料。这种材料的示例包括能够用作绝缘层浆料的增稠剂的各种聚合物材料,这将在后面描述。特别地,当使用水性溶剂时,优选含有用作增稠剂的聚合物。作为用作增稠剂的聚合物,优选使用羧甲基纤维素(CMC)或甲基纤维素(MC)。
尽管没有特别限制,但非导电填料对整个绝缘层的比率合适地为约70质量%以上(例如,70质量%至99质量%),优选为80质量%以上(例如,80质量%至99质量%),特别优选约90质量%至95质量%。
所述绝缘层中粘合剂的比率合适地为约1质量%至30质量%以下,优选为5质量%至20质量%以下。在含有无机填料和粘合剂之外的绝缘层形成成分如增稠剂的情况下,增稠剂的含量比率优选为约10质量%以下,更优选约7质量%以下。如果粘合剂的比率太小,则绝缘层本身的强度(形状保持性)和对活性材料层的粘附性降低,这可能导致例如破裂和剥离的缺陷。如果粘合剂的比率太大,则绝缘层的粒子之间的间隙变得不足,并且在一些情况下绝缘层中的离子渗透性可能降低。
为了保持离子传导性,绝缘层的孔隙率(空隙率)(孔体积对表观体积的比率)优选为20%以上,更优选为30%以上。然而,如果孔隙率太高,则由于施加至绝缘层的摩擦或冲击而发生绝缘层的脱落或破裂,因此孔隙率优选为80%以下,更优选为70%以下。
孔隙率可以由构成绝缘层的材料的比率、真比重和涂层厚度计算。
(绝缘层的形成)
将描述形成绝缘层的方法。作为用于形成绝缘层的材料,可以使用混合并分散有非导电填料、粘合剂和溶剂的糊状材料(包括浆料形式或墨形式,下同)。
用于绝缘层浆料的溶剂包括水或主要含水的混合溶剂。作为构成这样的混合溶剂的水以外的溶剂,可以适当地选择和使用能够与水均匀混合的一种或多种有机溶剂(低级醇、低级酮等)。或者,所述溶剂可以是有机溶剂,如N-甲基吡咯烷酮(NMP)、吡咯烷酮、甲基乙基酮、甲基异丁基酮、环己酮、甲苯、二甲基甲酰胺、二甲基乙酰胺,或其两种以上的组合。绝缘层浆料中的溶剂含量没有特别限制,优选为整体浆料的50%以下,且优选为30%以上。
将非导电填料和粘合剂与溶剂混合的操作可以通过使用合适的捏合机如球磨机、均质分散器(homodisper)、Disper Mill(注册商标)、Clearmix(注册商标)、Filmix(注册商标)、超声波分散机来进行。
对于施涂绝缘层浆料的操作,可以使用常规的一般涂布手段而不受限制。例如,可以通过借助于合适的涂布装置(凹版涂布机、狭缝涂布机、模涂机、逗号涂布机、浸涂机等)以均匀的厚度涂布来施涂预定量的绝缘层浆料。当如本实施方式中那样施涂具有高粘度的浆料时,其中优选使用用泵挤出并施涂浆料的狭缝涂布机和模涂机。
此后,可以通过借助于合适的干燥手段干燥涂布材料来除去绝缘层浆料中的溶剂。
(厚度)
所述绝缘层的厚度优选为1μm以上且30μm以下,更优选为2μm以上且15μm以下。
[4]电解液
所述电解液包括但不特别限于在电池的工作电位下稳定的非水电解液。所述非水电解液的具体示例包括非质子有机溶剂,例如环状碳酸酯,如碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸氟代亚乙酯(FEC)、碳酸t-二氟代亚乙酯(t-DFEC)、碳酸亚丁酯(BC)、碳酸亚乙烯基酯(VC)、碳酸乙烯基亚乙酯(VEC);链碳酸酯,如碳酸烯丙基甲酯(AMC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸二丙酯(DPC);碳酸亚丙酯衍生物;脂肪族羧酸酯,如甲酸甲酯、乙酸甲酯、丙酸乙酯;环酯,如γ-丁内酯(GBL)。非水电解液可以单独使用,或者可以组合使用两种以上的混合物。此外,可以使用含硫环状化合物,如环丁砜、氟化环丁砜、丙烷磺内酯或丙烯磺内酯。
电解液中所含的支持盐的具体示例包括但不特别限于锂盐,如LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiC4F9SO3、Li(CF3SO2)2、LiN(CF3SO2)2。支持盐可以单独使用,或者可以组合使用其两种以上。
[5]隔膜
当电池元件10在正极11和负极12之间包含隔膜13时,隔膜没有特别限制,由例如聚丙烯、聚乙烯、氟类树脂、聚酰胺、聚酰亚胺、聚酯、聚苯硫醚、聚对苯二甲酸乙二醇酯、纤维素制成的多孔膜或无纺布,以及其中例如二氧化硅、氧化铝、玻璃的无机物质附着或粘结到由上述材料制成的基材上的制品,和单独由上述材料加工为无纺布或布而得的制品可以用作隔膜。隔膜的厚度可以是任意的。然而,从高能量密度的观点来看,优选薄隔膜,并且厚度可以为例如10μm至30μm。
本发明不限于上述锂离子二次电池,并且可以应用于任何电池。然而,由于在许多情况下在高容量电池中经常发生热问题,因此本发明优选应用于高容量电池,特别是锂离子二次电池。
接下来,将描述用于制造图3中所示的电极的方法的实施方式。在下面的描述中,正极11和负极12将被描述为“电极”而没有特别彼此区分,但正极11和负极12仅在使用的材料、形状等方面不同,并且以下说明对正极11和负极12都适用。
电极最终具有如下结构,其中活性材料层111和绝缘层112依次层压在集电器110上。这样的层压结构通过包括以下步骤的方法制造:在集电器110上施涂活性材料层浆料的步骤;在干燥所述活性材料层浆料之前,在活性材料层浆料上施涂绝缘层浆料的步骤;和干燥施涂后的活性材料层浆料和绝缘层浆料以获得其中活性材料层和绝缘层依次层压在集电器上的层压结构的步骤。
在此,在本实施方式中,重要的是,绝缘层浆料(第二层浆料)的固体含量比超过50质量%,并且绝缘层浆料中所含的粘合剂(第二粘合剂)的组成比超过2质量%。在此,绝缘层浆料含有填料如非导电性粒子、用于粘结填料的粘合剂和它们的溶剂,并且当填料的质量为A,粘合剂的质量为B且溶剂的质量为C时,
固体含量比通过(A+B)/(A+B+C)计算,并且
粘合剂组成比通过B/(A+B)计算。
上述定义也适用于绝缘层浆料以外的其它层浆料。
通常,由于要求绝缘层的厚度小于活性材料层的厚度,因此从易于涂覆的观点来看,绝缘层浆料的固体含量比经常降低。然而,当固体含量比降低时,溶剂的量相应地增加,并且在涂布后需要时间干燥。因此,在活性材料层浆料干燥之前施涂绝缘层浆料时,这些浆料被混合。因此,优选增加绝缘层浆料的固体含量比。这使得难以减小绝缘层的厚度。然而,在活性材料层浆料干燥之前施涂绝缘层浆料时,由于施涂绝缘层浆料时活性材料层的表面平滑,因此能够使绝缘层的厚度变薄。
因此,如上所述,由于通过将绝缘层浆料的固体含量比设定为超过50质量%,干燥时间变短,因此能够抑制活性材料层浆料和绝缘层浆料的混合,并且能够在不将绝缘层施涂得过厚的情况下确保活性材料层的表面的绝缘性能。另外,通过将绝缘层浆料中所含的粘合剂的组成比设定为2质量%以上,能够改善活性材料层和绝缘层之间的粘附性。因此,抑制使用所获得的电极的二次电池的充电/放电容量的降低和电池电阻的增加。
为了更有效地抑制活性材料层与绝缘层的混合,对于活性材料层浆料和绝缘层浆料的粘度,优选在25℃下以1/秒的剪切速率测量时,活性材料层浆料的粘度为12000mPa·s以上,和/或绝缘层浆料的粘度为4000mPa·s以上。更优选活性材料层浆料的粘度为50000mPa·s以上。
如果活性材料层浆料和绝缘层浆料的粘度太高,则难以形成具有均匀厚度的活性材料层和绝缘层。此外,如果浆料的粘度太高,则浆料的处理将变得困难,并且使用涂布机施涂也将变得困难。因此,为了确保活性材料层和绝缘层的厚度均匀,并且为了确保利用涂布机的涂布性能,在上述测量条件下活性材料层浆料和绝缘层浆料的粘度优选为200,000mPa·s以下。
以上定义的粘度是在假设施涂活性材料层浆料和绝缘层浆料之后的状态时的粘度。然而,如果施涂期间的粘度太高,则可能会降低活性材料层和/或绝缘层的涂布性能。因此,优选在25℃下以5/秒的剪切速率测量的活性材料层浆料和/或绝缘层浆料的粘度小于或等于在25℃下以1/秒的剪切速率测量的粘度的一半。因此,确保了在施涂期间活性材料层浆料和/或绝缘层浆料的流动性,并且可以有效地施涂。
为了更有效地抑制活性材料层和绝缘层的混合,优选在施涂活性材料层浆料之后且在施涂绝缘层浆料之前将活性材料层浆料的至少表面进行冷却。如本文所用,活性材料层浆料的冷却是指使涂布的活性材料层浆料的至少表面达到涂布的活性材料层浆料的温度(通常,例如5℃至35℃的常温)以下。在活性材料层浆料的至少表面被冷却的状态下,活性材料层浆料的表面的实质粘度变高。通过在这种状态下的活性材料层浆料上施涂绝缘层浆料,能够更有效地抑制活性材料层和绝缘层的混合。涂布的活性材料浆料可以通过例如使用风扇等将低于活性材料浆料温度的冷却空气吹到涂布的活性材料浆料的表面上来冷却。
在获得层压结构的工序中,优选从绝缘层浆料的施涂完成至开始干燥活性材料浆料和绝缘层浆料的时间尽可能短(例如,10秒以内)。同样在这种情况下,如上所述,促进在活性材料层浆料和绝缘层浆料在它们之间的界面处充分混合之前干燥绝缘层浆料,结果,能够抑制活性材料层浆料和绝缘层浆料在它们之间的界面处混合。
从活性材料层和绝缘层之间的粘附性的观点来看,优选活性材料层浆料和绝缘层浆料中粘合剂的主成分相同、溶剂的主成分相同或上述两者的主成分均相同。当活性材料层浆料和绝缘层浆料中粘合剂的主成分和溶剂的主成分中的至少一者相同时,活性材料层和绝缘层之间的粘附性得到改善。
为了制造电极,例如,可以使用图6中所示的制造设备。图6中所示的制造设备包含支承辊201、模涂机210和干燥机203。
支承辊201在如下状态下旋转,其中长集电器110卷绕在支承辊201的外周表面上,由此在集电器110的后表面得到支撑的同时,集电器110在支承辊201的旋转方向上被进给。模涂机210具有第一模头211和第二模头212,第一模头211和第二模头212相对于支承辊201的外周表面在支承辊201的径向和周向上彼此间隔开。
第一模头211用于在集电器110的表面上施涂活性材料层111并且相对于集电器110的进给方向位于第二模头212的上游侧。宽度与活性材料层111的施涂宽度对应的排出口211a在第一模头211的面对支承辊201的尖端处开口。活性材料层浆料从排出口211a排出。活性材料层浆料通过将活性材料的粒子和粘合剂(粘合试剂)分散在溶剂中来准备,并被供给到第一模头211。
第二模头212用于在活性材料层111的表面上施涂绝缘层112,并且相对于集电器110的进给方向位于第一模头211的下游侧。宽度与绝缘层112的施涂宽度对应的排出口212a在第二模头212的面对支承辊201的尖端处开口。绝缘层浆料从排出口212a排出。绝缘层浆料通过将非导电粒子和粘合剂(粘合试剂)分散在溶剂中来准备,并被供给到第二模头212。
溶剂用于制备活性材料层浆料和绝缘层浆料。当使用N-甲基-2-吡咯烷酮(NMP)作为溶剂时,与使用水性溶剂的情况相比,能够增加通过蒸发溶剂获得的层的剥离强度。当使用N-甲基-2-吡咯烷酮作为溶剂时,即使在后续步骤中蒸发溶剂,溶剂也不会完全蒸发,并且获得的层含有微量N-甲基-2-吡咯烷酮。
干燥机203用于从分别从第一模头211和第二模头212排出的活性材料层浆料和绝缘层浆料中蒸发溶剂。通过蒸发溶剂干燥浆料,由此形成活性材料层111和绝缘层112。
接下来,将描述借助于图6中所示的制造设备制造电极的工序。为了便于说明,将活性材料层浆料和由其获得的活性材料层描述为“活性材料层111”而不区分它们。实际上,干燥前的“活性材料层111”是指活性材料层浆料。相似地,干燥前的“绝缘层112”是指绝缘层浆料。
首先,通过使用第一模头211将用溶剂制成浆料的活性材料层111间歇地施涂至支撑在支承辊201上并被进给的长集电器110的表面上。结果,如图6A中所示,在集电器110的进给方向A上间隔地将活性材料层111的浆料施涂至集电器110。通过用第一模头211间歇地施涂活性材料层111,活性材料层111被施涂成矩形,所述矩形具有与集电器110的进给方向A平行的纵向长度和沿与其正交的方向的横向长度。
接下来,当施涂的活性材料层111的在集电器110的进给方向上的前端被进给到面对第二模头212的排出口212a的位置时,通过使用第二模头212间歇地将用溶剂制成浆料的绝缘层112施涂至活性材料层111。在活性材料层111被干燥之前,即,在活性材料层111的溶剂蒸发之前,施涂绝缘层112。通过用第二模头212间歇地施涂绝缘层112,绝缘层112被施涂为矩形,所述矩形具有与集电器110的进给方向A平行的纵向长度和沿与其正交的方向的横向长度。
在本实施方式中,第一模头211和第二模头212的排出口211a和212a具有相同的宽度(在与集电器110的进给方向A正交的方向上的尺寸),并且活性材料层111和绝缘层112具有相同的施涂宽度。
在施涂活性材料层111和绝缘层112之后,将集电器110进给至干燥机203,在干燥机203中蒸发活性材料层浆料和绝缘层浆料的溶剂。由此,活性材料层浆料和绝缘层浆料得以干燥。在蒸发溶剂之后,将集电器110供给至辊压机,在此活性材料层111和绝缘层112被压缩成形。由此,在形成绝缘层112的同时形成活性材料层111。
最后,通过例如冲压的适当方法将集电器110切割成所需形状。由此获得电极。可以进行切割步骤以通过一次加工获得所需形状,或者可以进行切割步骤以通过多次加工获得所需形状。
尽管已经参考一个实施方式描述了本发明,但是本发明不限于上述实施方式,并且可以在本发明的技术构思的范围内任意改变。
例如,在上述实施方式中,为了施涂活性材料层111和绝缘层112,使用如图6中所示的具有两个模头211和212的模涂机210,所述模头211和212分别具有排出口211a和212a。然而,如图6A中所示,活性材料层111和绝缘层112可以通过使用具有单个模头221的模涂机220施涂至集电器110,模头221具有两个排出口221a和221b。
所述两个排出口221a和221b在支承辊201的旋转方向上,即,集电器110的进给方向上间隔地配置。活性材料层浆料通过位于集电器110的进给方向的上游侧的排出口221a施涂,并且绝缘层浆料通过位于下游侧的排出口221b施涂。因此,活性材料层浆料和绝缘层浆料分别从两个排出口221a和221b排出,从而可以获得活性材料层111间歇地施涂至集电器110的表面上并且绝缘层112施涂至活性材料层111的表面上的结构。
作为模涂机的又一实施方式,也可以使用图6B中所示的模涂机220。图6B中所示的模涂机220具有第一支承辊201a和第二支承辊201b,并且第一模头231和第二模头232对应于它们中的每一个而配置。活性材料层111通过位于集电器110的传送方向的上游侧的第一模头231施涂,并且绝缘层112通过位于下游侧的第二模头232施涂。即使采用这样的构造,也能够获得如下结构,其中活性材料层111间歇地施涂至集电器110的表面,并且绝缘层112被施涂至活性材料层111的表面。
当使用如图6B中所示的具有多个支承辊201a和201b的模涂机220时,可以配置位于第一支承辊201a上游的第一传感器240a,位于第一支承辊201a与第二支承辊201b之间的第二传感器240b,和位于第二支承辊201b下游的第三传感器240c。这些传感器240a、240b和240c可以是例如膜厚计,从而能够测量活性材料层111的厚度和绝缘层112的厚度。可以从第二传感器240b的测量结果与第一传感器240a的测量结果之间的差获得活性材料层111的厚度,并且可以从第三传感器240c获得的测量结果与第二传感器240b获得的测量结果之间的差获得绝缘层112的厚度。
作为膜厚计,可以使用已知的膜厚计,如辐射(α-射线、γ-射线、X-射线)膜厚计和激光膜厚计。膜厚计理想地是非接触型。另外,可以使用反射型或透射型作为膜厚计。
此外,在上述实施方式中,已经描述了将活性材料层111和绝缘层112施涂至集电器110的一侧的情况。然而,通过以相似的方式在集电器110的另一侧上施涂活性材料层111和绝缘层112,可以制造在集电器110的两个表面上都具有活性材料层111和绝缘层112的电极。在集电器110的两个表面上形成活性材料层111和绝缘层112之后,将集电器110进给至辊压机,在此活性材料层111和绝缘层112被压缩。
在上述实施方式中,已经针对电极及其制造方法描述了第一层是活性材料层且第二层是绝缘层的情况。然而,第一层和第二层的组合不受限制。
例如,第一层可以是高粘附性活性材料层,其中粘合剂的量与通常相比有所增加,且第二层可以是高能量密度活性材料层。利用这样的层结构,可以在抑制活性材料层从集电器脱落的同时,改善电池的能量密度。当第一层是导电材料的量与通常相比有所增加的低电阻活性材料层,或由导电材料和粘合剂制成的导电层,并且第二层是高能量密度活性材料层时,能够改善电池的能量密度和充电/放电输出密度。
此外,通过本发明获得的电池可以用于各种用途。下面描述一些示例。
[电池组]
可以组合多个电池以形成电池组。例如,电池组可以具有其中根据本实施方式的两个以上电池串联和/或并联连接的构造。可以根据电池组的预期电压和容量适当地选择电池的串联数和并联数。
[车辆]
上述电池或其电池组可以用于车辆。可以使用电池或电池组的车辆的示例包括混合动力车辆、燃料电池车辆和电动车辆(四轮车辆(例如轿车、卡车和公共汽车的商用车辆,以及微型车辆等),摩托车(两轮摩托车和三轮车))。注意,根据本实施方式的车辆不限于汽车,并且电池也可以用作其它车辆、例如电气列车等移动体的各种电源。作为这类车辆的一个示例,图7示出了电动车辆的示意图。图7中所示的电动车辆300具有电池组310,其被构造为通过将多个上述电池串联和并联连接来满足需要的电压和容量。
[蓄电装置]
上述电池或其电池组可以用于蓄电装置。使用二次电池或其电池组的蓄电装置的示例包括:如下蓄电装置,其连接在向普通家庭供给的商用电源和例如家用电器的负载之间,以在停电的情况下用作备用电源或辅助电源;以及用于大规模蓄电的蓄电装置,用于将由诸如光伏发电的可再生能源引起的随时间变化大的电力输出稳定化。在图8中示意性地显示这样的蓄电装置的一个示例。图8中所示的蓄电装置301具有电池组311,其被构造为通过将多个上述电池串联和并联连接以满足需要的电压和容量。
[其它]
此外,上述电池或其电池组可以用作移动装置如移动电话、笔记本电脑等的电源。
[实验例]
[实验例1(正极)]
在由用于各绝缘层的粘合剂(第二粘合剂)的类型和由质量比表示的组成比不同的若干条件下制造多个模拟正极,在各模拟正极中,在集电器上形成正极活性材料层作为第一层,并且在第一层上形成绝缘层作为第二层。浆料含有填料(例如,活性材料层浆料中的活性材料、绝缘层浆料中的非导电粒子等)、粘合剂和溶剂。当填料的质量为A,粘合剂的质量为B,且溶剂的质量为C时,浆料的固体含量比和粘合剂的组成比由下式计算:
浆料的固体含量比=(A+B)/(A+B+C),
粘合剂组成比=B/(A+B)。
<正极活性材料层浆料的制备>
作为正极材料,称量锂镍复合氧化物(LiNi0.80Mn0.15Co0.05O2),作为导电助剂的炭黑和作为粘合剂(第一粘合剂)的聚偏二氟乙烯(PVdF,重均分子量是1,000,000),质量比为90:5:5(增粘剂的组成比为3质量%),并且使用N-甲基吡咯烷酮作为溶剂进行捏合,获得正极活性材料层浆料。添加所述溶剂使得正极活性材料层浆料的固体含量比为约70质量%
<绝缘层浆料的制备>
以预定的质量比称量作为非导电性粒子的氧化铝(住友化学公司制造的AKP-3000)和作为粘合剂(第二粘合剂)的聚偏二氟乙烯(PVdF),并且使用N-甲基吡咯烷酮作为溶剂进行捏合,获得绝缘层浆料。这里,作为第二粘合剂,使用三种不同重均分子量的粘合剂,对于每种粘合剂改变粘合剂的组成比和浆料的固体含量比,并且准备总共18种绝缘层浆料1至18。测量获得的绝缘层浆料1至18的粘度。所述粘度是在25℃的温度和1(/秒)的剪切速率下测量,并且使用由BROOK FIELD公司供给的旋转粘度计DV-II+Pro进行粘度测量。
<模拟正极的制备>
准备厚度为20μm的铝箔作为集电器。将正极活性材料层浆料施涂在铝箔上,在干燥正极活性材料层浆料之前,将绝缘层浆料施涂在正极活性材料层浆料上,并且将其干燥以制备多个模拟正极。在上述绝缘层浆料1至18上进行模拟正极的制备。因此,在实验例1中,制备18种模拟正极1至18。
使用具有两个模头的双头模涂机来施涂正极活性材料层浆料和绝缘层浆料。正极活性材料层浆料的施涂量为10mg/cm2。绝缘层浆料的施涂量为2mg/cm2
<评价>
对制备的模拟正极1至18进行以下评价。
(绝缘层表面的破裂)
当绝缘层的表面破裂时,绝缘性能根据破裂的深度和程度而降低。因此,目视观察绝缘层表面上有无破裂。如果没有发现破裂,则等级为“A”,如果发现破裂,则等级为“C”。
(绝缘层的粘附强度)
如果活性材料层和绝缘层之间的粘附强度太弱,则可能由于绝缘层从活性材料层剥离而导致正极和负极之间的短路。因此,通过将制备的模拟正极卷绕在直径为2mm的金属棒上并且捋三次来确定涂膜是否破裂或剥离,从而评价绝缘层的粘附强度。具体地,在涂膜完全没有发生破裂或剥离的情况下,将其评价为“A”,在涂膜中部分地发生破裂或剥离的情况下,将其评价为“B”,并且在发生破裂或剥离的情况下,将其评价为“C”。
(绝缘率)
评价制备的模拟正极各自的绝缘率。对于各模拟正极在20个位置处用测试器确定在最下层铝箔和最上层绝缘层的表面之间是否存在导电来检查绝缘率,并且将绝缘率定义为表示不存在导电的位置的数量的比率的值(百分比)。可以说,绝缘率越高,通过绝缘层实现的绝缘越可靠,并且相反地,绝缘率越低,发生的内部短路越多。当目视观察绝缘层中的破裂时,在除该破裂部之外的20个位置处检查是否存在导电。
表1显示用于制备模拟正极1至18的绝缘层浆料的主要组成和制备的模拟正极的评价结果。
[表1]
Figure BDA0002504131860000291
表1显示如下。
(1)第二粘合剂的重均分子量越大且粘合剂组成比越小,绝缘层的表面越趋于破裂。这被认为是由如下事实导致的:由于第二粘合剂的重均分子量大,绝缘层浆料的流动性降低,因此为了确保流动性,浆料中的固体含量比不得不降低,结果绝缘层浆料干燥时的收缩量增加,并且由于第二粘合剂的量相对少,粘合力变得相对不足。从这个观点来看,更优选的是,第二粘合剂的重均分子量为630,000以下。
(2)在第二粘合剂的重均分子量小的情况下,当粘合剂组成比小时,粘附强度趋于降低。
(3)通过将绝缘层浆料中的固体含量比设定为大于50质量%,并且将粘合剂的组成比设定为大于2质量%,粘附性和绝缘率良好。此外,通过将固体含量比设定为59质量%以上,消除了破裂并且改善了条件。
(另外的示例性实施方式)
以上已经详细描述了本发明。本说明书公开了在以下另外的示例性实施方式中描述的发明。然而,本说明书的公开内容不限于以下另外的示例性实施方式。
[另外的示例性实施方式1]
一种制造用作二次电池的正极和负极的电极的方法,包括:
将含有第一粘合剂的第一层浆料施涂至集电器的表面,
在所述第一层浆料干燥之前在所述第一层浆料上施涂含有第二粘合剂的第二层浆料,和
在施涂所述第一层浆料和所述第二层浆料之后干燥所述第一层浆料和所述第二层浆料,以获得其中第一层和第二层依次层压在所述集电器上的层压结构,
其中所述第二层浆料具有大于50质量%的固体含量比和大于2质量%的所述第二粘合剂的组成比。
[另外的示例性实施方式2]
根据另外的示例性实施方式1所述的制造二次电池用电极的方法,其中所述第二层浆料的固体含量比为59质量%以上。
[另外的示例性实施方式3]
根据另外的示例性实施方式1所述的制造二次电池用电极的方法,其中当在25℃下以1/秒的剪切速率测量所述第一层浆料和所述第二层浆料的粘度时,所述第一层浆料的粘度为12000mPa·s以上,和/或所述第二层浆料的粘度为4000mPa·s以上。
[另外的示例性实施方式4]
根据另外的示例性实施方式1至3中任一项所述的制造二次电池用电极的方法,其中所述第二层浆料的粘度为4000mPa·s以上,并且所述第一层浆料的粘度为5000mPa·s以上。
[另外的示例性实施方式5]
根据另外的示例性实施方式3或4所述的制造二次电池用电极的方法,其中所述第一层浆料和所述第二层浆料的粘度为50000mPa·s以上且200000mPa·s以下。
[另外的示例性实施方式6]
根据另外的示例性实施方式1至5中任一项所述的制造二次电池用电极的方法,其中在25℃下以5/秒的剪切速率测量的所述第一层浆料和/或所述第二层浆料的粘度小于在25℃下以1/秒的剪切速率测量的粘度的一半。
[另外的示例性实施方式7]
根据另外的示例性实施方式1至6中任一项所述的制造二次电池用电极的方法,其中所述第一层是活性材料层且所述第二层是绝缘层。
[另外的示例性实施方式8]
根据另外的示例性实施方式1至6中任一项所述的制造二次电池用电极的方法,其中所述第一层是高粘附性活性材料层、低电阻活性材料层或导电层。
[另外的示例性实施方式9]
根据另外的示例性实施方式1至8中任一项所述的制造二次电池用电极的方法,其中所述第一层浆料和所述第二层浆料包含主材料、粘合剂和溶剂。
[另外的示例性实施方式10]
根据另外的示例性实施方式9所述的制造二次电池用电极的方法,其中所述第一层浆料和所述第二层浆料的粘合剂具有相同的主成分。
[另外的示例性实施方式11]
根据另外的示例性实施方式9或10所述的制造二次电池用电极的方法,其中所述第一层浆料和所述第二层浆料的溶剂具有相同的主成分。
[另外的示例性实施方式12]
根据另外的示例性实施方式1至11中任一项所述的制造二次电池用电极的方法,还包括:
在施涂所述第一层浆料之后且在施涂所述第二层浆料之前,冷却所述第一层浆料的至少表面。
[另外的示例性实施方式13]
根据另外的示例性实施方式1至12中任一项所述的制造二次电池用电极的方法,其中在所述获得层压结构的步骤中,从所述第二层浆料施涂完成到开始干燥所述第一层浆料和所述第二层浆料的时间在10秒内。
[另外的示例性实施方式14]
一种制造二次电池的方法,包括:
通过另外的示例性实施方式1至13中任一项所述的制造方法制造正极和负极,
将所述正极与所述负极配置成彼此面对以构造电池元件,和
将所述电池元件与电解液一起封装入壳体中。
工业适用性
根据本发明的二次电池可以用于所有需要电源的工业领域和涉及电能的输送、储存和供给的工业领域。更具体地,根据本发明的电池可以用于移动装置如手机、笔记本个人电脑的电源;包括电动汽车、混合动力汽车、电动摩托车、电动辅助自行车的电动车辆以及电气列车、卫星和潜艇等移动/运输介质的电源;UPS等的备用电源;以及用于储存由光伏发电、风力发电等产生的电力的蓄电设施。
符号说明
10 电池元件
10a 正极极耳
10b 负极极耳
11 正极
12 负极
13 隔膜
31 正极端子
32 负极端子
110 集电器
110a 延长部
111 活性材料层
112 绝缘层

Claims (14)

1.一种制造用作二次电池的正极和负极的电极的方法,包括:
将含有第一粘合剂的第一层浆料施涂至集电器的表面,
在所述第一层浆料干燥之前在所述第一层浆料上施涂含有第二粘合剂的第二层浆料,和
在施涂所述第一层浆料和所述第二层浆料之后干燥所述第一层浆料和所述第二层浆料,以获得其中第一层和第二层依次层压在所述集电器上的层压结构,
其中所述第二层浆料具有的固体含量比为大于50质量%、且具有的所述第二粘合剂的组成比为大于2质量%。
2.根据权利要求1所述的制造二次电池用电极的方法,其中所述第二层浆料具有的固体含量比为59质量%以上。
3.根据权利要求1所述的制造二次电池用电极的方法,其中当在25℃下以1/秒的剪切速率测量所述第一层浆料和所述第二层浆料的粘度时,所述第一层浆料的粘度为12000mPa·s以上,和/或所述第二层浆料的粘度为4000mPa·s以上。
4.根据权利要求1至3中任一项所述的制造二次电池用电极的方法,其中所述第二层浆料的粘度为4000mPa·s以上,并且所述第一层浆料的粘度为5000mPa·s以上。
5.根据权利要求3或4所述的制造二次电池用电极的方法,其中所述第一层浆料和所述第二层浆料的粘度为50000mPa·s以上且200000mPa·s以下。
6.根据权利要求1至5中任一项所述的制造二次电池用电极的方法,其中在25℃下以5/秒的剪切速率测量的所述第一层浆料和/或所述第二层浆料的粘度小于在25℃下以1/秒的剪切速率测量的粘度的一半。
7.根据权利要求1至6中任一项所述的制造二次电池用电极的方法,其中所述第一层是活性材料层且所述第二层是绝缘层。
8.根据权利要求1至6中任一项所述的制造二次电池用电极的方法,其中所述第一层是高粘附性活性材料层、低电阻活性材料层或导电层。
9.根据权利要求1至8中任一项所述的制造二次电池用电极的方法,其中所述第一层浆料和所述第二层浆料包含主材料、粘合剂和溶剂。
10.根据权利要求9所述的制造二次电池用电极的方法,其中所述第一层浆料和所述第二层浆料的粘合剂具有相同的主成分。
11.根据权利要求9或10所述的制造二次电池用电极的方法,其中所述第一层浆料和所述第二层浆料的溶剂具有相同的主成分。
12.根据权利要求1至11中任一项所述的制造二次电池用电极的方法,还包括:
在施涂所述第一层浆料之后且在施涂所述第二层浆料之前,冷却所述第一层浆料的至少表面。
13.根据权利要求1至12中任一项所述的制造二次电池用电极的方法,其中在所述获得层压结构的步骤中,从所述第二层浆料施涂完成到开始干燥所述第一层浆料和所述第二层浆料的时间在10秒内。
14.一种制造二次电池的方法,包括:
通过根据权利要求1至13中任一项所述的制造方法制造正极和负极,
将所述正极与所述负极配置成彼此面对以构造电池元件,和
将所述电池元件与电解液一起封装入壳体中。
CN201880075804.4A 2017-11-24 2018-11-13 制造二次电池用电极的方法和制造二次电池的方法 Active CN111386616B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017225668 2017-11-24
JP2017-225668 2017-11-24
PCT/JP2018/041942 WO2019102900A1 (ja) 2017-11-24 2018-11-13 二次電池用電極の製造方法および二次電池の製造方法

Publications (2)

Publication Number Publication Date
CN111386616A true CN111386616A (zh) 2020-07-07
CN111386616B CN111386616B (zh) 2023-06-02

Family

ID=66630947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880075804.4A Active CN111386616B (zh) 2017-11-24 2018-11-13 制造二次电池用电极的方法和制造二次电池的方法

Country Status (4)

Country Link
US (1) US11469405B2 (zh)
JP (1) JP6988911B2 (zh)
CN (1) CN111386616B (zh)
WO (1) WO2019102900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497433A (zh) * 2020-10-26 2022-05-13 Sk新技术株式会社 二次电池用多层电极及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102527050B1 (ko) * 2019-06-07 2023-04-28 에스케이온 주식회사 이차전지용 전극의 제조방법 및 상기 전극을 포함하는 이차전지
CN114464792A (zh) * 2022-02-10 2022-05-10 湖北亿纬动力有限公司 一种电池极片及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123823A (ja) * 1998-10-13 2000-04-28 Mitsubishi Chemicals Corp 二次電池用電極及び二次電池
JP2000331675A (ja) * 1999-05-19 2000-11-30 Mitsubishi Chemicals Corp 二次電池用電極の製造法及び二次電池の製造法
CN102110809A (zh) * 2009-12-25 2011-06-29 三洋电机株式会社 非水电解质二次电池的正极的制造方法
CN102487137A (zh) * 2010-12-06 2012-06-06 现代自动车株式会社 包括多孔绝缘层的二次电池的电极及其制造方法
CN105531865A (zh) * 2013-09-27 2016-04-27 株式会社日立高新技术 锂离子二次电池的制造方法、锂离子二次电池的制造装置和锂离子二次电池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622383B2 (ja) 1995-12-11 2005-02-23 宇部興産株式会社 電極シートの製造方法
JP3719312B2 (ja) * 1997-07-07 2005-11-24 宇部興産株式会社 正極シートとこれを用いた非水電解質二次電池
JP3997606B2 (ja) 1998-05-28 2007-10-24 松下電器産業株式会社 二次電池用電極板、およびその二次電池用電極板の製造方法
JP2004199916A (ja) 2002-12-17 2004-07-15 Matsushita Electric Ind Co Ltd リチウムイオン二次電池の電極の製造方法
CN100338800C (zh) * 2004-02-17 2007-09-19 比亚迪股份有限公司 一种锂电池正极及其制备方法以及锂离子二次电池
JP2008012398A (ja) * 2006-07-04 2008-01-24 Toppan Printing Co Ltd 紙粉の発生を抑止したダンボールおよびこのダンボールを用いた収納体
JP2008034215A (ja) 2006-07-28 2008-02-14 Hitachi Ltd リチウム二次電池用正極とその製造方法、およびリチウム二次電池
JP5093882B2 (ja) 2006-10-16 2012-12-12 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子および電気化学素子の製造方法
JP2009032427A (ja) 2007-07-25 2009-02-12 Panasonic Corp リチウムイオン二次電池用電極の製造方法
JP2010282873A (ja) 2009-06-05 2010-12-16 Toyota Motor Corp リチウム二次電池およびその製造方法
JP2011159407A (ja) 2010-01-29 2011-08-18 Hitachi Ltd リチウム二次電池
CN103430357B (zh) 2011-03-23 2016-02-03 三洋电机株式会社 非水电解质充电电池用正极极板及其制造方法、以及非水电解质充电电池及其制造方法
JP2013109931A (ja) 2011-11-18 2013-06-06 Toyota Motor Corp 非水電解質二次電池用の電極、及び非水電解質二次電池
KR101511732B1 (ko) 2012-04-10 2015-04-13 주식회사 엘지화학 다공성 코팅층이 형성된 전극, 이의 제조방법 및 이를 포함하는 전기화학소자
JP6112115B2 (ja) * 2012-09-28 2017-04-12 日本ゼオン株式会社 二次電池用多孔膜セパレータ及びその製造方法、並びに二次電池
CN105190952A (zh) * 2013-04-01 2015-12-23 日立汽车***株式会社 锂离子二次电池及其制造方法
JP6358911B2 (ja) 2014-09-29 2018-07-18 株式会社日立ハイテクファインシステムズ 蓄電デバイスの製造装置および蓄電デバイスの製造方法
JP6376171B2 (ja) 2016-05-25 2018-08-22 トヨタ自動車株式会社 電極体の製造方法および電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123823A (ja) * 1998-10-13 2000-04-28 Mitsubishi Chemicals Corp 二次電池用電極及び二次電池
JP2000331675A (ja) * 1999-05-19 2000-11-30 Mitsubishi Chemicals Corp 二次電池用電極の製造法及び二次電池の製造法
CN102110809A (zh) * 2009-12-25 2011-06-29 三洋电机株式会社 非水电解质二次电池的正极的制造方法
CN102487137A (zh) * 2010-12-06 2012-06-06 现代自动车株式会社 包括多孔绝缘层的二次电池的电极及其制造方法
CN105531865A (zh) * 2013-09-27 2016-04-27 株式会社日立高新技术 锂离子二次电池的制造方法、锂离子二次电池的制造装置和锂离子二次电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497433A (zh) * 2020-10-26 2022-05-13 Sk新技术株式会社 二次电池用多层电极及其制造方法
CN114497433B (zh) * 2020-10-26 2024-03-26 Sk新能源株式会社 二次电池用多层电极及其制造方法

Also Published As

Publication number Publication date
US20200381698A1 (en) 2020-12-03
JP6988911B2 (ja) 2022-01-05
WO2019102900A1 (ja) 2019-05-31
CN111386616B (zh) 2023-06-02
US11469405B2 (en) 2022-10-11
JPWO2019102900A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
CN110495024B (zh) 制造二次电池用电极的方法和制造二次电池的方法
US10910635B2 (en) Method for manufacturing electrode for secondary battery and method for manufacturing secondary battery
CN109478676B (zh) 电极组件及其制造方法
CN109565069B (zh) 电极组件及其制造方法
US20230253566A1 (en) Electrode for battery, battery having electrode and method for manufacturing electrode and battery having electrode
CN111386616B (zh) 制造二次电池用电极的方法和制造二次电池的方法
US20240047692A1 (en) Secondary battery and method for manufacturing the same
WO2018180372A1 (ja) 二次電池およびその製造方法
CN111868971B (zh) 用于二次电池的电极、使用所述电极的二次电池及其制造方法
JP6699351B2 (ja) 電極の製造方法および電極の検査方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant