CN111384950A - 用于时间交织数模转换器的线性和非线性校准 - Google Patents

用于时间交织数模转换器的线性和非线性校准 Download PDF

Info

Publication number
CN111384950A
CN111384950A CN201911417275.4A CN201911417275A CN111384950A CN 111384950 A CN111384950 A CN 111384950A CN 201911417275 A CN201911417275 A CN 201911417275A CN 111384950 A CN111384950 A CN 111384950A
Authority
CN
China
Prior art keywords
signal
digital
time
analog converter
interleaved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911417275.4A
Other languages
English (en)
Inventor
K.霍瓦金颜
G.A.马丁
D.G.克尼林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Inc
Original Assignee
Tektronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tektronix Inc filed Critical Tektronix Inc
Publication of CN111384950A publication Critical patent/CN111384950A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • H03M1/1038Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables
    • H03M1/1042Calibration over the full range of the converter, e.g. for correcting differential non-linearity by storing corrected or correction values in one or more digital look-up tables the look-up table containing corrected values for replacing the original digital values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1033Calibration over the full range of the converter, e.g. for correcting differential non-linearity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/82Digital/analogue converters with intermediate conversion to time interval
    • H03M1/84Non-linear conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/662Multiplexed conversion systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

一种时间交织数模转换器***,包括:数字预失真器,其被配置成接收输入数字信号和误差信号,并且基于输入数字信号和误差信号来输出失真的数字信号;具有第一采样率的时间交织数模转换器,该时间交织数模转换器被配置成将失真的数字信号转换成模拟信号;以及校准***。该校准***包括具有等于或低于第一采样率的第二采样率的模数转换器,该模数转换器被配置成接收模拟信号并将该模拟信号转换成降采样数字信号;被配置成接收输入数字信号和误差信号并输出模型信号的离散时间线性模型;以及组合器,用以从模型信号中减去降采样数字信号以生成误差信号。

Description

用于时间交织数模转换器的线性和非线性校准
对相关申请的交叉引用
本申请要求2018年12月31日提交的临时美国专利申请号62/787,223的权益,该临时美国专利申请的全部内容在此通过引用并入此申请中。
发明领域
本公开涉及关于时间交织(TI)数模转换器(DAC)的***和方法,并且特别地涉及为TI DAC校准预处理数字信号处理(DSP)滤波器。
背景技术
DAC被用来将数字信号转换成模拟信号。然而,DAC的带宽可能会受到DAC的模拟带宽或采样率的限制。为了实现有效的较高DAC采样率,可以使用TI DAC***来代替单个DAC,TI DAC***包括许多时间交织DAC信道。每个DAC信道接收输入信号并输出在单个DAC采样周期内在时间上偏移的模拟信号。然后可以将这些模拟信号相加或多路复用在一起,以有效地倍增整个DAC***的采样率。
然而,在TI DAC***中,TI DAC***的各信道之间可能存在线性和非线性失真和/或失配,从而导致可能不准确的模拟输出信号。
本公开的实施例解决了现有技术的这些和其他缺陷。
附图说明
通过参照附图对实施例的以下描述,本公开的实施例的各方面、特征和优点将变得显而易见,在附图中:
图1是根据本公开的一些实施例的时间交织数模转换器***的框图。
图2是图1的示例数字预失真单元的框图。
图3是具有图2的二阶乘积的示例延迟线的框图。
图4是具有图2的二阶乘积的另一示例延迟线的框图。
图5是利用图2的自适应块的示例乘法的框图。
图6是图5的示例系数自适应块的框图。
图7是图5的示例乘法块的框图。
图8是利用图2的自适应块的替换乘法的框图。
图9是图8的示例多输入多输出系数自适应块的框图。
图10是图8的示例多输入多输出块的框图。
图11是图1的DAC和ADC的示例离散时间线性模型的框图。
图12是根据本公开的一些实施例的另一时间交织数模转换器***的框图。
图13是根据本公开的一些实施例的另一时间交织数模转换器***的框图。
图14是根据本公开的其他实施例的测试和测量仪器的框图。
具体实施方式
本公开的实施例包括后台和/或前台校准,以用于校正时间交织(TI)数模转换器(DAC)的线性和非线性失真。如下面将更详细讨论的,使用后台或前台校准、通过TI DAC输入数据的数字预失真(DPD)来实行校正。也就是说,可以利用已知信号在前台实行校准,或者在TI DAC的正常操作期间在后台实行校准。TI DAC输出由模数转换器(ADC)捕获,并且与经过适当处理的DAC输入进行比较以形成误差信号,该误差信号被用于DPD系数的最小均方(LMS)自适应。
图1图示了根据本公开的一些实施例的示例TI DAC***100。在输入处接收被示为x的数字输入信号102并将其传输到DPD单元104以及DAC和ADC单元106的离散时间(DT)线性模型(在本文中被称为DT线性模型单元106)。将通过DPD单元104处理的数字输入信号传输到TI DAC 108的M个并行的TI DAC信道109,其中索引m=1,…,M,其中M是大于1的整数。每一个DAC信道109的输出通过求和器110求和在一起,或者由多路复用器代替求和器110顺序地选择,并输出为模拟信号112。如果TI DAC***100被用作测试和测量仪器的一部分,则模拟信号112可以通过测试和测量仪器的端口而被输出到被测设备。模拟信号112还被发送到ADC 114,其被用于校准DPD单元104。
ADC 114的采样率是TI DAC 108的速率的1/L,这在图1中被示为降采样器116。ADC114的带宽与TI DAC 108的带宽相匹配,以便捕获完整的输出频谱。可以在较低带宽ADC之前使用预采样器组件来实现相同的结果。将降采样率L挑选成相对于M是质数,使得可以在误差波形中覆盖所有TI采样相位,并由此产生自适应。也就是说,LM除一之外没有其它共同的因子。
DT线性模型106的输出也通过降采样器118以L进行降采样。然后,通过组合器120从降采样器118的输出中减去ADC 114的输出,以生成误差信号122。将误差信号122发送到DT模型106和DPD 104二者,如将在下面进一步详细讨论的。
由于已经讨论了整个***,则图2-11将图示***100的个体组件。图2图示了根据本公开的一些实施例的示例DPD 104。该DPD 104接收数字信号102,并将数字信号发送到许多延迟线。提供了P条延迟线,其中P大于1。例如,在图2中,图示了一阶延迟线200、二阶延迟线202和P阶延迟线204。
每个延迟线200、202和204都具有不同阶的乘积,以创建具有存储器的不同阶的非线性。延迟线200、202和204与利用自适应块208的乘法相结合地使用,以补偿TI DAC信道109之间的对应阶的非线性和时间交织线性和非线性失配。在图2中图示了一阶延迟线200。延迟块206均指示以TI DAC 108输入数据的一个时钟周期的延迟。具有二阶乘积块的延迟线202和具有P阶乘积块的延迟线204均由延迟线和延迟线分量的正好分别为两项或P项的乘积组成,每个分量通过求和或乘以常数的操作导出。每个延迟线200、202和204的输出被发送到利用自适应块208的乘法。误差信号122也被应用于利用自适应块208的每个乘法。通过组合器210将利用自适应块208的每个乘法的输出求和在一起,并将其作为被发送到TIDAC 108的信号y而输出。
图3和4图示了二阶延迟线204的可能示例,其也可以针对P阶延迟线206进行修改。如果延迟线的所有可能输出都被用来形成所有可能的p阶乘积,那么将导出p阶Volterra模型。然而,完整的Volterra模型对于一些实现而言可能过于复杂,因此可以使用如图3和4中图示的更简单的版本。可以通过对具体TI DAC 108模型和/或其仿真的分析来导出合适的具有存储器的简化非线性模型。这些模型不需要是精确的,因为它们将被增加有自适应系数,以补偿TI DAC 108的实际非线性。
图5是利用自适应块208的示例乘法的框图。解复用器500从延迟线200、202和204之一接收信号u,并将以等于TI DAC 108的速率的速率进入块208的M个连续标量数据u转换成向量u m ,其中m是1到M的整数值。数据向量u m 被延迟块502延迟,以匹配在组合器120处由TIDAC 108和ADC 114的链引入的延迟。延迟的数据向量v m 也通过降采样器504以L进行降采样,以与欠采样的ADC 114匹配。降采样器504的输出被发送到系数自适应块506。在解复用器508处还接收误差信号122,该解复用器508将误差信号转换成向量em,其中m是1到M的整数值,该向量em也在系数自适应块506处被接收。系数自适应块506对单个TI DAC信道109实行LMS自适应以输出向量tm。在乘法器510中将向量tm与向量u m 相乘以确定组合向量wm。多路复用器512将组合向量wm转换成标量数据w,其被输出到组合器210。
如上所述,系数自适应块506实行LMS自适应,这在图6中针对TI DAC信道109之一被图示出。LMS操作也可以由以下方程(1)描述:
Figure DEST_PATH_IMAGE001
(1)
其中,t m (Ln)是相对于单个TI DAC信道109的采样周期的第Ln个时钟周期处的更新系数值,而t m (Ln–L)是由L个时钟周期抽取的它的先前值。变量v m (Ln)e m (Ln)分别是在第nL个时钟周期处对应的数据和误差的第m个分量。常数µ是LMS算法的自适应常数。虽然在图6中示出了标准LMS操作,但也可以使用其他类型的LMS算法,诸如归一化LMS、具有时变自适应步骤的LMS、泄漏式LMS或其他的。
图7图示了乘法器510中向量t m 和输入数据向量u m 的乘法。在如图7中图示的一些实施例中,乘法器510通过逐点乘法将来自系数自适应块506的系数t m 应用于输入数据向量u m 。在图7的示例中,M等于4。这种逐点乘法也可以通过以下方程(2)来描述:
Figure 925213DEST_PATH_IMAGE002
(2)
图8是图示了可以在一些实施例中实现的利用自适应块800的替换乘法的框图。该电路可以被用来代替图2中的利用自适应块208的乘法。类似于利用自适应块208的乘法,解复用器802从延迟线200、202和204之一接收信号u,并将以等于TI DAC 108的速率的速率进入块800的M个连续标量数据u转换成向量u m ,其中m是1到M的整数值。数据向量u m 被延迟块804延迟,以匹配在组合器120处由DAC和ADC的链引入的延迟。延迟的数据向量v m 被发送到多输入多输出(MIMO)系数自适应块806,其示例在图9中示出。MIMO系数自适应块806还接收误差向量e k ,该误差向量e k 由解复用器808基于接收到的误差信号122而输出,其中k是1到M的整数值。可以通过实行标准LMS算法来确定MIMO系数自适应块806的每个系数,这可以通过方程(3)来描述:
Figure DEST_PATH_IMAGE003
Figure 842353DEST_PATH_IMAGE004
(3)
类似于系数自适应块208,也可以使用其他LMS算法。
MIMO系数自适应块806的输出t(s) km被发送到MIMO块810,在图10中图示了对于当M等于2时的情况的MIMO块810。该MIMO块810具有M个输入和M个输出,并且由M 2 个有限脉冲响应(FIR)滤波器组成。MIMO块810的输入/输出关系由方程(4)给出:
Figure DEST_PATH_IMAGE005
(4)
其中,算符
Figure 435140DEST_PATH_IMAGE006
代表卷积,u m (n)是第m个输入数据,并且t km 是具有输入um以及连接到MIMO块810结构的第k个输出的输出的FIR的S个系数的向量。类似于多路复用器512,多路复用器812将组合向量w k 转换成标量数据w,其被输出到组合器210。
因为MIMO块810包括通过M个FIR滤波器的延迟线的存储器,所以当利用自适应块208的乘法被替换为利用自适应块800的替换乘法时,将延迟线200、202和204连接到利用自适应块208的乘法的一些线变得冗余。
如上面提到的,TI DAC***100可以补偿TI DAC线性和非线性失配,使得TI DAC***100的输出将看起来像线性时不变(LTI)***。对于这样的情况,可以将实际TI DAC输出与期望的LTI***的输出进行比较,后者可以对理想TI DAC的操作进行建模。在TI DAC***100中,DT线性模型单元106可以实行该比较。在图11中图示了DT线性模型单元106的结构。DT线性模型单元106覆盖了TI DAC 108和ADC 114二者的线性方面,不意图在DPD单元104中校正该线性方面。
如在图11中可以看到的,DT线性模型单元106包括具有其系数的LMS自适应的FIR滤波器。DT线性模型单元106的自适应可以跟踪TI DAC信道108和ADC 114的线性部分中的改变。然而,FIR滤波器的至少一个抽头被设为非自适应的并被冻结在恒定值,以避免当所有DPD单元104的系数收敛到零值时的情况。虽然在图11中示出了针对DT线性模型单元106的常规的直接形式的FIR滤波器实现方式,但可以使用任何其他已知结构,诸如转置、级联、快速FIR、点阵FIR、频域等。类似地,如上面讨论的,可以以多种方式来实现LMS操作。
在一些实施例中,当TI DAC***100正在产生期望的输出信号时,可以在后台实行上述校准。然而,可能存在可以导致由多个自适应块使用的误差波形的一些输入信号类型,该多个自适应块在归因于DPD单元104校正结构中覆盖的不同减损类型的误差信号122的分量之间具有线性相关性,从而允许对该特定输入信号102实现相同LMS优化的多个自适应系数状态。由于这些多个自适应状态是不等价的,所以当输入信号102特性改变时,多个自适应状态可以产生显著误差,直到TI DAC***100有时间来响应新输入并收敛到适合新输入信号的系数为止。这一点的简单示例是恒定的非零输入信号102,其中,对于每一个DAC信道109,可以利用DC偏移项、增益项和/或非线性项来校正TI DAC信道109输出之间的失配。
对于静态系数因子(即,DPD单元104的无记忆分量),在考虑到由欠采样ADC 114进行降采样之后,对于后台校准中的良好收敛的关键是在输入波形幅值值中具有足够的多样性(诸如足够数量的唯一幅值值)以利用并行LMS自适应函数来求解多个系数。
对于动态系数因子(即,由DPD单元104结构中的延迟线所覆盖的频率相关分量),在考虑到由欠采样ADC 114进行降采样之后,除了在幅值值中具有足够的多样性之外,输入频谱内容具有足够的多样性(即,频谱中足够数量的唯一频域分量)对于后台校准中的良好收敛以利用并行LMS自适应函数来求解多个系数也很重要。
针对后台校准中的良好收敛的准则在数学上涉及能够跨多个TIDAC信道109输入和ADC 114输出样本、针对在DPD单元104中建模的各种减损、针对所有未知系数值来求解方程组,使得LMS的解最小化了(如基于输入波形和DPD单元104系数值确定的)估计聚合波形与由欠采样ADC 114捕获的波形中的实际减损之间的残余误差。
考虑以下方程(5):
Figure DEST_PATH_IMAGE007
(5)
其中,
Figure 830349DEST_PATH_IMAGE008
是在将当前DPD单元104校正系数的影响考虑在内之后,用于估计的聚合残余误差波形的向量,其是每个周期在欠采样ADC 114的输出处由于每种减损类型所致的误差的总和。变量
Figure DEST_PATH_IMAGE009
是在通过利用自适应单元204的并行乘法进行缩放之前的输入波形减损矩阵,其在行维度中具有基本减损值(它是对利用自适应单元204的乘法的输入),并且在列维度中具有被降采样以匹配欠采样ADC 114的速率的连续采样值。变量
Figure 707038DEST_PATH_IMAGE010
是残余系数向量,用以缩放利用自适应单元204的乘法中的减损值的量值,以抵消DAC信道108的减损,即,最小化可以被添加到当前DPD系数向量的残余误差。
该方程组一般而言将是超定的(overdetermined),并且可以找到最小二乘解,以最小化以下表达式:
Figure DEST_PATH_IMAGE011
,其中,e=在欠采样ADC的输出之后测量的波形的残余误差向量。
最小二乘解可以由方程(6)给出:
Figure 529501DEST_PATH_IMAGE012
(6)
只要U T U矩阵不是奇异的(即
Figure DEST_PATH_IMAGE013
),就可以找到该解。
对于后台校准而言每个周期发生的并行LMS自适应应当在连续值上收敛到上述方程组的解,以最小化残余误差项。如果对应的U T U矩阵不是奇异的或不是接近奇异的,则后台校准应当具有良好的性能。在被施加到TI DAC 108的输入波形中具有良好的幅值和频谱分量多样性可以使对应的U T U矩阵更容易不是奇异的或不是接近奇异的。
如果将输入信号施加到TI DAC***100,使得对应的U T U矩阵是奇异的或接近奇异的,则可以停止DPD系数的后台校准,以防止系数状态偏离适当的硬件误差模型。而且,可以推荐前台校准,其中具体地挑选TI DAC***100输入信号以允许DPD系数的快速和准确收敛。
在一些实施例中,可以添加实时数字信号处理器(DSP),以在DPD单元104实行任何校正之前分析TI DAC***100中的波形数据,以针对输入波形102中的给定时间跨度来估计
Figure 108119DEST_PATH_IMAGE014
。DSP可以确定该时间跨度是否应允许后台自适应。DSP可以指示TI DAC***100对其中对应的
Figure 307019DEST_PATH_IMAGE014
接近于零的时间跨度禁用后台校准,并且对其中
Figure 975897DEST_PATH_IMAGE014
不太接近于零的时间跨度启用后台校准。也就是说,可以为***确定任意阈值,并且如果对应的
Figure 969261DEST_PATH_IMAGE014
大于该阈值,则启用后台校准,并且如果对应的
Figure 785908DEST_PATH_IMAGE014
低于该阈值,则禁用后台校准。
在替换的实施例中,例如在诸如通过将已知波形加载到模式存储器来预先确定输入波形102,x[n]的情况下,那么也可以预先计算
Figure 522919DEST_PATH_IMAGE014
值相对比时间以生成标记,该标记可以与预先计算的波形一起存储在存储器中。该标记可以对其中DPD系数的收敛将具有良好性能的输入波形的周期启用后台校准,并且对DPD系数可能没有良好收敛的周期禁用后台校准。
作为以上讨论的通过LMS进行实时校准的替换,在一些实施例中,可以通过在稍后的时间捕获和处理数据分组来离线地实行后台和/或前台校准。
为此,对DAC和ADC的DT等效线性模型进行估计。为了最小化来自信道108的非线性部分的干扰,可以使用低幅值输入波形来完成此估计。可以将在ADC 114输出处捕获的数据收集到行向量d中。可以从DPD输入数据x形成N/L乘P的矩阵X,其中N是TI DAC 108输入数据模式的长度,并且P是线性模型的抽头数量,其中矩阵X的第p列包括与第一N-p+1个数据连结的p-1个零,接着是以因子L的抽取。然后,可以使用方程(7)来找到线性模型FIR系数:
Figure DEST_PATH_IMAGE015
(7)
其中标志X'被用于转置的矩阵X
一旦从方程(7)估计出线性模型FIR系数c,就可以在ADC 114处捕获并处理具有满幅幅值的新TI DAC 108数据。使用针对在ADC 114输出处捕获的数据分组(行向量)的相同的标志d,对应地针对在DPD单元104和MIMO块810输入处的数据分组(行向量)的标志xu,可以如下找到MIMO系数tMT矩阵)。
可以通过首先将输入数据与线性模型滤波器系数进行卷积来计算误差向量,如方程(8)所示:
Figure 46305DEST_PATH_IMAGE016
(8)
其次,通过以因子L对卷积输出进行降采样并减去在ADC 114输出处捕获的数据:
Figure DEST_PATH_IMAGE017
(9)
然后,矩阵B可以被形成有TS乘以M)列和N/L行(N是数据分组长度),其中第t列包括与MIMO块800输入的向量u中的第一N-t+1个数据连结的t-1个零,接着是以因子L的抽取。以M抽取的向量
Figure 289198DEST_PATH_IMAGE018
的第m个相位可以由
Figure DEST_PATH_IMAGE019
指定,如方程10所示:
Figure 530824DEST_PATH_IMAGE020
(10)
并且类似地,
Figure DEST_PATH_IMAGE021
可以是根据方程(11)的抽取矩阵:
Figure 868264DEST_PATH_IMAGE022
(11)
然后,可以找到方程(12):
Figure DEST_PATH_IMAGE023
(12)
其中,
Figure 511735DEST_PATH_IMAGE024
是具有TS乘以M)个系数的行向量。最后,可以导出MIMO块810的系数,如方程(13)所示:
Figure DEST_PATH_IMAGE025
(13)
图12图示了根据本公开的一些实施例的替换TI DAC***1200。与TI DAC***100相似的组件被给予相同的附图标记,并且将不关于图12更详细地讨论它们。在图12的TI DAC***1200中,可以结合地使用可调谐射频(RF)带通滤波器1202、本地振荡器1204、混频器1206和RF低通滤波器(LPF)1208,来以与TI DAC 108相关的较低带宽和采样率将TI DAC 108输出中的信号内容降变频到由ADC 114支持的窄带范围。虽然示出了可调谐RF带通滤波器1202,但是在一些实施例中,可以代替地使用一排滤波器。由给定的误差波形数据段122的每个窄带捕获所覆盖的频率范围可以被给出为:
Figure 161416DEST_PATH_IMAGE026
,其中f c 是LO频率,并且BW ADC 是ADC 114捕获的有效带宽。
然后,在考虑到DT线性模型106之后,然后使用DSP来镜面化RF降变频(down-conversion)拓扑,以开发由
Figure 890337DEST_PATH_IMAGE026
覆盖的给定频率跨度内的预期理想输出信号内容的模型。也就是说,将DT线性模型106的输出发送到可调谐DSP带通滤波器1210,其输出通过混频器1218与来自本地振荡器1214的信号混合。由频率扫描控制1216来设置可调谐DSP带通滤波器1210和本地振荡器1214。来自本地振荡器1214的信号也被发送到相位对准器1212以用作参考,使得本地振荡器1214和本地振荡器1204的相位可以具有已知的相位关系,以确保相对于DT线性模型106的由ADC 114捕获的段中的相干相位(如由可调谐DSP带通滤波器1210、混频器1218、本地振荡器1214和低通滤波器1220修改的),以允许减去波形来生成误差信号122。
可以针对每个窄带频率跨度来捕获误差信号122的段。在捕获误差信号122时使用的段大小确定了在由每个获得的窄带段
Figure 969152DEST_PATH_IMAGE026
覆盖的频率跨度内可以实现的有效频率分辨率。如下面讨论的,所得到的段可以在DPD单元104中经历离散傅立叶变换(DFT),以生成估计误差、幅值和相位分量对比频率的复向量,该频率针对由每个窄带频率跨度所覆盖的频率。
扫描本地振荡器1204的频率以覆盖关注的整个频率范围,以用于TI DAC 108的校准。然后,在针对每个窄带频率跨度所捕获的误差信号122的DFT之后,将所得到的估计频域误差向量进行组合,以生成聚合的复频域误差向量e,如方程(14)-(17)所示:
Figure DEST_PATH_IMAGE027
(14)
Figure 467129DEST_PATH_IMAGE028
(15)
Figure DEST_PATH_IMAGE029
(16)
Figure 301093DEST_PATH_IMAGE030
(17)
其中E n (f)是针对每个窄带误差波形段的DFT输出采样(在由窄带ADC 114所捕获的带宽内),
Figure DEST_PATH_IMAGE031
E(f)是聚合频域误差波形,f是被用来求解自适应DPD系数的频率值的向量,并且e是被用来求解自适应DPD系数的聚合频域误差波形向量。
然后,可以在频域中求解由DPD单元104确定的DPD系数的下一次迭代。可以实行对DPD单元104中利用自适应块208的并行乘法的输入波形的连续DFT,来为DPD单元104中建模的每种减损类型生成输入波形减损对比频率的向量,以匹配由频域向量e覆盖的频率。可以在与由窄带ADC 114捕获的段时间对准的段中捕获对利用自适应块208的并行乘法的输入波形。可以对每个段实行DFT以提取频域采样的复向量(包括幅值和相位分量),该频域采样与在频率扫描范围序列内由窄带ADC 114在该段中捕获的对应误差信号122所覆盖的频率跨度对准。然后,在频率扫描序列中,通过组合针对跨所有连续段的每个段所捕获的频域向量来构建用以估计频域误差波形的聚合向量e,以覆盖校准中使用的整个频率范围。
然后,可以使用方程(18)来计算频域中的估计残余误差:
Figure 251731DEST_PATH_IMAGE032
(18)
其中,ê是考虑到当前DPD校正系数的影响之后的估计聚合频域残余误差波形的向量,该向量是跨LO 1204频率扫描所覆盖的频率范围而聚合的由于窄带ADC 114的输出处的每种减损类型所致的误差的总和。W是在通过DPD单元104中的利用自适应块208的并行乘法进行缩放之前的(频域中的)输入波形减损矩阵,其中在行维度中具有基本减损值(对利用自适应块208的乘法的输入),并且在列维度中具有频率上的连续值。变量c是残余系数向量,用以缩放利用自适应块208的乘法中的减损值的量值,以抵消DAC 108的减损,即,最小化残余误差,该残余误差可以被添加到当前DPD系数向量。
方程(14)-(18)一般而言可以是超定的,并且可以找到最小二乘解,以最小化以下表达式:
Figure DEST_PATH_IMAGE033
,其中,e是从跨具有接着是DFT的连续段捕获的频率范围的全扫描中测量的聚合频域残余误差波形的向量。
因此,最小二乘解由方程(19)给出:
Figure 947286DEST_PATH_IMAGE034
(19)
只要W T W矩阵不是奇异的(即,
Figure DEST_PATH_IMAGE035
),就可以找到方程(19)。
可以使用方程(20)来完成用于后台校准的DPD系数自适应(在为DAC输出生成任意波形的同时发生):
Figure 299770DEST_PATH_IMAGE036
(20)
其中d n 是DPD系数的下一个向量,d n-1 是DPD系数的当前向量,µ是自适应速率,其可以诸如利用归一化LMS类型的方法来进行潜在地动态调整,并且c是在当前频率扫描上根据残余误差的频域优化所求解的系数。
该方法也可以应用于前台校准。在这样的实施例中,可以使用一组已知的输入波形,这些输入波形针对DAC校准的需要进行了优化。然后,可以按照方程(19)在频域中求解DPD单元104的系数。
图13图示了根据本公开的实施例的另一替换实施例。图13的实施例类似于以上在图1和12中讨论的实施例,正因如此,同样的组件被给予相同的附图标记,并且并不关于图13进一步讨论。在TI DAC***1300中,移除了可调谐RF带通滤波器1202和可调谐DSP带通滤波器1210。考虑到可调谐RF带通滤波器1202的复杂性,这可以简化并降低***成本。移除带通滤波器1202和1210会导致由ADC 114捕获的所得窄带频谱中的两个混频器输入图像(除f-f c 之外还有f+f c )。
具有窄带频谱中的两个混频器输入图像(除f-f c 之外还有f+f c )可以通过对估计的残余复频域误差频率的附加处理来减轻。
每个窄带ADC捕获段和所得到的残余误差波形将包括方程(21)和(22)中的以下信号内容:
Figure DEST_PATH_IMAGE037
(21)
Figure 678537DEST_PATH_IMAGE038
(22)
然后可以从段中的G n (f)迭代地提取期望的残余误差波形,如方程(23)所示:
Figure DEST_PATH_IMAGE039
(23)
然后可以将段聚合,以生成残余误差波形,如方程(24)所示:
Figure 991837DEST_PATH_IMAGE040
(24)
在频域中获得残余误差波形之后,可以使用类似的过程来求解如以上面讨论的包括可调谐带通滤波器的窄带频率扫描选项的自适应DPD系数。
对DPD系数自适应的利用降变频方法的窄带ADC的其他变化也是可能的。一个这样的示例是使这种方法适应于其他RF降变频架构,诸如复杂的I/Q超外差接收器拓扑。
图14图示了具有TI DAC***1402的示例测试和测量仪器1400。TI DAC***1402可以是以上讨论的TI DAC***100、1200或1300中的任何***。测试和测量仪器1400可以是例如任意波形发生器、任意函数发生器或输出信号源的任何测试和测量仪器。
测试和测量仪器1400包括:一个或多个端口1404,其可以是任何电或光纤信令介质。端口1404可以包括接收器、发射器和/或收发器。端口1404与连接到一个或多个处理器1406的TI DAC***1402耦合。尽管为了易于说明,在图14中仅示出了一个处理器1406,但如本领域技术人员将理解的,可以以组合的形式使用不同类型的多个处理器1406,而不是单个处理器1406。
一个或多个处理器1406可以被配置成执行来自存储器1408的指令,并且可以实行由这样的指令指示的任何方法和/或相关联的步骤。存储器1408可以被实现为处理器高速缓存、随机存取存储器(RAM)、只读存储器(ROM)、固态存储器、(一个或多个)硬盘驱动器或任何其他存储器类型。存储器1408充当用于存储数据、计算机程序产品和其他指令的介质。例如,一个或多个处理器1406可以向TI DAC***1402输出数字信号,该数字信号要作为模拟信号(诸如如上所述的)、通过端口1404而被输出到被测设备。
将用户输入1410耦合到一个或多个处理器1406。用户输入1410可以包括键盘、鼠标、轨迹球、触摸屏和/或可由用户采用以与显示器1412上的GUI配合使用的任何其他控件。显示器1412可以是数字屏幕、基于阴极射线管的显示器或向用户显示波形、测量结果和其他数据的任何其他监视器。虽然将测试仪器1400的组件描绘为被集成在测试和测量仪器1400内,但是本领域普通技术人员将领会到,这些组件中的任何组件都可以在测试仪器1400的外部并且可以以任何常规方式耦合到测试仪器1400(例如,有线和/或无线通信介质和/或机构)。例如,在一些实施例中,显示器1412可以远离测试和测量仪器1400。
本公开的各方面可以在特别创建的硬件、固件、数字信号处理器上操作,或者在包括根据编程指令进行操作的处理器的具体编程的计算机上操作。如本文中使用的术语控制器或处理器意图包括微处理器、微型计算机、专用集成电路(ASIC)、现场可编程门阵列(FPGA)和专用硬件控制器。本公开的一个或多个方面可以体现在由一个或多个计算机(包括监视模块)或其他设备执行的计算机可使用数据和计算机可执行指令中,诸如在一个或多个程序模块中。通常,程序模块包括例程、程序、对象、组件、数据结构等,它们在由计算机或其他设备中的处理器执行时实行特定任务或实现特定抽象数据类型。可以将计算机可执行指令存储在诸如硬盘、光盘、可移动存储介质、固态存储器、随机存取存储器(RAM)等的计算机可读存储介质上。如本领域技术人员将领会到的,可以在各个方面中根据需要组合或分布程序模块的功能。另外,该功能可以全部或部分地体现在固件或硬件等同物中,该等同物诸如集成电路、FPGA等等。可以使用特定的数据结构来更有效地实现本公开的一个或多个方面,并且在本文中描述的计算机可执行指令和计算机可使用数据范围内设想这样的数据结构。
在一些情况下,可以以硬件、固件、软件或其任何组合来实现所公开的方面。所公开的方面还可以被实现为由一个或多个计算机可读存储介质承载或存储在其上的指令,其可由一个或多个处理器读取和执行。这样的指令可以被称为计算机程序产品。如本文中所讨论的,计算机可读介质是指可以由计算设备访问的任何介质。作为示例而非限制,计算机可读介质可以包括计算机存储介质和通信介质。
计算机存储介质是指可以被用来存储计算机可读信息的任何媒介。作为示例而非限制,计算机存储介质可以包括RAM、ROM、电可擦可编程只读存储器(EEPROM)、闪速存储器或其他存储器技术、紧凑盘只读存储器(CD-ROM)、数字视频盘(DVD)或其他光盘存储装置、磁带盒、磁带、磁盘存储装置或其他磁性存储设备,以及采用任何技术来实现的任何易失性或非易失性、可移动或不可移动的介质。计算机存储介质不包括信号本身和暂时形式的信号传输。
通信介质是指可以被用于计算机可读信息的通信的任何介质。作为示例而非限制,通信介质可以包括同轴线缆、光纤线缆、空气或适合于电信号、光信号、射频(RF)信号、红外信号、声学信号或其他类型的信号的通信的任何其他介质。
示例
下面提供了本文中所公开技术的例示性示例。技术的实施例可以包括以下所描述的示例中的任何一个或多个以及它们的任何组合。
示例1是时间交织数模转换器***,包括:数字预失真器,其被配置成接收输入数字信号和误差信号,并基于输入数字信号和误差信号来输出失真的数字信号;具有第一采样率的时间交织数模转换器,该时间交织数模转换器被配置成将失真的数字信号转换成模拟信号,该失真的信号校正时间交织数模转换器的时间交织信道之间的失配;以及校准***,其包括:具有等于或低于第一采样率的第二采样率的模数转换器,该模数转换器被配置成接收模拟信号并将该模拟信号转换成降采样数字信号;离散时间线性模型,其被配置成接收输入数字信号并输出模型信号;以及组合器,用以从模型信号中减去降采样数字信号以生成误差信号。
示例2是示例1的时间交织数模转换器***,其中离散时间线性模型也接收误差信号,并且包括具有至少一个自适应抽头和恒定抽头的有限脉冲响应滤波器。
示例3是示例1和2中任一个的时间交织数模转换器***,其中该校准***在利用已知数字输入信号的操作前校准期间被启用。
示例4是示例3的时间交织数模转换器***,进一步包括:数字信号处理器,其被配置成基于数字输入信号来确定是否在利用未知数字输入信号的操作期间禁用该校准***。
示例5是示例1-4中任一个的时间交织数模转换器***,其中数字预失真器包括:具有不同阶乘积的多个延迟线,每个延迟线都接收数字输入信号。
示例6是示例5的时间交织数模转换器***,其中数字预失真器进一步包括:多个第一解复用器,每个第一解复用器针对具有不同阶乘积的延迟线的每个输出,每个第一解复用器接收延迟线中的每一个的输出,并输出并行数据流,该并行数据流具有等于时间交织数模转换器的信道数量的信号数量;多个第二解复用器,每个第二解复用器用以接收误差信号并输出并行误差数据流,该并行误差数据流具有等于时间交织数模转换器的信道数量的信号数量;多个系数适配器,每个系数适配器用以使相应的并行数据流与并行误差数据流相关,并且输出等于时间交织数模转换器的信道数量的许多可变系数;多个第一组合器,每个第一组合器用以将相应的可变系数与并行数据流组合成并行组合数据流;多个多路复用器,每个多路复用器被配置成将相应的并行组合数据流组合成信号;以及第二组合器,其被配置成将来自多个多路复用器的每一个信号组合成失真的数字信号。
示例7是示例6的时间交织数模转换器***,其中第一组合器是用以将可变系数与并行数据流相乘的逐点乘法器。
示例8是示例6和7中任一个的时间交织数模转换器***,其中第一组合器是具有许多有限脉冲响应滤波器的多输入多输出单元。
示例9是示例8的时间交织数模转换器***,其中系数适配器是多输入多输出系数适配器。
示例10是示例1-9中任一个的时间交织数模转换器***,其中校准***实时操作。
示例11是一种测试和测量仪器,包括根据示例1-10中任一个的时间交织数模转换器***;以及端口,其被配置成接收模拟信号并将该模拟信号输出到被测电耦合或光纤光耦合设备。
示例12是一种用于校准时间交织数模转换器的方法,包括:通过基于误差信号使输入数字信号失真来生成失真的数字信号;通过时间交织数模转换器将失真的数字信号转换成模拟信号;将模拟信号转换成降采样数字信号;基于输入数字信号来生成模型信号;以及通过从模型信号中减去降采样数字信号来生成误差信号。
示例13是示例12的方法,其中生成模型信号包括通过具有至少一个自适应抽头和恒定抽头的有限脉冲响应滤波器来处理数字输入信号和误差信号。
示例14是示例12或13中任一个的方法,进一步包括在利用已知数字输入信号的操作前校准期间启用该方法。
示例15是示例12-14中任一个的方法,进一步包括基于数字输入信号在利用未知数字输入信号的操作期间启用该方法。
示例16是示例12-15中任一个的方法,进一步包括通过具有不同阶乘积的多个延迟线来延迟数字输入信号。
示例17是根据示例16的方法,进一步包括:在相应的第一解复用器处接收每一个延迟线的输出,并且从每个相应的第一解复用器输出并行数据流,该并行数据流具有等于时间交织数模转换器的信道数量的信号数量;接收误差信号,并且在多个第二解复用器的每一个处输出并行误差数据流,该并行误差数据流具有等于时间交织数模转换器的信道数量的信号数量;使相应的并行数据流与相应的并行误差数据流相关,并且在多个系数适配器的每个系数适配器处输出等于时间交织数模转换器的信道数量的许多可变系数;将每一个可变系数与相应的并行数据流组合成相应的并行组合数据流;在多个多路复用器的每个多路复用器处将相应的组合数据多路复用成相应的信号;以及将每一个相应信号组合成失真的数字信号。
示例18是示例12-17中任一个的方法,进一步包括:将模拟信号与来自本地振荡器的信号混合以生成混合信号;在将模拟信号转换成降采样数字信号之前,通过低通滤波器对混合信号进行滤波。
示例19是示例12-18中任一个的方法,进一步包括:将模型信号与来自本地振荡器的信号混合以生成混合信号;通过低通滤波器对混合信号进行滤波;在生成误差信号之前,对经滤波的混合信号进行降采样。
示例20是示例19的方法,进一步包括:在将模型信号与来自第一本地振荡器的信号混合之前,通过可调谐带通滤波器对模型信号进行滤波。
先前描述版本的本公开主题具有许多优点,这些优点已被描述或者对于本领域技术人员来说将是显而易见的。即使如此,不是在所有版本的所公开的装置、***或方法中都需要这些优点或特征。
附加地,本书面描述还参考了特定特征。要理解的是,本说明书中的公开内容包括那些特定特征的所有可能的组合。在特定方面或示例的上下文中公开特定特征的情况下,也可以在其他方面和示例的上下文中尽可能地使用该特征。
而且,当在本申请中提及具有两个或更多个限定的步骤或操作的方法时,所限定的步骤或操作可以按任何次序或同时地执行,除非上下文排除了那些可能性。
尽管出于例示的目的已经例示和描述了本发明的具体示例,但是将理解的是,可以在不脱离本发明的精神和范围的情况下进行各种修改。因此,除所附权利要求限制的那样之外,本发明不应受到限制。

Claims (20)

1.一种时间交织数模转换器***,包括:
数字预失真器,其被配置成接收输入数字信号和误差信号,并且基于所述输入数字信号和所述误差信号来输出失真的数字信号;
具有第一采样率的时间交织数模转换器,所述时间交织数模转换器被配置成将所述失真的数字信号转换成模拟信号,失真的信号校正所述时间交织数模转换器的时间交织信道之间的失配;以及
校准***,包括:
具有等于或低于第一采样率的第二采样率的模数转换器,所述模数转换器被配置成接收所述模拟信号并将所述模拟信号转换成降采样数字信号,
离散时间线性模型,其被配置成接收所述输入数字信号并输出模型信号,以及
组合器,用以从所述模型信号中减去所述降采样数字信号以生成所述误差信号。
2.根据权利要求1所述的时间交织数模转换器***,其中所述离散时间线性模型也接收所述误差信号,并且包括具有至少一个自适应抽头和恒定抽头的有限脉冲响应滤波器。
3.根据权利要求1所述的时间交织数模转换器***,其中所述校准***在利用已知数字输入信号的操作前校准期间被启用。
4.根据权利要求3所述的时间交织数模转换器***,进一步包括:数字信号处理器,其被配置成基于所述数字输入信号来确定是否在利用未知数字输入信号的操作期间禁用所述校准***。
5.根据权利要求1所述的时间交织数模转换器***,其中所述数字预失真器包括:具有不同阶乘积的多个延迟线,每个延迟线都接收所述数字输入信号。
6.根据权利要求5所述的时间交织数模转换器***,其中所述数字预失真器进一步包括:
多个第一解复用器,每个第一解复用器针对具有不同阶乘积的延迟线的每个输出,每个第一解复用器接收所述延迟线中的每一个的输出,并输出并行数据流,所述并行数据流具有等于所述时间交织数模转换器的信道数量的信号数量;
多个第二解复用器,每个第二解复用器用以接收所述误差信号并输出并行误差数据流,所述并行误差数据流具有等于所述时间交织数模转换器的信道数量的信号数量;
多个系数适配器,每个系数适配器用以使相应的并行数据流与并行误差数据流相关,并且输出等于所述时间交织数模转换器的信道数量的许多可变系数;
多个第一组合器,每个第一组合器用以将相应的可变系数与所述并行数据流组合成并行组合数据流;
多个多路复用器,每个多路复用器被配置成将相应的并行组合数据流组合成信号;以及
第二组合器,其被配置成将来自所述多个多路复用器的每一个信号组合成所述失真的数字信号。
7.根据权利要求6所述的时间交织数模转换器***,其中所述第一组合器是用以将所述可变系数与所述并行数据流相乘的逐点乘法器。
8.根据权利要求6所述的时间交织数模转换器***,其中所述第一组合器是具有许多有限脉冲响应滤波器的多输入多输出单元。
9.根据权利要求8所述的时间交织数模转换器***,其中所述系数适配器是多输入多输出系数适配器。
10.根据权利要求1所述的时间交织数模转换器***,其中所述校准***实时操作。
11.一种测试和测量仪器,包括:
根据权利要求1所述的时间交织数模转换器***;以及
端口,其被配置成接收所述模拟信号并将所述模拟信号输出到被测电耦合或光纤光耦合设备。
12.一种用于校准时间交织数模转换器的方法,包括:
通过基于误差信号使输入数字信号失真来生成失真的数字信号;
通过时间交织数模转换器将所述失真的数字信号转换成模拟信号;
将所述模拟信号转换成降采样数字信号;
基于所述输入的数字信号来生成模型信号;以及
通过从所述模型信号中减去所述降采样数字信号来生成所述误差信号。
13.根据权利要求12所述的方法,其中生成所述模型信号包括通过具有至少一个自适应抽头和恒定抽头的有限脉冲响应滤波器来处理所述数字输入信号和所述误差信号。
14.根据权利要求12所述的方法,进一步包括在利用已知数字输入信号的操作前校准期间启用所述方法。
15.根据权利要求12所述的方法,进一步包括基于所述数字输入信号在利用未知数字输入信号的操作期间启用所述方法。
16.根据权利要求12所述的方法,进一步包括通过具有不同阶乘积的多个延迟线来延迟所述数字输入信号。
17.根据权利要求16所述的方法,进一步包括:
在相应的第一解复用器处接收每一个延迟线的输出,并且从每个相应的第一解复用器输出并行数据流,所述并行数据流具有等于所述时间交织数模转换器的信道数量的信号数量;
接收所述误差信号,并且在多个第二解复用器的每一个处输出并行误差数据流,所述并行误差数据流具有等于所述时间交织数模转换器的信道数量的信号数量;
使所述相应的并行数据流与所述相应的并行误差数据流相关,并且在多个系数适配器的每个系数适配器处输出等于所述时间交织数模转换器的信道数量的许多可变系数;
将每一个可变系数与所述相应的并行数据流组合成相应的并行组合数据流;
在多个多路复用器的每个多路复用器处将所述相应的组合数据多路复用成相应的信号;以及
将每一个相应的信号组合成所述失真的数字信号。
18.根据权利要求12所述的方法,进一步包括:
将所述模拟信号与来自本地振荡器的信号混合以生成混合信号;
在将所述模拟信号转换成降采样数字信号之前,通过低通滤波器对所述混合信号进行滤波。
19.根据权利要求12所述的方法,进一步包括:
将所述模型信号与来自本地振荡器的信号混合以生成混合信号;
通过低通滤波器对所述混合信号进行滤波;
在生成所述误差信号之前,对经滤波的混合信号进行降采样。
20.根据权利要求19所述的方法,进一步包括:
在将所述模型信号与来自所述第一本地振荡器的信号混合之前,通过可调谐带通滤波器对所述模型信号进行滤波。
CN201911417275.4A 2018-12-31 2019-12-31 用于时间交织数模转换器的线性和非线性校准 Pending CN111384950A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862787223P 2018-12-31 2018-12-31
US62/787223 2018-12-31
US16/526,875 US10735013B2 (en) 2018-12-31 2019-07-30 Linear and non-linear calibration for time interleaved digital-to-analog converter
US16/526875 2019-07-30

Publications (1)

Publication Number Publication Date
CN111384950A true CN111384950A (zh) 2020-07-07

Family

ID=69156171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911417275.4A Pending CN111384950A (zh) 2018-12-31 2019-12-31 用于时间交织数模转换器的线性和非线性校准

Country Status (4)

Country Link
US (1) US10735013B2 (zh)
EP (1) EP3675365A1 (zh)
JP (1) JP2020115634A (zh)
CN (1) CN111384950A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022199114A1 (zh) * 2021-03-26 2022-09-29 华为技术有限公司 信号处理的方法及信号处理装置
CN116318142A (zh) * 2023-02-08 2023-06-23 北京士模微电子有限责任公司 一种模数转换器的校准方法和模数转换器
CN116298488A (zh) * 2023-03-24 2023-06-23 高澈科技(上海)有限公司 电压采样电路及其控制方法、电池管理***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022035342A1 (en) * 2020-08-13 2022-02-17 Huawei Technologies Co., Ltd. Signal processing apparatus for use in optical communication
CN112187266B (zh) * 2020-09-29 2024-03-08 中国电子科技集团公司第三十六研究所 一种模数转换器的非线性校正方法、装置及电子设备
KR102544497B1 (ko) 2021-05-20 2023-06-20 한국과학기술원 양방향 전압 제어 발진기를 이용한 대역 통과 아날로그 디지털 변환기
US20230208429A1 (en) * 2021-12-23 2023-06-29 Intel Corporation System and method for calibrating a time-interleaved digital-to-analog converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048865B2 (en) 2009-12-16 2015-06-02 Syntropy Systems, Llc Conversion of a discrete time quantized signal into a continuous time, continuously variable signal
US8410843B2 (en) * 2011-01-10 2013-04-02 Massachusetts Institute Of Technology Polyphase nonlinear digital predistortion
US9014299B2 (en) 2012-12-07 2015-04-21 Maxim Integrated Products, Inc. Digital pre-distortion system for radio frequency transmitters with reduced sampling rate in observation loop
US9007250B1 (en) 2013-10-22 2015-04-14 L-3 Communications Corp. Time-interleaved and sub-band reconstruction approaches to digital-to-analog conversion for high sample rate waveform generation
US9685969B1 (en) * 2016-04-05 2017-06-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Time-interleaved high-speed digital-to-analog converter (DAC) architecture with spur calibration
US10340933B1 (en) * 2018-07-23 2019-07-02 Tektonix, Inc. Time interleaved digital-to-analog converter correction
US10355706B1 (en) * 2018-11-28 2019-07-16 Guzik Technical Enterprises Equalization of sub-DAC frequency response misalignments in time-interleaved high-speed digital to analog converters
US10461764B1 (en) * 2019-06-04 2019-10-29 IQ-Analog Corporation System and method for interleaved digital-to-analog converter (DAC) calibration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022199114A1 (zh) * 2021-03-26 2022-09-29 华为技术有限公司 信号处理的方法及信号处理装置
CN116318142A (zh) * 2023-02-08 2023-06-23 北京士模微电子有限责任公司 一种模数转换器的校准方法和模数转换器
CN116318142B (zh) * 2023-02-08 2024-05-03 北京士模微电子有限责任公司 一种模数转换器的校准方法和模数转换器
CN116298488A (zh) * 2023-03-24 2023-06-23 高澈科技(上海)有限公司 电压采样电路及其控制方法、电池管理***
CN116298488B (zh) * 2023-03-24 2024-02-02 高澈科技(上海)有限公司 电压采样电路及其控制方法、电池管理***

Also Published As

Publication number Publication date
US10735013B2 (en) 2020-08-04
EP3675365A1 (en) 2020-07-01
JP2020115634A (ja) 2020-07-30
US20200212922A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
CN111384950A (zh) 用于时间交织数模转换器的线性和非线性校准
US7394415B2 (en) Time-interleaved analog-to-digital converter and high speed signal processing system using the same
EP2690787B1 (en) Time interleaved analog to digital converter mismatch correction
US9564876B2 (en) Digital compensation for a non-linear analog receiver
JP4498184B2 (ja) 直線性補償回路
US20170117914A1 (en) Method and apparatus for providing digital background calibration for mismatches in m-channel time-interleved adcs (ti-adcs)
KR101838298B1 (ko) 타임­인터리빙된 아날로그­디지털 컨버터를 위한 로버스트 이득 및 위상 캘리브레이션 방법
EP2359479B1 (en) Methods and apparatuses for estimation and compensation of nonlinearity errors
JP4754941B2 (ja) 線形補正器
US20150304068A1 (en) Method and system for updating multi-frequency-band pre-distortion coefficient lookup table
EP2537255B1 (en) Apparatus and method for converting an analog time domain signal into a digital frequency domain signal, and apparatus and method for converting an analog time domain signal into a digital time domain signal
US20130110442A1 (en) Calibrating reconstructed signal using multi-tone calibration signal
Song et al. Analysis and correction of combined channel mismatch effects in frequency-interleaved ADCs
JP2006157901A (ja) 校正装置及び線形補正器校正方法
US8842033B1 (en) Dynamic linearity corrector for digital-to-analog converters
Monsurrò et al. Streamline calibration modelling for a comprehensive design of ATI-based digitizers
CN109936366B (zh) 信号路径线性化
CN110557122B (zh) 一种tiadc***频响非一致性误差的校正方法
Liu et al. Correlation-based calibration for nonlinearity mismatches in dual-channel tiadcs
EP2020087A1 (en) An apparatus for monitoring non-linear distortions of radio signals and a method therefor
Tertinek et al. Reconstruction of two-periodic nonuniformly sampled band-limited signals using a discrete-time differentiator and a time-varying multiplier
KR101691367B1 (ko) M채널 TI-ADCs에서 미스매치에 대한 디지털 후면 교정 방법 및 그 장치
Park et al. Two-stage correction for wideband wireless signal generators with time-interleaved digital-to-analog-converters
Pillai et al. Prefilter-based reconfigurable reconstructor for time-interleaved ADCs with missing samples
Liu et al. A calibration method for frequency response mismatches in M-channel time-interleaved analog-to-digital converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination