CN111384197B - 一种缺陷态石墨烯/半导体异质结光电探测器 - Google Patents

一种缺陷态石墨烯/半导体异质结光电探测器 Download PDF

Info

Publication number
CN111384197B
CN111384197B CN202010201500.7A CN202010201500A CN111384197B CN 111384197 B CN111384197 B CN 111384197B CN 202010201500 A CN202010201500 A CN 202010201500A CN 111384197 B CN111384197 B CN 111384197B
Authority
CN
China
Prior art keywords
graphene
defect
layer
oxide film
graphene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010201500.7A
Other languages
English (en)
Other versions
CN111384197A (zh
Inventor
高超
曹小雪
徐杨
彭蠡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Gaoxi Technology Co Ltd
Original Assignee
Hangzhou Gaoxi Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Gaoxi Technology Co Ltd filed Critical Hangzhou Gaoxi Technology Co Ltd
Priority to CN202010201500.7A priority Critical patent/CN111384197B/zh
Publication of CN111384197A publication Critical patent/CN111384197A/zh
Application granted granted Critical
Publication of CN111384197B publication Critical patent/CN111384197B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero-junctions, X being an element of Group VI of the Periodic System

Abstract

本发明公开了一种缺陷态石墨烯/半导体异质结光电探测器,所述光电探测器具有两层结构,一层为半导体层,另一层为缺陷态石墨烯层,所述缺陷态石墨烯层与半导体层贴合;缺陷态石墨烯层厚度为10‑100nm,所述缺陷态石墨烯层中含有缺陷态sp3/sp2碳含量比为1%‑40%。本发明中采用抽滤的方法制备薄膜,保证了薄膜的均匀性以及器件的稳定性;通过控制烧结工艺,制备缺陷态石墨烯薄膜,在异质结中引入缺陷态,增加电子向声子散射,引起热效应,进而提高光响应。相比无缺陷态石墨烯/半导体异质结光电探测器,缺陷态的引入,实现外量子效率量级提升。

Description

一种缺陷态石墨烯/半导体异质结光电探测器
技术领域
本发明属于光电探测器技术领域,尤其涉及一种缺陷态石墨烯/半导体异质结光电探测器。
背景技术
随着技术的发展,光电探测范围从可见光拓宽到紫外、红外、X射线,甚至太赫兹波段,在国民经济乃至国防军事中都起着至关重要的作用。但纵观光电探测器的发展进程,寻求高响应,室温宽波段光电探测器,依旧是重要的研究方向。缺陷态石墨烯/半导体异质结光电探测器是其中之一,它是应用石墨烯(4.5eV)和半导体功函的不同而构建异质结,当光照射到异质结,缺陷态石墨烯吸收光,光子能量发生跃迁,产生光生载流子,光生载流子在外加偏压的作用下,传输到异质结界面,实现光电转换。
但是传统的石墨烯/半导体异质结光电探测器是应用单层石墨烯或者少层机械剥离石墨烯作为金属材料,其存在以下几方面的问题,其一,石墨烯厚度低,吸光率太低;其二,少层石墨烯面积太小,不适合大量制备。
发明内容
本发明的目的是克服现有技术的不足,提供了一种缺陷态石墨烯/半导体异质结光电探测器。通过设计了纳米量级石墨烯膜,增加光吸收,克服传了统石墨烯存在的以上各种问题。并通过烧结得到不同缺陷态含量的纳米量级石墨烯薄膜,通过缺陷态的引入,增加电子向声子散射,引起热效应,提高光响应。
本发明的目的是通过以下技术方案实现的:一种缺陷态石墨烯/半导体异质结光电探测器,所述光电探测器具有两层结构,一层为半导体层,另一层为缺陷态石墨烯层,所述缺陷态石墨烯层与半导体层贴合;缺陷态石墨烯层厚度为10-100nm,所述缺陷态石墨烯层中含有缺陷态sp3/sp2碳含量比为1%-40%。所述缺陷态石墨烯层通过以下方法制备得到:
(1)在AAO基底上抽滤得到纳米厚度氧化石墨烯膜,所述氧化石墨烯膜负载在AAO基底上;
(2)将负载有氧化石墨烯膜的AAO基底,在60-120℃下进行化学还原,还原时间为6-12h,得到负载还原氧化石墨烯膜的AAO基底;
(3)将负载还原氧化石墨烯膜的AAO基底通过樟脑在120-200℃下剥离,并在60℃下除去樟脑;得到还原氧化石墨烯薄膜;
(4)将步骤3得到的还原氧化石墨烯薄膜在1600-2000℃烧结1min-8h,制备得到缺陷态纳米厚度石墨烯薄膜。
进一步地,步骤2中化学还原的方法为氢碘酸还原。
进一步地,所述半导体可以是Si,Ge,SiC,AlN,AlP,AlAs,AlSb,GaN,GaP,GaAs,GaSb,InN,InP,InAs,InSb,ZnO,ZnS,ZnSe,ZnTe,CdS,CdSe,CdTe,HgSe,HgTe,PbS,PbSe,PbTe等。
本发明的有益效果在于:本发明用抽滤的方法制备氧化石墨烯薄膜,保证了氧化石墨烯薄膜的均匀性以及器件的稳定性;通过控制烧结工艺,制备缺陷态石墨烯薄膜,在异质结中引入缺陷态,增加电子向声子散射,引起热效应,进而提高光响应。相比无缺陷态石墨烯/半导体异质结光电探测器,缺陷态的引入,实现外量子效率在量级上的提升。另外,相对于少层石墨烯,本申请制备的薄膜尺寸大,可操作性更强。
附图说明
图1为实施例1制备的1600℃-1min(缺陷40%)石墨烯/硅异质结光电探测器电流-电压曲线。
图2为实施例2制得的1600℃-30min(缺陷20%)石墨烯/硅异质结光电探测器电流-电压曲线。
图3为实施例3制得的1600℃-8h(缺陷10%)石墨烯/硅异质结光电探测器电流-电压曲线。
图4为实施例4制得的2800-2h(无缺陷)石墨烯/硅异质结光电探测器电流-电压曲线。
具体实施方式
下面结合附图进一步详细描述本发明的内容,使得本发明的目的和效果变得更加明白。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
(1)将氧化石墨烯溶液进行稀释,在AAO基底上抽滤得到氧化石墨烯膜,所述氧化石墨烯膜负载在AAO基底上;
(2)将负载有氧化石墨烯膜的AAO基底,在60℃下进行氢碘酸还原,还原时间为12h,得到负载还原氧化石墨烯膜的AAO基底;
(3)将负载还原氧化石墨烯膜的AAO基底通过樟脑在120℃下剥离,并在60℃下除去樟脑;得到还原氧化石墨烯薄膜;
(4)将步骤3得到的还原氧化石墨烯薄膜在1600℃烧结1min,制备得到40nm厚度缺陷态石墨烯薄膜。
XPS检测并计算出该缺陷态石墨烯薄膜含有缺陷态sp3/sp2碳含量比为40%。
将上述缺陷态石墨烯膜与硅片贴合,制备光电器件,测定4um波长下电流-电压曲线,如图1所示。依据测定结果计算响应度及外量子效率,得出4um激光功率为71mw时,响应度为7.41×10-5A/W,外量子效率为2.30×10-5
实施例2:
(1)将氧化石墨烯溶液进行稀释,在AAO基底上抽滤得到氧化石墨烯膜,所述氧化石墨烯膜负载在AAO基底上;
(2)将负载有氧化石墨烯膜的AAO基底,在120℃下进行氢碘酸还原,还原时间为8h,得到负载还原氧化石墨烯膜的AAO基底;
(3)将负载还原氧化石墨烯膜的AAO基底通过樟脑在200℃下剥离,并在60℃下除去樟脑;得到还原氧化石墨烯薄膜;
(4)将步骤3得到的还原氧化石墨烯薄膜在1600℃烧结30min,制备得到40nm厚度缺陷态石墨烯薄膜。
经XPS检测,计算出该缺陷态石墨烯薄膜含有缺陷态sp3/sp2碳含量比为20%。
将上述缺陷态石墨烯薄膜与硅片贴合制备光电器件,测定4um波长下电流-电压曲线,如图2所示。依据测定结果计算响应度及外量子效率。得出4um激光功率为71mw时,响应度为5.01×10-5A/W,外量子效率为1.57×10-6
实施例3:
(1)将氧化石墨烯溶液进行稀释,在AAO基底上抽滤得到氧化石墨烯膜,所述氧化石墨烯膜负载在AAO基底上;
(2)将负载有氧化石墨烯膜的AAO基底,在120℃下进行化学还原,还原时间为12h,得到负载还原氧化石墨烯膜的AAO基底;
(3)将负载还原氧化石墨烯膜的AAO基底通过樟脑在200℃下剥离,并在60℃下除去樟脑;得到还原氧化石墨烯薄膜;
(4)将步骤3得到的还原氧化石墨烯薄膜在1600℃烧结8h,制备得到40nm厚度缺陷态石墨烯薄膜。
经XPS检测,计算出该缺陷态石墨烯薄膜含有缺陷态sp3/sp2碳含量比为10%。
将上述缺陷态石墨烯薄膜与硅片贴合制备光电器件,测定4um波长下电流-电压曲线,如图3所示。依据测定结果计算响应度及外量子效率,得到4um激光功率为71mw时,响应度为7.79×10-5A/W,外量子效率为2.42×10-5
对比例
(1)将氧化石墨烯溶液进行稀释,在AAO基底上抽滤得到氧化石墨烯膜,所述氧化石墨烯膜负载在AAO基底上;
(2)将负载有氧化石墨烯膜的AAO基底,在120℃下进行化学还原,还原时间为12h,得到负载还原氧化石墨烯膜的AAO基底;
(3)将负载还原氧化石墨烯膜的AAO基底通过樟脑在200℃下剥离,并在60℃下除去樟脑;得到还原氧化石墨烯薄膜;
(4)将步骤3得到的还原氧化石墨烯薄膜在2800℃烧结2h,制备得到40nm石墨烯薄膜。
经XPS检测,并计算出该石墨烯薄膜含有缺陷态sp3/sp2碳含量比为0。
将上述缺陷态石墨烯薄膜与硅片贴合制备光电器件,测定4um波长下电流-电压曲线,如图4所示。依据测定结果计算响应度及外量子效率,得到4um激光功率为71mw时,响应度为2.60×10-6A/W,外量子效率为8.06×10-7
将实施例1-3测定的缺陷态石墨烯/硅异质结光电探测器电流-电压曲线和对比例无缺陷态石墨烯/硅异质结光电探测器电流-电压曲线,计算对应外量子效率进行对比,结果如下:表1显示,随着激光功率下降,石墨烯/硅异质结光电探测器的外量子效率成下降趋势;对于相同功率下的激光功率,有缺陷的石墨烯/硅异质结光电探测器的外量子效率均高于无缺陷石墨烯/硅异质结光电探测器的外量子效率。因此,有缺陷态石墨烯薄膜作为二维材料制备的光电器件,外量子均高于无缺陷态石墨烯薄膜作为二维材料制备的光电器件的外量子效率。
表1.不同功率下(不同缺陷态石墨烯薄膜)光电器件外量子效率
Figure BDA0002419545900000041
实施例4
(1)将氧化石墨烯溶液进行稀释,在AAO基底上抽滤得氧化石墨烯膜,所述氧化石墨烯膜负载在AAO基底上;
(2)将负载有氧化石墨烯膜的AAO基底,在120℃下进行化学还原,还原时间为10h,得到负载还原氧化石墨烯膜的AAO基底;
(3)将负载还原氧化石墨烯膜的AAO基底通过樟脑在200℃下剥离,并在60℃下除去樟脑;得到还原氧化石墨烯薄膜;
(4)将步骤3得到的还原氧化石墨烯薄膜在2000℃烧结8h,制备得到10nm缺陷态石墨烯薄膜。
经XPS检测,并计算出该缺陷态石墨烯薄膜含有缺陷态sp3/sp2碳含量比为1%。
将上述缺陷态石墨烯薄膜与锗片贴合制备光电器件,测定4um波长下电流-电压曲线,依据测定结果计算响应度及外量子效率,得到4um激光功率为5mw时,响应度为0.0037A/W。
实施例5
(1)将氧化石墨烯溶液进行稀释,在AAO基底上抽滤得氧化石墨烯膜,所述氧化石墨烯膜负载在AAO基底上;
(2)将负载有氧化石墨烯膜的AAO基底,在120℃下进行化学还原,还原时间为6h,得到负载还原氧化石墨烯膜的AAO基底;
(3)将负载还原氧化石墨烯膜的AAO基底通过樟脑在200℃下剥离,并在60℃下除去樟脑;得到还原氧化石墨烯薄膜;
(4)将步骤3得到的还原氧化石墨烯薄膜在1600℃烧结8h,制备得到100nm缺陷态石墨烯薄膜。
经XPS检测,并计算出该缺陷态石墨烯薄膜含有缺陷态sp3/sp2碳含量比为10%。
将上述缺陷态石墨烯薄膜与氧化锌贴合制备光电器件,测定4um波长下电流-电压曲线,依据测定结果计算响应度及外量子效率,得到4um激光功率为20mw时,响应度为0.00499A/W。

Claims (3)

1.一种缺陷态石墨烯/半导体异质结光电探测器,其特征在于,所述光电探测器具有两层结构,一层为半导体层,另一层为缺陷态石墨烯层,所述缺陷态石墨烯层与半导体层贴合;缺陷态石墨烯层厚度为10-100nm,所述缺陷态石墨烯层中含有缺陷态sp3/sp2碳含量比为1%-40%;所述缺陷态石墨烯层通过以下方法制备得到:
(1)在AAO基底上抽滤得到纳米厚度氧化石墨烯膜,所述氧化石墨烯膜负载在AAO基底上;
(2)将负载有氧化石墨烯膜的AAO基底,在60-120℃下进行化学还原,还原时间为6-12h,得到负载还原氧化石墨烯膜的AAO基底;
(3)将负载还原氧化石墨烯膜的AAO基底通过樟脑在120-200℃下剥离,并在60℃下除去樟脑;得到还原氧化石墨烯薄膜;
(4)将步骤(3)得到的还原氧化石墨烯薄膜在1600-2000℃烧结1min-8h,制备得到缺陷态纳米厚度石墨烯薄膜。
2.根据权利要求1所述缺陷态石墨烯/半导体异质结光电探测器,其特征在于,步骤(2)中化学还原的方法为氢碘酸还原。
3.根据权利要求1所述缺陷态石墨烯/半导体异质结光电探测器,其特征在于,所述半导体为Si,Ge,SiC,AlN,AlP,AlAs,AlSb,GaN,GaP, GaAs,GaSb,InN,InP,InAs,InSb,ZnO,ZnS,ZnSe,ZnTe,CdS, CdSe,CdTe,HgSe,HgTe,PbS,PbSe或PbTe。
CN202010201500.7A 2020-03-20 2020-03-20 一种缺陷态石墨烯/半导体异质结光电探测器 Active CN111384197B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010201500.7A CN111384197B (zh) 2020-03-20 2020-03-20 一种缺陷态石墨烯/半导体异质结光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010201500.7A CN111384197B (zh) 2020-03-20 2020-03-20 一种缺陷态石墨烯/半导体异质结光电探测器

Publications (2)

Publication Number Publication Date
CN111384197A CN111384197A (zh) 2020-07-07
CN111384197B true CN111384197B (zh) 2021-11-05

Family

ID=71218828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010201500.7A Active CN111384197B (zh) 2020-03-20 2020-03-20 一种缺陷态石墨烯/半导体异质结光电探测器

Country Status (1)

Country Link
CN (1) CN111384197B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583003B (zh) * 2022-04-29 2022-10-11 浙江大学 基于硅/石墨烯纳米膜/锗的垂直光电探测器及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517155A (zh) * 2016-10-10 2017-03-22 福州博力达机电有限公司 一种环境友好型制备石墨烯的方法
CN108470794A (zh) * 2018-02-12 2018-08-31 杭州高烯科技有限公司 一种石墨烯光电探测器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9741796B2 (en) * 2015-09-20 2017-08-22 National Tsing Hua University Graphene-based valley filter and method for operating the same
CN110803743B (zh) * 2019-11-15 2020-09-15 中国地质大学(北京) 一种缺陷态氧化钛-氧化铝-石墨烯陶瓷电极的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517155A (zh) * 2016-10-10 2017-03-22 福州博力达机电有限公司 一种环境友好型制备石墨烯的方法
CN108470794A (zh) * 2018-02-12 2018-08-31 杭州高烯科技有限公司 一种石墨烯光电探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mie散射增强的新型石墨烯光电探测器研究及Mie散射应用拓展;乔芳建;《中国优秀硕士学位论文全文数据库 信息科技辑》;20160315;第I135-680页 *

Also Published As

Publication number Publication date
CN111384197A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
Parida et al. Nanostructured-NiO/Si heterojunction photodetector
CN109065662B (zh) 一种Te/MoS2范德华异质结构及其制备方法和应用
Solanke et al. UV/near-IR dual band photodetector based on p-GaN/α-In2Se3 heterojunction
Brus et al. Graphitic carbon/n-CdTe Schottky-type heterojunction solar cells prepared by electron-beam evaporation
Aftab et al. Switching photodiodes based on (2D/3D) PdSe 2/Si heterojunctions with a broadband spectral response
Zhao et al. Surface plasmon resonance bilayer graphene/Al2O3/GaAs Schottky junction near-infrared photodetector
Patra et al. Investigations on LSPR effect of Cu/Al nanostructures on ZnO nanorods towards photodetector applications
Agrawal et al. Enhance near infrared performance of n-type vertically aligned MoS2 flakes photodetector with active p-type CZTS electrodes
Ferhati et al. Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector
CN111384197B (zh) 一种缺陷态石墨烯/半导体异质结光电探测器
Tsai et al. High-efficiency omnidirectional photoresponses based on monolayer lateral p–n heterojunctions
Zhang et al. Graphene/InP Schottky junction near-infrared photodetectors
Ferhati et al. Highly-detective tunable band-selective photodetector based on RF sputtered amorphous SiC thin-film: Effect of sputtering power
Horley et al. Optoelectronic properties of Ni–GaP diodes with a modified surface
Wang et al. Temperature dependent device characteristics of graphene/h-BN/Si heterojunction
Zhang et al. Thermal oxidation of AlGaN nanowires for sub-250 nm deep ultraviolet photodetection
Yuan et al. A fast-response and transparent solution–processed ultraviolet photodetector based on ZnO quantum–sized nanoparticles
Wu et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging
Kaur et al. Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al: ZnO/p-Cu2O heterojunction
Kaplan et al. Photoelectrical properties of fabricated ZnS/Si heterojunction device using thermionic vacuum arc method
Song et al. Self-powered photodetectors based on a ZnTe–TeO 2 composite/Si heterojunction with ultra-broadband and high responsivity
Cheng et al. Heterojunction structure for suppressing dark current toward high-performance ZnO microrod metal-semiconductor-metal ultraviolet photodetectors
Gupta et al. Photodetection Properties of Graphene/Silicon van der Waals Heterojunction
Patsha et al. Nonpolar p-GaN/n-Si heterojunction diode characteristics: A comparison between ensemble and single nanowire devices
Aftab et al. Self-biased photovoltaic behavior in van der Waals MoTe2/MoSe2 heterostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant