CN111377713A - 一种复相荧光陶瓷及其制备方法 - Google Patents

一种复相荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN111377713A
CN111377713A CN201911182074.0A CN201911182074A CN111377713A CN 111377713 A CN111377713 A CN 111377713A CN 201911182074 A CN201911182074 A CN 201911182074A CN 111377713 A CN111377713 A CN 111377713A
Authority
CN
China
Prior art keywords
ceramic
fluorescent ceramic
fluorescent
heat
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911182074.0A
Other languages
English (en)
Other versions
CN111377713B (zh
Inventor
胡松
陈晗
薛振海
王正娟
张芸莉
李宏书
周国红
王士维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201911182074.0A priority Critical patent/CN111377713B/zh
Publication of CN111377713A publication Critical patent/CN111377713A/zh
Application granted granted Critical
Publication of CN111377713B publication Critical patent/CN111377713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/08Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种复相荧光陶瓷及其制备方法,所述复相荧光陶瓷包括:高导热介质陶瓷基体,以及分布在高导热介质陶瓷基体中的呈周期排布的荧光陶瓷主体;相邻荧光陶瓷主体之间的最短距离L为200~1000μm,高导热介质陶瓷基体占复相荧光陶瓷的体积分数δ为5~60%;所述荧光陶瓷主体为稀土掺杂透明陶瓷;所述高导热介质陶瓷基体的材料选自Al2O3、AlN、BeO、Sc2O3、Si3N4、BN、SiC和MgO中的至少一种。

Description

一种复相荧光陶瓷及其制备方法
技术领域
本发明涉及一种具备优异发光热稳定性能的复相荧光陶瓷及其制备方法,具体涉及一种提高荧光陶瓷导热性能的方法,属于荧光材料应用技术领域。
背景技术
在基于激光激发远程荧光体技术(LARP)的激光显示器件中,光转换材料是核心之一,也是近年来的研究热点,其光色光温、荧光量子效率及其在高功率密度激光辐照下的发光稳定性直接关联器件的品质。树脂封装荧光粉、稀土掺杂玻璃及微晶玻璃等无机发光材料竞相发展,不断推动激光显示器件的品质提升。在此发展过程中,稀土掺杂透明陶瓷(简称荧光陶瓷)凭借相较于树脂封装荧光粉、荧光玻璃等传统无机发光材料更加优异的热传导和物理化学稳定性等优势,在激光显示领域脱颖而出,成为当前高功率密度LD驱动发光材料的绝佳选择之一。
LD作为光源与LED等传统固态光源最大区别在于荧光材料在LD激发下Stokes位移、非辐射跃迁和光-物质作用引起的局域温升效应更加显著,即便是具备高热导率(10W/m·K)的荧光陶瓷在高功率密度LD辐照下仍然极易表现出激发饱和、荧光衰减和色坐标偏移等。不仅如此,随着激光显示逐步向高亮度、紧凑型和静态模式的方向发展,急剧增加的热负荷、热冲击和不断压缩的空间给荧光陶瓷的可靠性、光效和发光稳定性带来了更加严峻的考验。专利1(中国公开号CN107285745A)公布了一种氧化铝基质的荧光陶瓷,通过将荧光粉与高导热的氧化铝粉体混合共烧得到氧化铝弥散分布的氧化铝-荧光粉复相陶瓷,提高了陶瓷的有效热导率,增强了散热性能。但是,引入不连续Al2O3晶粒增加了异质界面和界面声子散射,阻碍了热的定向输运。因此,从界面热阻的角度分析,弥散分布的高热导介质对提升散热效率的贡献是有限的。
发明内容
针对上述问题,本发明的目的在于提供一种周期性结构复相荧光陶瓷及其制备方法,其中高导热介质构成连续的导热通道,可避免大量的异质晶界声子散射,显著提高荧光陶瓷的定向热输运能力,进而获得导热性能更加优异的荧光陶瓷材料。
一方面,本发明提供了一种复相荧光陶瓷,所述复相荧光陶瓷包括:高导热介质陶瓷基体,以及分布在高导热介质陶瓷基体中的呈周期排布的荧光陶瓷主体;相邻荧光陶瓷主体之间的距离L为200~1000μm,高导热介质陶瓷基体占复相荧光陶瓷的体积分数δ为5~60%;
所述荧光陶瓷主体为稀土掺杂透明陶瓷;所述高导热介质陶瓷基体的材料选自Al2O3、AlN、BeO、Sc2O3、Si3N4、BN、SiC和MgO中的至少一种。
在本公开中,通过在具有连续导热的高导热介质陶瓷基体内部构筑有序的周期性排布的荧光陶瓷主体,制备得到复相荧光陶瓷。其中,高导热介质陶瓷基体本身便是连续的导热介质(即形成连续导热通道),将表面热源引起的热或荧光陶瓷主体发光过程中因Stokes位移、非辐射跃迁引起的热高效地输运至热耗散端,有效增强陶瓷的热输运能力,从而保持陶瓷体较低的体相温度,为荧光陶瓷的稳定发光提供良好的条件。也就是说,本发明中复相荧光陶瓷在不影响其荧光特性的基础上,还具有定向热输运特性。而且,L为荧光陶瓷主体之间的最短距离,也可以理解为连续导热高导热介质陶瓷基体中多孔结构之间形成的壁厚,δ为高导热介质陶瓷基体占据复相荧光陶瓷的体积分数,L和δ共同决定荧光主体的有效尺寸。
较佳的,300μm≤L≤500μm;10%≤δ≤40%。
较佳的,所述荧光陶瓷主体的成分为YAG:RE、Al2O3/YAG:RE、Lu2O3:RE、Y2O3:RE、LuAG:RE、La2Hf2O7:RE、YVO4:RE、CaAlSiN3:RE中的至少一种;其中RE选自Ce3+、Eu2+、Pr3+、Cr3 +、Tb3+、Sm3+、Dy3+、Ho3+和Tm3+中的至少一种;优选RE的掺杂量为0.1~2mol%。较佳的,所述荧光陶瓷主体的截面形状为圆形、正多边形、或长方形。
另一方面,本发明还提供了一种如上述的复相荧光陶瓷的制备方法,包括:
(1)制备孔道结构呈阵列排布的高导热介质陶瓷生坯;
(2)配制胶态荧光陶瓷主体介质浆料,并采用胶态成型技术填充到孔道结构呈阵列排布的高导热介质陶瓷生坯中,得到复相荧光陶瓷坯体;
(3)将所得复相荧光陶瓷坯体经过脱脂和烧结,得到所述复相荧光陶瓷。
较佳的,将高导热介质陶瓷粉和光敏树脂混合后作为原料,采用3D打印技术制备所述孔道结构呈阵列排布的高导热介质陶瓷生坯;所述光敏树脂占原料总质量的18~40wt%,优选为21~26wt%;所述3D打印技术的参数包括:单层厚为0.02~0.05mm;光照强度为2~15mW/cm2
又,较佳的,所述光敏树脂包括环氧丙烯酸酯树脂、环氧树脂、光引发剂、触变剂和活性稀释剂;更优选地,所述光敏树脂包括55~65wt%环氧丙烯酸酯树脂、6~15wt%环氧树脂、4~8wt%光引发剂、2~5wt%触变剂和10~20wt%活性稀释剂,各组分质量百分比之和为100wt%。
较佳的,所述胶态荧光陶瓷主体介质浆料的组分包括:荧光陶瓷介质粉体、分散剂、固化剂和去离子水,所述荧光陶瓷介质粉体占胶态荧光陶瓷主体介质浆料总质量的70~82wt%。
又,较佳的,所述荧光陶瓷介质粉体占胶态荧光陶瓷主体介质浆料总质量优选为78~82wt%;所述胶态高导热陶瓷主体介质浆料的组分还包括:0.2~0.8wt%分散剂、0.1~0.3wt%固化剂。
较佳的,所述胶态成型技术包括:将胶态荧光陶瓷主体介质浆料注入至孔道结构呈周期排布的高导热介质陶瓷生坯中后,在室温(22~28℃)下固化10~30小时。
较佳的,所述脱脂的温度为800~1200℃,时间为1~5小时;优选地,所述脱脂的升温速率为0.1~1℃/分钟。
较佳的,所述烧结的方式为真空反应烧结;所述真空反应烧结的温度为1650~1780℃,时间为0.5~20小时,真空度不低于10-3Pa。
有益效果:
在公开中,通过在荧光陶瓷主体周围构筑由高导热特性介质构成的连续通道,可为荧光陶瓷提供热输运通道,使得部分热从高导热通道上输运至热耗散端,从而降低荧光主体的热流密度,为荧光主体的高效、稳定发光奠定基础。与无连续定向导热通道的荧光陶瓷相比,本发明的荧光陶瓷在1.6~8.2W不同功率LD光源激发下表面平衡温度降低12~32%,有望显著提高荧光陶瓷的发光热稳定性和激发饱和阈值。
附图说明
图1为实施例1制备的复相荧光陶瓷的结构示意图(单位尺寸为mm);
图2为实施例1制备的复相荧光陶瓷的显微结构图;
图3为实施例1制备的复相荧光陶瓷在不同激光(LD)激发下表面平衡温度变化曲线图;
图4为对比例1制备的无连续定向导热基体的荧光陶瓷在不同激光(LD)激发下表面平衡温度变化曲线图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
在本公开中,提供了一种内部构筑连续定向导热通道的复相荧光陶瓷,具有定向热输运特性。该复相荧光陶瓷包括高导热介质陶瓷基体,以及分布在高导热介质陶瓷基体中的呈周期性排列的荧光陶瓷主体。事实上,本发明中高导热介质陶瓷基体本身可看作是分布在荧光陶瓷主体周围呈阵列式排布(也称周期性排布),形成了连续导热通道(或称连续定向通道),以降低荧光陶瓷体相温度,并进一步增强其发光稳定性和激发饱和阈值。相邻荧光陶瓷主体之间的最短距离可为200μm≤L≤1000μm。高导热介质陶瓷基的体积分数可为5%≤δ≤60%。其中,L实质上也是高导热介质陶瓷基体间的壁厚。优选300μm≤L≤500μm。优选,10%≤δ≤40%。
在可选的实施方式中,该荧光陶瓷主体可为稀土掺杂透明陶瓷。其中,并无导热通道的荧光陶瓷主体在紫外或蓝光的激发下,发射高强度荧光。当在荧光陶瓷主体周围构筑连续的高导热陶瓷介质形成导热通道时,能够使得荧光陶瓷主体的部分热向导热通道传递,进一步从导热通道输运至热耗散端,从而有效降低荧光主体的热流密度。如图1中所示,当激发光源从陶瓷表面入射,荧光陶瓷主体发射荧光,同时伴随热量产生。部分热量迅速传递至连续导热通道,并从高导热介质陶瓷基体形成的导热通道输运至另一面直至热耗散。
在可选的实施方式中,高导热陶瓷介质基体的构成,优选可为Al2O3、AlN、BeO、Sc2O3、Si3N4、BN、SiC、MgO等多晶陶瓷,更优选为Al2O3、MgO陶瓷中的一种。稀土掺杂透明陶瓷可为YAG:RE、Al2O3/YAG:RE、Lu2O3:RE、Y2O3:RE、LuAG:RE、La2Hf2O7:RE、YVO4:RE、CaAlSiN3:RE陶瓷。其中,RE为Ce3+、Eu2+、Pr3+、Cr3+、Tb3+、Sm3+、Dy3+、Ho3+、Tm3+中的一种或多种,掺杂含量可为0.1-2mol%。
在本发明实施方式中,可采用3D打印和胶态成型相结合的技术制备复相荧光陶瓷坯体,然后再经脱脂和烧结制备得到复相荧光陶瓷。以下示例性地说明本发明提供的复相荧光陶瓷的制备方法。
3D打印陶瓷浆料(高导热介质所用浆料)的制备。称取所需高导热介质陶瓷的原料粉体(简称陶瓷粉体),陶瓷粉体包括:Al2O3、AlN、BeO、Sc2O3、Si3N4、BN、SiC、MgO粉体等,优选为Al2O3、MgO。再称量适量光敏树脂,并将陶瓷粉体与光敏树脂进行充分混合,配置成陶瓷浆料。其中,陶瓷粉体可占陶瓷粉体和光敏树脂总质量的60~82wt%,优选可为74~79wt%。在可选的实施方案中,其中,光敏树脂包含环氧丙烯酸酯树脂、环氧树脂、光引发剂、触变剂和活性稀释剂。例如,光敏树脂包含55~65wt%环氧丙烯酸酯树脂、6~15wt%环氧树脂、4~8wt%光引发剂、2~5wt%触变剂和10~20wt%活性稀释剂,各组分质量百分比之和为100wt%。其中,光引发剂可为2,2-二乙氧苯乙酮、二苯甲酮、4-苯基二苯甲酮和氯化二苯甲酮等中的至少一种。触变剂可为氢化蓖麻油、气相二氧化硅和聚酰胺蜡等中的至少一种。活性稀释剂可为四氢呋喃丙烯酸酯、双三羟基丙烷丙烯酸酯和四丙烯酸季戊四醇酯等中的至少一种。
制备孔道结构呈阵列排布的高导热介质陶瓷生坯。可采用3D打印技术按照孔道周期性结构参数设计的模型进行逐层打印,得到孔道结构呈阵列排布的高导热介质陶瓷生坯。在可选的实施方案中,3D打印参数包括:单层厚度可为0.03~0.05mm;光照强度可为2~15mW/cm2。其中,L实质上也是高导热介质陶瓷坯体中多孔孔道之间的壁厚。孔道结构为圆形、正多边形、或长方形。其中正多边形可为正三角形、正方形、正六边形等。孔道结构的边长(或直径)可根据L和δ进行适应性调整。
胶态荧光陶瓷主体介质浆料(简称胶态荧光陶瓷浆料)的制备。具体来说,将荧光陶瓷介质粉体、分散剂、固化剂和溶剂混合。荧光陶瓷介质粉体可为稀土掺杂透明陶瓷(例如,YAG:Ce、Al2O3/YAG:Ce、Lu2O3:Tm、Y2O3:Dy、LuAG:Pr、La2Hf2O7:Ce、YVO4:Ce、CaAlSiN3:Eu陶瓷等)。在可选的实施方式中,荧光陶瓷介质粉体占浆料总质量的70~82wt%,优选为78~82%。分散剂占粉体总质量的0.2~0.8%。固化剂占粉体总质量的0.1~0.3%。溶剂质量分数由荧光陶瓷介质粉体、固化剂、分散剂含量共同决定。其中分散剂可为异丁烯-马来酸酐共聚物-600等。固化剂可为异丁烯-马来酸酐共聚物-104等。溶剂可为去离子水等。
采用胶态成型技术,将胶态荧光陶瓷主体介质浆料填充到高导热介质陶瓷主体生坯的周期性孔道结构中,得到复相荧光陶瓷坯体。具体来说,填充和成型过程包括:将胶态荧光陶瓷主体介质浆料注入孔道结构呈阵列排布的高导热介质陶瓷生坯的孔道结构中并自发凝固即可。例如,该自发凝固过程一般是在室温(22~28℃)下固化10~30小时完成。
将复相荧光陶瓷坯体进行脱脂热处理,除去有机物,得到具有强度的陶瓷素坯。在可选的实施方式中,脱脂热处理的温度可为800~1200℃,时间可为1~5小时,升温速率可为0.1~1℃/min。
将陶瓷素坯进行高温烧结,得到致密的复相荧光陶瓷。其中高温烧结可为真空烧结。可选的实施方式中,真空烧结的温度可为1650~1780℃,保温时间可为时间为0.5~20小时,真空度不低于10-3Pa。优选的,将所得复相荧光陶瓷在1300~1500℃下的退火炉中进行退火处理2~10小时,其目的在于消除复相陶瓷的内应力,消除氧空位缺陷。
在本公开中,可通过调节L和δ,获得不同导热通道占空比的复相荧光陶瓷。且,所得导热通道增强热输运的荧光陶瓷在紫外或蓝光的激发下,其表面平衡温度与无定向热输运结构的荧光陶瓷相比有显著降低,即定向热输运能力有显著提升。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
本实施例1中内部具有复相荧光陶瓷的制备过程包括:
(1)准确称量80g Al2O3陶瓷粉体,添加19.3g光敏树脂,共混后采用行星磨进行充分混合,获得陶瓷浆料。所述光敏树脂的组成包含12.3g环氧丙烯酸酯树脂、1.2g环氧树脂、1.2g2,2-二乙氧苯乙酮、0.8g氢化蓖麻油和3.8g四氢呋喃丙烯酸酯;
(2)如图1所示,设计周期性结构复相荧光陶瓷内部周期性结构参数为:δ为40%;将孔道结构设置为正六边形,基体中多孔孔道间的壁厚为300μm,设置孔道结构的有效边长为700μm,然后输入到3D打印机程序中;
(3)将所得陶瓷浆料倒入3D打印机料槽中,按照设计参数打印孔道架构呈阵列式排布的氧化铝陶瓷生坯。其中3D打印参数包括:单层厚为0.02mm;光照强度为6mW/cm2
(4)准确称量100g 20wt%Al2O3/YAG:0.4mol%Ce荧光主体粉体,添加27g去离子水和0.2g分散剂、0.3g固化剂,共混后采用行星球磨机进行充分混合,获得胶态荧光陶瓷主体介质浆料;
(5)将胶态荧光陶瓷浆料注入氧化铝陶瓷框架孔道中,并自发凝固,获得的陶瓷以氧化铝为“壳”,以Al2O3/YAG:Ce3+为“芯”的复相荧光陶瓷坯体;
(6)将所得复相荧光陶瓷坯体在马弗炉中进行脱脂,具体过程包括:以0.2℃/分钟的升温速率加热至1100℃后保温2小时,得到复合陶瓷素坯;
(7)将复合陶瓷素坯采用真空反应技术进行烧结,具体过程包括:真空度不低于10-3Pa的真空气氛中,加热至1720℃,并保温6小时。随后随炉冷却后在1400℃退火炉中进行退火处理,保温时间为6小时,得到氧化铝多晶陶瓷通道呈周期排布的复相荧光陶瓷,其显微结构如图2所示。
如图3所示,依靠氧化铝的高导热特性,该氧化铝多晶陶瓷通道呈阵列式排布的复相荧光陶瓷在功率为1.60W的激光光源激发下表面平衡温度为34.2℃,在3.38W的激光光源激发下表面平衡温度为40.4℃,在4.93W的激光光源激发下表面平衡温度为45.7℃,在6.47W的激光光源激发下表面平衡温度为53.9℃,在8.13W的激光光源激发下表面平衡温度为62.6℃,相比于对比例1中无高导热介质陶瓷基体的荧光陶瓷,其表面平衡温度分别下降12.8%,26.9%和29.8%,31.5%,25.2%,热输运能力得到显著提升。
对比例1
本对比例1中无高导热介质陶瓷基体的荧光陶瓷的制备过程,包括:
(1)准确称量100g 20wt%Al2O3/YAG:0.4mol%Ce荧光主体粉体,添加27g去离子水和0.2g分散剂、0.3g固化剂,共混后采用行星球磨机进行充分混合,获得胶态荧光陶瓷主体介质浆料;
(2)将胶态荧光陶瓷浆料注入塑料模具中,并自发凝固,获得Al2O3/YAG:0.4mol%Ce荧光陶瓷生坯;
(3)荧光陶瓷坯体在马弗炉中进行脱脂,具体过程包括:以0.2℃/分钟的升温速率加热至1100℃后保温2小时,得到素坯;
(4)将陶瓷素坯采用真空反应技术进行烧结,具体过程包括:真空度不低于10-3Pa的真空气氛中,加热至1720℃,并保温6小时。随后随炉冷却后在1400℃退火炉中进行退火处理,保温时间为6小时,得到荧光陶瓷,并进行加工使厚度与实施例1中的复相陶瓷一致。
如图4所示,本对比例1中无高导热介质陶瓷基体的荧光陶瓷在功率为1.60W的激光光源激发下表面平衡温度为38.6℃,在3.38W的激光光源激发下表面平衡温度为55.3℃,在4.93W的激光光源激发下表面平衡温度为65.1℃,在6.47W的激光光源激发下表面平衡温度为78.7℃,在8.13W的激光光源激发下表面平衡温度为83.7℃。
实施例2
本实施例2中复相荧光陶瓷和实施例1基本一致,区别在于:选用LuAG:Ce作为荧光陶瓷主体(掺杂量0.15mol%),选用MgO作为高导热介质陶瓷基体,L为450μm,δ为28%。
依靠MgO的高导热特性,该周期性结构复相荧光陶瓷在功率为8.13W的激光光源激发下表面平衡温度为66.5℃,相比于对比例2中无高导热介质陶瓷基体的荧光陶瓷,其表面平衡温度下降25.6%,热输运能力得到显著提升。
对比例2
本对比例2中荧光陶瓷制备过程和对比例1基本一致,区别在于:选用LuAG:0.15mol%Ce作为荧光体。
本对比例2中无高导热介质陶瓷基体的荧光陶瓷在8.13W的激光光源激发下表面平衡温度为89.4℃。
对比例3
本对比例3中荧光陶瓷制备过程和对比例2基本一致,区别在于:选用78g LuAG:Ce和22g MgO粉体组成的复合粉体作为荧光体用粉体。
本对比例3中所得复相荧光陶瓷中MgO弥散分布,难以形成连续的导热通道,其在功率为8.13W的激光光源激发下表面平衡温度为79.2℃。

Claims (11)

1.一种复相荧光陶瓷,其特征在于,所述复相荧光陶瓷包括:高导热介质陶瓷基体,以及分布在高导热介质陶瓷基体中的呈周期排布的荧光陶瓷主体;相邻荧光陶瓷主体之间的最短距离L为200~1000μm,高导热介质陶瓷基体占复相荧光陶瓷的体积分数δ为5~60%;
所述荧光陶瓷主体为稀土掺杂透明陶瓷;所述高导热介质陶瓷基体的材料选自Al2O3、AlN、BeO、Sc2O3、Si3N4、BN、SiC和MgO中的至少一种。
2.根据权利要求1所述的复相荧光陶瓷,其特征在于,300μm≤L≤500μm;10%≤δ≤40%。
3.根据权利要求1或2所述的复相荧光陶瓷,其特征在于,所述荧光陶瓷主体的成分为YAG:RE、Al2O3/YAG:RE、Lu2O3:RE、Y2O3:RE、LuAG:RE、La2Hf2O7:RE、YVO4:RE、CaAlSiN3:RE中的至少一种;其中RE选自Ce3+、Eu2+、Pr3+、Cr3+、Tb3+、Sm3+、Dy3+、Ho3+和Tm3+中的至少一种;优选RE的掺杂量为0.1~2 mol%。
4.根据权利要求1-3中任一项所述的复相荧光陶瓷,其特征在于,所述荧光陶瓷主体的截面形状为圆形、正多边形、或长方形。
5.一种如权利要求1-4中任一项所述的复相荧光陶瓷的制备方法,其特征在于,包括:
(1)制备孔道结构呈阵列排布的高导热介质陶瓷生坯;
(2)配制胶态荧光陶瓷主体介质浆料,并采用胶态成型技术填充到孔道结构呈阵列排布的高导热介质陶瓷生坯中,得到复相荧光陶瓷坯体;
(3)将所得复相荧光陶瓷坯体经过脱脂和烧结,得到所述复相荧光陶瓷。
6.根据权利要求5所述的制备方法,其特征在于,将高导热介质陶瓷粉和光敏树脂混合后作为原料,采用3D打印技术制备所述孔道结构呈阵列排布的高导热介质陶瓷生坯;所述光敏树脂占原料总质量的18~40 wt%,优选为21~26wt%;所述3D打印技术的参数包括:单层厚为0.02~0.05 mm;光照强度为2~15 mW/cm2
7.根据权利要求6所述的制备方法,其特征在于,所述光敏树脂中包括环氧丙烯酸酯树脂、环氧树脂、光引发剂、触变剂和活性稀释剂;更优选地,所述光敏树脂包括55~65wt%环氧丙烯酸酯树脂、6~15wt%环氧树脂、4~8wt%光引发剂、2~5wt%触变剂和10~20wt%活性稀释剂,各组分质量百分比之和为100wt%。
8.根据权利要求5-7中任一项所述的制备方法,其特征在于,所述胶态荧光陶瓷主体介质浆料的组分包括:荧光陶瓷介质粉体、分散剂、固化剂和去离子水,所述荧光陶瓷介质粉体占胶态荧光陶瓷主体介质浆料总质量的70~82wt%,优选为78~82wt%;优选地,所述胶态荧光陶瓷主体介质浆料的组分还包括:0.2~0.8wt%分散剂、0.1~0.3wt%固化剂。
9.根据权利要求5-8中任一项所述的制备方法,其特征在于,所述胶态成型技术包括:将胶态荧光陶瓷主体介质浆料注入至孔道结构呈阵列排布的高导热介质陶瓷生坯中后,在室温下固化10~30小时。
10.根据权利要求5-9中任一项所述的制备方法,其特征在于,所述脱脂的温度为800~1200℃,时间为1~5小时;优选地,所述脱脂的升温速率为0. 1~1℃/分钟。
11.根据权利要求5-10中任一项所述的制备方法,其特征在于,所述烧结的方式为真空反应烧结;所述真空反应烧结的温度为1650~1780℃,时间为0.5~20小时,真空度不低于10-3 Pa。
CN201911182074.0A 2019-11-27 2019-11-27 一种复相荧光陶瓷及其制备方法 Active CN111377713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911182074.0A CN111377713B (zh) 2019-11-27 2019-11-27 一种复相荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911182074.0A CN111377713B (zh) 2019-11-27 2019-11-27 一种复相荧光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111377713A true CN111377713A (zh) 2020-07-07
CN111377713B CN111377713B (zh) 2021-05-25

Family

ID=71213730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911182074.0A Active CN111377713B (zh) 2019-11-27 2019-11-27 一种复相荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111377713B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112047735A (zh) * 2020-08-10 2020-12-08 中国科学院过程工程研究所 一种复相荧光陶瓷材料及其制备方法
CN112174646A (zh) * 2020-09-28 2021-01-05 东北大学 一种激光照明用高导热荧光陶瓷及其制备方法
WO2021248446A1 (zh) * 2020-06-12 2021-12-16 苏州君诺新材科技有限公司 一种纳米倍半氧化物荧光陶瓷及其制备方法
CN114736006A (zh) * 2022-04-06 2022-07-12 南京邮电大学 一种具有梳状导热结构的复合荧光陶瓷及其制备方法
CN115215646A (zh) * 2022-07-12 2022-10-21 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法
CN116177995A (zh) * 2022-09-07 2023-05-30 中国科学院上海硅酸盐研究所 一种基于3d打印复合结构荧光陶瓷的制备方法
CN116768605A (zh) * 2022-03-10 2023-09-19 中国科学院上海硅酸盐研究所 一种硅酸盐橙色复相荧光陶瓷及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120045634A1 (en) * 2010-08-18 2012-02-23 Covalent Materials Corporation Ceramics composite
JP2013056999A (ja) * 2011-09-08 2013-03-28 Covalent Materials Corp セラミックス複合体
CN107200587A (zh) * 2016-03-18 2017-09-26 深圳市绎立锐光科技开发有限公司 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN108530070A (zh) * 2018-04-16 2018-09-14 中国科学院上海硅酸盐研究所 一种表面光陷阱结构增强发光的荧光陶瓷及其制备方法
CN108863317A (zh) * 2017-05-09 2018-11-23 中国科学院上海硅酸盐研究所 一种荧光复合陶瓷及其制备方法和应用
CN109020532A (zh) * 2018-09-28 2018-12-18 成都东骏激光股份有限公司 一种绿色荧光复相陶瓷及其制备方法与应用
CN109896852A (zh) * 2017-12-07 2019-06-18 上海航空电器有限公司 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN110386822A (zh) * 2018-04-19 2019-10-29 深圳光峰科技股份有限公司 一种复相荧光陶瓷及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120045634A1 (en) * 2010-08-18 2012-02-23 Covalent Materials Corporation Ceramics composite
JP2013056999A (ja) * 2011-09-08 2013-03-28 Covalent Materials Corp セラミックス複合体
CN107200587A (zh) * 2016-03-18 2017-09-26 深圳市绎立锐光科技开发有限公司 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN108863317A (zh) * 2017-05-09 2018-11-23 中国科学院上海硅酸盐研究所 一种荧光复合陶瓷及其制备方法和应用
CN109896852A (zh) * 2017-12-07 2019-06-18 上海航空电器有限公司 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN108530070A (zh) * 2018-04-16 2018-09-14 中国科学院上海硅酸盐研究所 一种表面光陷阱结构增强发光的荧光陶瓷及其制备方法
CN110386822A (zh) * 2018-04-19 2019-10-29 深圳光峰科技股份有限公司 一种复相荧光陶瓷及其制备方法
CN109020532A (zh) * 2018-09-28 2018-12-18 成都东骏激光股份有限公司 一种绿色荧光复相陶瓷及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU ZEHUA: "The effect of the porosity on the Al2O3-YAG:Ce phosphor ceramic: Microstructure,luminescent efficiency, and luminous stability in laser-driven lightin", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
M. XU: "Al2O3-YAG:Ce composite ceramics for high-brightness lighting", 《OPTICS EXPRESS》 *
SONG HU: "3D printed ceramic phosphor and the photoluminescence property under blue laser excitation", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021248446A1 (zh) * 2020-06-12 2021-12-16 苏州君诺新材科技有限公司 一种纳米倍半氧化物荧光陶瓷及其制备方法
CN112047735A (zh) * 2020-08-10 2020-12-08 中国科学院过程工程研究所 一种复相荧光陶瓷材料及其制备方法
CN112047735B (zh) * 2020-08-10 2021-12-07 中国科学院过程工程研究所 一种复相荧光陶瓷材料及其制备方法
CN112174646A (zh) * 2020-09-28 2021-01-05 东北大学 一种激光照明用高导热荧光陶瓷及其制备方法
CN116768605A (zh) * 2022-03-10 2023-09-19 中国科学院上海硅酸盐研究所 一种硅酸盐橙色复相荧光陶瓷及其制备方法
CN116768605B (zh) * 2022-03-10 2024-03-12 中国科学院上海硅酸盐研究所 一种硅酸盐橙色复相荧光陶瓷及其制备方法
CN114736006A (zh) * 2022-04-06 2022-07-12 南京邮电大学 一种具有梳状导热结构的复合荧光陶瓷及其制备方法
CN114736006B (zh) * 2022-04-06 2023-02-28 南京邮电大学 一种具有梳状导热结构的复合荧光陶瓷及其制备方法
CN115215646A (zh) * 2022-07-12 2022-10-21 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法
CN115215646B (zh) * 2022-07-12 2023-09-05 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法
CN116177995A (zh) * 2022-09-07 2023-05-30 中国科学院上海硅酸盐研究所 一种基于3d打印复合结构荧光陶瓷的制备方法
CN116177995B (zh) * 2022-09-07 2024-03-12 中国科学院上海硅酸盐研究所 一种基于3d打印复合结构荧光陶瓷的制备方法

Also Published As

Publication number Publication date
CN111377713B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
CN111377713B (zh) 一种复相荧光陶瓷及其制备方法
CN107285745B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
Zhang et al. Pore-existing Lu3Al5O12: Ce ceramic phosphor: An efficient green color converter for laser light source
CN109467453B (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN101605866B (zh) 包含复合物单片陶瓷发光转换器的照明***
CN109896852B (zh) 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
JP5454473B2 (ja) 蛍光体セラミックス及びその製造方法、並びに発光素子
CN112441817B (zh) 荧光陶瓷及其制备方法、光源装置
JP2016204563A (ja) 蛍光部材、その製造方法および発光装置
CN110240468B (zh) 荧光陶瓷及其制备方法
CN109896853B (zh) 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置
CN112939578B (zh) 荧光陶瓷及其制备方法、发光装置以及投影装置
JP2018172628A (ja) 波長変換部材の製造方法
CN106887486B (zh) 用于白光led器件的条形码结构荧光陶瓷及其制备方法与应用
CN104609848A (zh) 一种用于白光led荧光转换的复合相透明陶瓷及其制备方法
JP2019135543A (ja) 波長変換部材の製造方法及び波長変換部材
CN107200587B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
JP6852463B2 (ja) 蛍光体レンズ及び発光装置
CN107200589B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN114394822B (zh) 一种面心结构复合陶瓷、其制备方法与激光白光光源装置
CN111269030B (zh) 一种一体式金属/陶瓷复合材料的制备方法及其应用
CN112537953B (zh) 一种复合荧光陶瓷及其制备方法
US11447696B2 (en) Fluorescent member, its manufacturing method, and light-emitting apparatus
CN104909741A (zh) 一种石榴石型铝酸盐荧光陶瓷的制备方法及所制成的荧光陶瓷
CN110981481B (zh) 一种高光效白光led用阶梯式复相荧光陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant