CN111371435B - 多层铁电薄膜叠堆的***功率源应用 - Google Patents

多层铁电薄膜叠堆的***功率源应用 Download PDF

Info

Publication number
CN111371435B
CN111371435B CN202010189685.4A CN202010189685A CN111371435B CN 111371435 B CN111371435 B CN 111371435B CN 202010189685 A CN202010189685 A CN 202010189685A CN 111371435 B CN111371435 B CN 111371435B
Authority
CN
China
Prior art keywords
ferroelectric
multilayer
power source
film stack
ferroelectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010189685.4A
Other languages
English (en)
Other versions
CN111371435A (zh
Inventor
高志鹏
刘艺
杨佳
刘雨生
韩旭
谷伟
高刘德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Fluid Physics of CAEP
Original Assignee
Institute of Fluid Physics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Fluid Physics of CAEP filed Critical Institute of Fluid Physics of CAEP
Priority to CN202010189685.4A priority Critical patent/CN111371435B/zh
Publication of CN111371435A publication Critical patent/CN111371435A/zh
Application granted granted Critical
Publication of CN111371435B publication Critical patent/CN111371435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/45Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of non-linear magnetic or dielectric devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开了多层铁电薄膜叠堆的***功率源应用,属于功率源技术领域,利用Pb(Mg1/ 3Nb2/3)O3‑PbZrO3‑PbTiO3制备铁电薄膜单层,所述铁电薄膜单层上设置有叉指电极;将铁电薄膜单层进行叠堆,构成铁电多层薄膜叠堆样品,所述铁电多层薄膜叠堆样品的叠堆层数≥5层,铁电薄膜单层之间利用叉指电极并联连接;所述铁电薄膜单层的厚度≤100μm。本申请首次利用PMN‑PZT铁电薄膜的冲击放电特性,得到了脉冲大电流信号。发明人的这一发明对于铁电脉冲功率源的小型化发展,有着非常重要的意义。采用本申请的***功率源应用,能够有效缩小铁电脉冲功率源的体积,具有显著的进步意义。实际测试结果表明:与现有块状陶瓷作为功率源相比,本申请***功率源的体积能缩小至1/20左右。

Description

多层铁电薄膜叠堆的***功率源应用
技术领域
本发明涉及功率源技术领域,具体为多层铁电薄膜叠堆的***功率源应用。本申请首次公开了利用PMN-PZT铁电薄膜多层叠堆制备小型***功率源的应用,对于铁电脉冲电源的小型化发展具有非常重要的意义。
背景技术
***功率源技术是利用***产生冲击波作用于铁电材料,使其放出脉冲电流的功率源技术。铁电材料在前期通过外电场极化储存电荷能量,之后施加冲击压力使材料结构发生变化,释放出电荷能量。因此,利用铁电陶瓷的极化储能-冲击放能的性质可以制作成高功率、大电流和高电压的脉冲电源。此项技术在国防和工业领域中,有着非常重要的应用。
目前,工业界最广泛使用和研究的材料为块状的铁电陶瓷。而如何进一步降低脉冲电源的体积,或提高单位体积的电输出性能,则成为人们研究的重点。
发明内容
本发明的发明目的在于,提供多层铁电薄膜叠堆的***功率源应用,以提高单位体积的电输出性能。本申请首次利用PMN-PZT铁电薄膜的冲击放电特性,得到了脉冲大电流信号。发明人的这一发明对于铁电脉冲功率源的小型化发展,有着非常重要的意义。采用本申请,能够有效缩小铁电脉冲功率源的体积,具有显著的进步意义。
为了实现上述目的,本发明采用如下技术方案:
多层铁电薄膜叠堆的***功率源应用,利用Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3制备铁电薄膜单层,所述铁电薄膜单层上设置有叉指电极;将铁电薄膜单层进行叠堆,构成铁电多层薄膜叠堆样品,所述铁电多层薄膜叠堆样品的叠堆层数≥5层,铁电薄膜单层之间利用叉指电极并联连接;所述铁电薄膜单层的厚度≤100μm。
所述铁电薄膜单层的厚度为3~100μm。
所述铁电薄膜单层的压电常数d33≥400pC/N。优选的,所述铁电薄膜单层的压电常数d33为400~1000pC/N。
所述铁电薄膜单层的剩余极化强度≥20pC/cm2。优选的,所述铁电薄膜单层的压电常数d33为20~80pC/N。
所述叠堆层数为5~500层。
对铁电多层薄膜叠堆样品进行测试,测试过程如下:将铁电多层薄膜叠堆样品外电极短路连接,短路电路上串上电磁感应线圈,再将铁电多层薄膜叠堆样品置于含能材料表面,并利用环氧灌封作为铁电多层薄膜叠堆样品的支撑和绝缘;点燃含能材料,利用含能材料产生的动态冲击波作用于铁电多层薄膜叠堆样品,使其放出储存的电荷能量。
所述含能材料为***。
所述***产生的冲击压力≥5.0GPa。优选的,所述***产生的冲击压力为5.0~100.0GPa。
针对前述问题,本申请提供多层铁电薄膜叠堆的***功率源应用。目前,现有的爆轰都是用的块状陶瓷作为功率源,而对于铁电薄膜的***功率源应用,还鲜有研究。PMN-PZT铁电材料具有优良的铁电、压电性能,具有非常广泛的应用。而本申请是首次利用Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3(以下简称:PMN-PZT)铁电薄膜的冲击放电特性,得到了脉冲大电流信号,即首次提出PMN-PZT铁电薄膜作为***功率源的应用。这一发现对于铁电脉冲功率源的小型化发展,有着非常重要的意义。采用本申请,能大幅度减小功率源的体积,提高单位体积的电输出性能。实际测试结果表明:与现有块状陶瓷作为功率源相比,本申请***功率源的体积能缩小至1/20左右,具有显著的进步意义。
进一步,为了验证本申请的技术效果,发明人进行了实验,实验步骤如下。
(1)样品准备
PMN-PZT单层铁电薄膜的剩余极化强度>20pC/cm2,单层压电常数d33>400pC/N,单层薄膜厚度<100μm;将PMN-PZT单层铁电薄膜进行叠堆,叠堆层数>5层,每层薄膜利用叉指电极并联连接,构成铁电多层薄膜叠堆样品(如图1、图2所示,图1给出了单层PMN-PZT铁电薄膜的结构图,图2给出了铁电多层薄膜叠堆样品的叠堆示意图,图2给出了5层的叠堆示意图;图2中,位于铁电多层薄膜叠堆样品内的为叉指内电极,位于铁电多层薄膜叠堆样品外侧的为叉指外电极,正正叉指内电极之间、负负叉指内电极之间分别通过叉指外电极相连,形成功率源的正、负两极;在制备过程中,叉指电极与铁电薄膜是一起烧结出来的)。
(2)***脉冲电源的装配
将制备的铁电多层薄膜叠堆样品外电极短路连接,短路连接外电路上串上电磁感应线圈,并将铁电多层薄膜叠堆样品置于***表面,利用环氧灌封作为支撑和绝缘,如图3所示。在具体操作中,铁电多层薄膜叠堆样品的正、负极分别设置铜电极作为外电极,外电极之间通过短路导线相连,电磁感应线圈串在短路导线上,电磁感应线圈与示波器相连;铁电多层薄膜叠堆样品设置在塑料底座上,并采用环氧灌封作为支撑和绝缘,环氧灌封将铁电多层薄膜叠堆样品、铜电极、塑料底座、短路导线的一部分构成待测功率源主体;待测功率源主体整体置于***上。图3中,电磁感应线圈与示波器构成测试部分,其他部件构成装置部分。
(3)***实验与信号采集
点火***,利用******的动态冲击波作用于铁电多层薄膜叠堆样品,使其放出储存的电荷能量。当******产生的冲击压力≥5.0GPa,在外加电阻负载上能测试到脉冲电流(如图4、图5所示,图4给出了电源工作过程示意图,图5给出了采用本发明获得的典型的电流脉冲信号示意图)。
综上,本发明公开了利用Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3铁电薄膜多层叠堆的***功率源应用,其对于铁电脉冲电源的小型化发展具有非常重要的意义。实际测试结果表明:与现有块状陶瓷作为功率源相比,本申请***功率源的体积能缩小至1/20左右,能大幅度减小功率源的体积,提高单位体积的电输出性能。同时,实施例的***测试结果表明,本申请能满足高功率、大电流和高电压的脉冲电源的需求,可应用于国防和工业领域中,具有非常重要的意义。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1为单层PMN-PZT铁电薄膜的结构图。
图2为铁电多层薄膜叠堆样品的堆叠示意图。
图3为测试装置的整体结构示意图。
图4为本申请***功率源的工作过程示意图。
图5为采用本发明获得的典型的电流脉冲信号示意图。
附图标记:1、PMN-PZT单层铁电薄膜,2、叉指内电极,3、叉指外电极,4、测试部分,5、装置部分,6、外电极,7、环氧灌封,8、铁电多层薄膜叠堆样品,9、***,10、塑料底座,11、短路导线,20、电磁感应线圈,21、示波器。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
下述实施例中,均采用图1~图3的装置进行测试。
实施例1
(1)样品制备
制备铁电多层薄膜叠堆样品:PMN-PZT单层铁电薄膜的剩余极化强度25pC/cm2,单层压电常数d33=500pC/N,单层薄膜厚度80μm,叠堆层数34层,每层薄膜利用叉指电极并联连接。
(2)***脉冲电源的装配
将铁电多层薄膜叠堆外电极短路连接,外电路上串上电磁感应线圈,并利用环氧灌封作为支撑和绝缘,形成待测功率源主体;再将待测功率源主体置于***表面。
(3)***实验与信号采集
点火***,利用******的动态冲击波作用于铁电多层薄膜叠堆样品,使其放出储存的电荷能量。
本实施例中,******产生的冲击压力6.0GPa,在外加电阻负载上能测试到脉冲电流,电流信号如下表1所示。
表1实施例1的测定结果
峰值电流(A) 445
半高脉宽(μs) 2.10
响应时间(μs) 1.30
实施例2
(1)样品制备
制备铁电多层薄膜叠堆样品:PMN-PZT单层铁电薄膜的剩余极化强度25pC/cm2,单层压电常数d33=500pC/N,单层薄膜厚度80μm,叠堆层数34层,每层薄膜利用叉指电极并联连接。
(2)***脉冲电源的装配
将铁电多层薄膜叠堆外电极短路连接,外电路上串上电磁感应线圈,再将铁电多层薄膜叠堆样品置于***表面,并利用环氧灌封作为支撑和绝缘。
(3)***实验与信号采集
点火***,利用******的动态冲击波作用于铁电多层薄膜叠堆样品,使其放出储存的电荷能量。
本实施例中,******产生的冲击压力6.5GPa,在外加电阻负载上能测试到脉冲电流,电流信号如下表2所示。
表2实施例2的测定结果
峰值电流(A) 495
半高脉宽(μs) 2.15
响应时间(μs) 1.22
实施例3
(1)样品制备
制备铁电多层薄膜叠堆样品:PMN-PZT单层铁电薄膜的剩余极化强度25pC/cm2,单层压电常数d33=500pC/N,单层薄膜厚度80μm,叠堆层数34层,每层薄膜利用叉指电极并联连接。
(2)***脉冲电源的装配
将铁电多层薄膜叠堆外电极短路连接,外电路上串上电磁感应线圈,再将铁电多层薄膜叠堆样品置于***表面,并利用环氧灌封作为支撑和绝缘。
(3)***实验与信号采集
点火***,利用******的动态冲击波作用于铁电多层薄膜叠堆样品,使其放出储存的电荷能量。
本实施例中,******产生的冲击压力7.7GPa,在外加电阻负载上能测试到脉冲电流,电流信号如下表3所示。
表3实施例3的测定结果
峰值电流(A) 640
半高脉宽(μs) 1.89
响应时间(μs) 1.11
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (9)

1.多层铁电薄膜叠堆的***功率源应用,其特征在于,利用Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3制备铁电薄膜单层,所述铁电薄膜单层上设置有叉指电极;将铁电薄膜单层进行叠堆,构成铁电多层薄膜叠堆样品,所述铁电多层薄膜叠堆样品的叠堆层数≥5层,铁电薄膜单层之间利用叉指电极并联连接;所述铁电薄膜单层的厚度≤100μm;
利用含能材料产生的动态冲击波作用于铁电多层薄膜叠堆样品,使其放出储存的电荷能量。
2.根据权利要求1所述的多层铁电薄膜叠堆的***功率源应用,其特征在于,所述铁电薄膜单层的厚度为3~100μm。
3. 根据权利要求1所述的多层铁电薄膜叠堆的***功率源应用,其特征在于,所述铁电薄膜单层的压电常数d33≥400 pC/N。
4. 根据权利要求1~3任一项所述的多层铁电薄膜叠堆的***功率源应用,其特征在于,所述铁电薄膜单层的剩余极化强度≥20 pC/cm2
5.根据权利要求1~3任一项所述的多层铁电薄膜叠堆的***功率源应用,其特征在于,所述叠堆层数为5~500层。
6.根据权利要求4所述的多层铁电薄膜叠堆的***功率源应用,其特征在于,所述叠堆层数为5~500层。
7.根据权利要求1所述的多层铁电薄膜叠堆的***功率源应用,其特征在于,对铁电多层薄膜叠堆样品进行测试,测试过程如下:将铁电多层薄膜叠堆样品外电极短路连接,短路电路上串上电磁感应线圈,再将铁电多层薄膜叠堆样品置于含能材料表面,并利用环氧灌封作为铁电多层薄膜叠堆样品的支撑和绝缘;点燃含能材料,利用含能材料产生的动态冲击波作用于铁电多层薄膜叠堆样品,使其放出储存的电荷能量。
8.根据权利要求7所述的多层铁电薄膜叠堆的***功率源应用,其特征在于,所述含能材料为***。
9. 根据权利要求8所述的多层铁电薄膜叠堆的***功率源应用,其特征在于,所述***产生的冲击压力≥5.0 GPa。
CN202010189685.4A 2020-03-18 2020-03-18 多层铁电薄膜叠堆的***功率源应用 Active CN111371435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010189685.4A CN111371435B (zh) 2020-03-18 2020-03-18 多层铁电薄膜叠堆的***功率源应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010189685.4A CN111371435B (zh) 2020-03-18 2020-03-18 多层铁电薄膜叠堆的***功率源应用

Publications (2)

Publication Number Publication Date
CN111371435A CN111371435A (zh) 2020-07-03
CN111371435B true CN111371435B (zh) 2023-06-13

Family

ID=71212515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010189685.4A Active CN111371435B (zh) 2020-03-18 2020-03-18 多层铁电薄膜叠堆的***功率源应用

Country Status (1)

Country Link
CN (1) CN111371435B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100819A (ja) * 2000-09-20 2002-04-05 Ngk Insulators Ltd 圧電体素子、及びその製造方法
CN104734564A (zh) * 2015-04-14 2015-06-24 大连理工大学 一种全叉指电极微型压电厚膜振动能量收集器及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957528B2 (ja) * 2002-03-05 2007-08-15 日本碍子株式会社 圧電/電歪膜型素子
US8894765B1 (en) * 2009-11-13 2014-11-25 Trs Technologies, Inc. High polarization energy storage materials using oriented single crystals
CN102684649A (zh) * 2012-05-02 2012-09-19 西安交通大学 圆筒形铁电体脉冲发生器
WO2017123300A1 (en) * 2015-10-19 2017-07-20 Powdermet, Inc. High-energy density nancocomposite capacitor
CN108111048A (zh) * 2018-02-07 2018-06-01 中国工程物理研究院流体物理研究所 一种轻小型快脉冲高压电源
CN108322982A (zh) * 2018-04-12 2018-07-24 中国工程物理研究院流体物理研究所 铁电体爆电换能脉冲发生器、闪光x射线产生装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100819A (ja) * 2000-09-20 2002-04-05 Ngk Insulators Ltd 圧電体素子、及びその製造方法
CN104734564A (zh) * 2015-04-14 2015-06-24 大连理工大学 一种全叉指电极微型压电厚膜振动能量收集器及其制作方法

Also Published As

Publication number Publication date
CN111371435A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
Pelrine et al. Dielectric elastomers: generator mode fundamentals and applications
Shkuratov et al. Compact high-voltage generator of primary power based on shock wave depolarization of lead zirconate titanate piezoelectric ceramics
Domonkos et al. Submicrosecond pulsed power capacitors based on novel ceramic technologies
CN105254296B (zh) 一种无铅高储能铁电材料及其应用
Matthews et al. Capacitor evaluation for compact pulsed power
US7999445B2 (en) Ferroelectric energy generator with voltage-controlled switch
CN111371435B (zh) 多层铁电薄膜叠堆的***功率源应用
Xu et al. A shock-induced pulsed power switch utilizing electro-explosion of exploding bridge wire
Shkuratov et al. Note: Miniature 120-kV autonomous generator based on transverse shock-wave depolarization of Pb (Zr0. 52Ti0. 48) O3 ferroelectrics
Tkach et al. Theoretical treatment of explosive-driven ferroelectric generators
Wang et al. Multilayer Rosen-type piezoelectric transformer prepared with Pb (Mg1/3Nb2/3) O3–PbTiO3 single crystal
Shkuratov et al. Completely explosive autonomous high-voltage pulsed-power system based on shockwave ferromagnetic primary power source and spiral vector inversion generator
CN111641200A (zh) 基于串联式气体放电管高压脉冲功率开关的放电单元
Zirnheld et al. Electric explosion of aluminum metallized film
CN212991970U (zh) 基于串联式气体放电管高压脉冲功率开关的放电单元
Gao et al. Ferroelectrics Under Compression and Applications
Ran et al. Vacuum surface flashover characteristics of micro-stack insulators under nanosecond pulses
Schoeneberg et al. Ferromagnetic and ferroelectric materials as seed sources for magnetic flux compressors
Shkuratov et al. Completely explosive ultracompact high-voltage pulse generating system
Novac et al. High-voltage pulsed-power sources for high-energy experimentation
Young et al. A compact, self-contained high power microwave source based on a reflex-triode vircator and explosively driven pulsed power
Novac et al. Magnetic flux-compression driven by exploding single-turn coils
Chau et al. Performance of a 100 kV, 78 kJ electric gun system
Plotnikov et al. Mechanism of thin metal films destruction by electric explosion
Haishan et al. Charge-discharge breakdown of dielectric ceramic

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant