CN111366682B - 气体传感器的标定方法、装置、电子设备及存储介质 - Google Patents

气体传感器的标定方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
CN111366682B
CN111366682B CN202010163921.5A CN202010163921A CN111366682B CN 111366682 B CN111366682 B CN 111366682B CN 202010163921 A CN202010163921 A CN 202010163921A CN 111366682 B CN111366682 B CN 111366682B
Authority
CN
China
Prior art keywords
opening
data
gas sensor
hole
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010163921.5A
Other languages
English (en)
Other versions
CN111366682A (zh
Inventor
王越超
尚春莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Genius Technology Co Ltd
Original Assignee
Guangdong Genius Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Genius Technology Co Ltd filed Critical Guangdong Genius Technology Co Ltd
Priority to CN202010163921.5A priority Critical patent/CN111366682B/zh
Publication of CN111366682A publication Critical patent/CN111366682A/zh
Application granted granted Critical
Publication of CN111366682B publication Critical patent/CN111366682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本申请实施例涉及一种气体传感器的标定方法、装置、电子设备及存储介质,上述方法包括:获取计划开孔的第一开孔数据,所述计划开孔小于气体传感器的实际开孔;基于所述第一开孔数据对放置于样本气体环境中的所述气体传感器进行标定;根据所述第一开孔数据及预设的正负误差范围确定所述气体传感器能够接受的堵孔范围。上述气体传感器的标定方法、装置、电子设备及存储介质,能够提高气体传感器能够接受的堵孔范围,延长气体传感器的使用寿命。

Description

气体传感器的标定方法、装置、电子设备及存储介质
技术领域
本申请涉及传感器技术领域,具体涉及一种气体传感器的标定方法、装置、电子设备及存储介质。
背景技术
气体传感器是一种将某种气体体积分数转化成对应电信号的转换器,气体传感器可将气体的成份、浓度等信息转换成可以被人员、仪器仪表、计算机等利用的信息。气体传感器(例如甲醛传感器等)通常需要结合防水透气膜一起使用,随着使用过程中接触到的污染物越来越多,防水透气膜可能会发生堵孔问题,导致气体传感器的灵敏度下降,影响气体传感器的使用寿命。
发明内容
本申请实施例公开了一种气体传感器的标定方法、装置、电子设备及存储介质,能够提高气体传感器能够接受的堵孔范围,延长气体传感器的使用寿命。
本申请实施例提供一种气体传感器的标定方法,包括:获取计划开孔的第一开孔数据,所述计划开孔小于气体传感器的实际开孔;基于所述第一开孔数据对放置于样本气体环境中的所述气体传感器进行标定;根据所述第一开孔数据及预设的正负误差范围确定所述气体传感器能够接受的堵孔范围。
本申请实施例提供一种气体传感器的标定装置,包括:数据获取模块,用于获取计划开孔的第一开孔数据,所述计划开孔小于气体传感器的实际开孔;标定模块,用于基于所述第一开孔数据对放置于样本气体环境中的所述气体传感器进行标定;堵孔范围确定模块,用于根据所述第一开孔数据及预设的正负误差范围确定所述气体传感器能够接受的堵孔范围。
本申请实施例提供一种电子设备,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现如上所述的方法。
本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的方法。
上述实施例提供的气体传感器的标定方法、装置、电子设备及存储介质,获取计划开孔的第一开孔数据,该计划开孔小于气体传感器的实际开孔,基于该第一开孔数据对放置于样本气体环境中的气体传感器进行标定,并根据该第一开孔数据及预设的正负误差范围确定气体传感器能够接受的堵孔范围,采用小于实际开孔的计划开孔的开孔数据对气体传感器进行标定,在计划开孔的开孔数据的正负误差范围内均可作为能够接受的堵孔范围,从而可提高气体传感器能够接受的堵孔范围,延长气体传感器的使用寿命。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中一种气体传感器的标定方法的流程图;
图2a为一个实施例中以实际开孔的开孔数据进行标定的能够接受的堵孔范围示意图;
图2b为一个实施例中以小于实际开孔的计划开孔的开孔数据进行标定的能够接受的堵孔范围示意图;
图3为一个实施例中获取计划开孔的第一开孔数据的流程图;
图4为另一个实施例中一种气体传感器的标定方法的流程图;
图5为又一个实施例中一种气体传感器的标定方法的流程图;
图6为一个实施例中一种气体传感器的标定装置的框图;
图7为一个实施例中电子设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例及附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一客户端称为第二客户端,且类似地,可将第二客户端称为第一客户端。第一客户端和第二客户端两者都是客户端,但其不是同一客户端。
气体传感器在与防水透气膜结合使用时,由于使用过程中防水透气膜会接触到大量的污染物,当污染物过多时,防水透气膜会发生堵孔问题,导致气体传感器的开孔的有效面积减小。由于气体传感器的灵敏度与开孔大小有着密切关系,当开孔的有效面积低于气体传感器的容忍范围时,会大大降低气体传感器检测气体的准确度,从而影响气体传感器的使用寿命。
气体传感器在出厂前均需要进行标定,在传统的方式中,通常以气体传感器的实际开孔进行标定,其在使用过程中可在允许误差范围之内。而气体传感器可容忍的堵孔范围即为该实际开孔的允许误差范围,该范围较小,导致气体传感器可容忍的堵孔范围较小,影响了气体传感器的使用寿命。
针对上述问题,本申请实施例提供了一种气体传感器的标定方法、装置、电子设备及存储介质,采用小于实际开孔的计划开孔的开孔数据对气体传感器进行标定,在计划开孔的开孔数据的正负误差范围内均可作为能够接受的堵孔范围,扩大了气体传感器能够接受的堵孔范围,延长气体传感器的使用寿命。
如图1所示,在一个实施例中,提供一种气体传感器的标定方法,可应用于台式电脑、个人计算机(PC,Personal Computer)、平板电脑等电子设备上。该方法可包括以下步骤:
步骤110,获取计划开孔的第一开孔数据,计划开孔小于气体传感器的实际开孔。
气体传感器在出厂前需要进行标定,可指的是使用浓度已知的标准气体作为输入值,将气体传感器放入充有标准气体的密封容器中,调节气体的压强、浓度、温度以及气体的流速等,进而分析不同条件下气体传感器的检测容差,实现对气体传感器测量精度的准确标定。
计划开孔可指的是气体传感器在进行标定时所使用的开孔,在一些实施例中,气体传感器与防水透气膜结合时,需开设开孔与防水透气膜配合,才可达到防水、检测气体的作用。在对气体传感器进行标定时,可获取计划开孔的第一开孔数据,其中,第一开孔数据可包括但不限于计划开孔的开孔面积、开孔直径、开孔半径等,第一开孔数据可用于表征计划开孔的大小。
在本申请实施例中,计划开孔小于气体传感器的实际开孔,实际开孔指的是气体传感器实际开设的开孔,采用小于实际开孔的计划开孔对气体传感器进行标定。可选地,减小气体传感器在标定时的开孔大小的方式可以有多种,例如,可对实际开孔进行遮挡,遮挡住实际开孔的一部分,使得气体传感器在标定时所使用的开孔大小小于实际开孔的开孔大小,也可制作两种开设有不同大小开孔的部件,在气体传感器进行标定时,采用开孔较小的部件进行标定,标定结束后再更换成开孔较大的部分等,减小气体传感器在标定时的开孔大小的方式在此不作限定。
步骤120,基于第一开孔数据对放置于样本气体环境中的气体传感器进行标定。
可将气体传感器放置于样本气体环境中,样本气体环境中包含有浓度已知的样本气体,该样本气体可为气体传感器所需检测的气体。例如,气体传感器为甲醛传感器,则样本气体可已知浓度的甲醛。气体传感器对样本气体环境中的样本气体浓度进行检测,可将检测输出的样本气体浓度与已知浓度进行比对,确认二者之间的误差,再根据误差调整气体传感器中的设置参数、各零部件参数等,直至气体传感器输出的浓度与已知浓度的误差小于阈值,从而完成对气体传感器测量精度的标定。
根据第一开孔数据对放置于样本气体环境中的气体传感器进行标定,即气体传感器使用小于实际开孔的计划开孔进行标定,气体传感器可记录该第一开孔数据,并在使用过程中,以该第一开孔数据为基准,确定可容忍的堵孔范围。
步骤130,根据第一开孔数据及预设的正负误差范围确定气体传感器能够接受的堵孔范围。
正负误差范围可指的是标定的开孔数据在使用时的误差范围。在气体传感器的使用过程中,有效孔的大小在标定的开孔数据的正负误差范围内均可属于正常使用的情况,不会影响气体传感器检测气体的精度,或是影响极小。有效孔指的是实际开孔中除堵孔以外的部份,即为,实际开孔中可流通气体的部分。标定的开孔数据的误差范围既包含大于标定的开孔数据的一侧阈值,又包含小于标定的开孔数据的一侧阈值,相当于是标定的开孔数据±误差阈值。在一个实施例中,正负误差范围可用±X%表示,其中,X%可指的是误差阈值,误差阈值即为标定的开孔数据的X%,其中,X可根据实际需求进行设定,在此不作限定。
可选地,当第一开孔数据的类型不同时,对应的正负误差范围的误差阈值可不同,例如,第一开孔数据为开孔面积和为开孔半径时,可分别对应不同的误差阈值。
在传统的方式中,通常以气体传感器的实际开孔的开孔数据进行标定,因此,气体传感器能够接受的堵孔范围仅会用到正负误差范围中小于实际开孔的开孔数据一侧的数据进行确定。气体传感器能够接受的堵孔范围可为大于或等实际开孔的开孔大小-X%*实际开孔的开孔大小,且小于或等于实际开孔的开孔大小。当有效孔的大小处于实际开孔的开孔数据的负误差范围内时,属于正常使用的情况。由于有效孔大于实际开孔的情况不存在,正误差范围并没有得到利用,造成气体传感器可忍受的堵孔范围较小。
在本申请实施例中,采用小于实际开孔的计划开孔的第一开孔数据进行标定。气体传感器能够接受的堵孔范围可为大于或等计划开孔的开孔大小-X%*计划开孔的开孔大小,且小于或等于计划开孔的开孔大小+X%*计划开孔的开孔大小,正负误差范围均得到了利用,扩大了气体传感器可忍受的堵孔范围。
可选地,可根据计划开孔的第一开孔数据及正误差阈值,判断正负误差范围的边界值是否大于实际开孔的第二开孔数据,即可判断计划开孔的开孔大小的正误差边界值是否大于实际开孔的开孔大小,若大于,则气体传感器能够接受的堵孔范围可为大于或等计划开孔的开孔大小-X%*计划开孔的开孔大小,且小于或等于实际开孔的开孔大小。
图2a为一个实施例中以实际开孔的开孔数据进行标定的能够接受的堵孔范围示意图。请参图2a,以气体传感器的实际开孔202的开孔数据对气体传感器进行标定,气体传感器可接受的堵孔范围可利用实际开孔202的开孔数据的正负误差范围进行确定,其得到的能够接受的堵孔范围可参阴影部分204所示,仅利用了实际开孔202的开孔数据的负误差范围而没有利用正误差范围。图2b为一个实施例中以小于实际开孔的计划开孔的开孔数据进行标定的能够接受的堵孔范围示意图。请参图2b,以小于气体传感器的实际开孔的计划开孔206的开孔数据对气体传感器进行标定,气体传感器可接受的堵孔范围可利用计划开孔206的开孔数据的正负误差范围进行确定,其得到的能够接受的堵孔范围可参阴影部分208所示,正、负误差两个范围均可得到有效利用。在不改变气体传感器的硬件结构的情况下,通过简单地对气体传感器的标定方法进行改进,有效扩大了气体传感器可接受的堵孔范围,延长气体传感器的寿命。
可以理解地,本申请实施例中提供的气体传感器的标定方法可以通过对气体传感器进行标定的标定设备实施,也可以通过其他电子设备实施,其实施主体在此不作限定。
在本申请实施例中,获取计划开孔的第一开孔数据,该计划开孔小于气体传感器的实际开孔,基于该第一开孔数据对放置于样本气体环境中的气体传感器进行标定,并根据该第一开孔数据及预设的正负误差范围确定气体传感器能够接受的堵孔范围,采用小于实际开孔的计划开孔的开孔数据对气体传感器进行标定,在计划开孔的开孔数据的正负误差范围内均可作为能够接受的堵孔范围,从而可提高气体传感器能够接受的堵孔范围,延长气体传感器的使用寿命。
如图3所示,在一个实施例中,步骤获取计划开孔的第一开孔数据,可包括以下步骤:
步骤302,确定预设的面积差值,面积差值为计划开孔的第一开孔面积与气体传感器的实际开孔的第二开孔面积之间的差值。
在一些实施方式中,计划开孔的第一开孔数据可包括但不限于计划开孔的第一开孔面积、第一开孔直径、第一开孔半径等,气体传感器的实际开孔的第二开孔数据可包括但不限于实际开孔的第二开孔面积、第二开孔直径、第二开孔半径等,实际开孔的第二开孔数据可用于表征实际开孔的开孔大小。
可确定计划开孔与实际开孔之间的面积差值,该面积差值可以预先进行设置。可选地,该面积差值可根据实际需求进行设置,也可根据实际开孔的开孔大小及正负误差范围的临界值进行设置。面积差值可与实际开孔的第二开孔面积成正相关关系,当实际开孔的第二开孔面积越大时,面积差值可越大。作为一种具体实施方式,面积差值可与预设的正负误差范围的误差阈值成正相关相系,如正负误差范围用±X%表示,该误差阈值可为X%,当误差阈值越大时,设置的面积差值可越大。
步骤304,根据面积差值及第二开孔面积获取第一开孔面积。
可选地,可将实际开孔的第二开孔面积减去面积差值,得到计划开孔的第一开孔面积。作为一种具体实施方式,面积差值可以通过计划开孔的第一开孔面积乘以误差阈值得到,即,计划开孔的第一开孔面积+计划开孔的第一开孔面积*X%=实际开孔的第二开孔面积。可满足在气体传感器的使用过程中,计划开孔的第一开孔面积的正误差范围刚好为实际开孔的第二开孔面积,在此情况下,气体传感器可接受的堵孔面积可达到最大,从而使得实际开孔得到更有效地利用,并降低对气体检测准确度的影响。在其他的实施方式中,面积差值也可能大于或小于计划开孔的第一开孔面积乘以误差阈值的值,在此不作限定。
在一个实施例中,在气体传感器进行标定时,可对实际开孔进行遮挡,得到小于实际开孔的计划开孔,也可通过距离传感器等方式直接检测计划开孔的第一开孔面积,获取计划开孔的第一开孔面积的方式在此不作限定。
在本申请实施例中,根据预设的面积差值确定计划开孔的第一开孔面积,采用小于实际开孔的开孔面积对气体传感器进行标定,可提高气体传感器能够接受的堵孔范围,且获取计划开孔的第一开孔面积的方式简单,提高了标定效率。
如图4所示,在一个实施例中,提供一种气体传感器的标定方法,包括以下步骤:
步骤402,获取计划开孔的第一开孔数据,计划开孔小于气体传感器的实际开孔。
步骤404,基于第一开孔数据对放置于样本气体环境中的气体传感器进行标定。
步骤406,根据第一开孔数据及预设的正负误差范围确定气体传感器能够接受的堵孔范围。
步骤402~406的描述,可参考上述实施例中的描述,在此不再一一赘述。
步骤408,根据实际开孔的第二开孔数据及堵孔范围,确定有效孔范围。
有效孔可指的是气体传感器的实际开孔中除堵孔以外的部分,在气体传感器的使用过程中,由于防水透气膜会发生堵孔问题,导致实际开孔中可用的开孔大小逐渐变小,有效孔可指的是实际开孔在使用过程中可用的部分。根据气体传感器在标定时所采用的计划开孔的第一开孔数据及正负误差范围确定气体传感器可接受的堵孔范围后,可根据实际开孔的第二开孔数据及堵孔范围确定有效孔范围。堵孔范围可用开孔的面积范围、半径范围、直径范围等多种方式进行表示,有效孔范围也可用开孔的面积范围、半径范围、直径范围等多种方式进行表示。例如,气体传感器可接受的堵孔范围为半径5毫米到15毫米,实际开孔的半径为15毫米,则有效孔范围可为半径5毫米到15毫米,也可采用面积、直径等进行表示,在此不作限定。
在一个实施例中,气体传感器的有效孔范围可与可接受的堵孔范围一致。气体传感器的有效孔范围也可小于可接受的堵孔范围,例如,气体传感器可接受的堵孔范围为半径5毫米到15毫米,有效孔范围为半径6毫米到15毫米等,但不限于此。
步骤410,在气体传感器处于使用状态时,检测实际开孔的有效孔数据。
气体传感器处于使用状态,可指的是气体传感器正式用于执行检测气体的工作(非标定过程),在使用状态时,气体传感器可用于检测未知的环境中目标气体的气体浓度。在气体传感器处于使用状态时,可检测实际开孔的有效孔数据,有效孔数据可用于表征实际开孔在使用过程中的有效孔大小,即实际开孔在使用过程中未被堵住的可用部分大小。有效孔数据可包括但不限于有效孔的面积、半径、直径等。
步骤412,当有效孔数据不处于有效孔范围内时,确定实际开孔为不可用状态。
可判断检测到的有效孔数据是否处于有效孔范围内,当检测到的有效孔数据不处于有效孔范围内时,可说明有效孔的大小已无法满足气体传感器检测气体的准确度,影响了气体传感器的检测灵敏度,可确定实际开孔为不可用状态。
可以理解地,进行范围比对时,检测的有效孔数据与有效孔范围可为相同类型的数据,例如,检测的有效孔数据可以为检测到的有效孔面积,对应的有效孔范围可为有效孔的面积范围,检测的有效孔数据可以为检测到的有效孔半径,对应的有效孔范围可为有效孔的半径范围等。
举例进行说明,在一个实施例中,假设实际开孔的孔径为1.8毫米,计划开孔的孔径为1.4毫米,可计算不同有效孔孔径相对计划开孔孔径的百分比,其结果可如表1所示。
表1
Figure BDA0002405853690000091
Figure BDA0002405853690000101
其中,平均响应参差即指的是不同有效孔孔径相对计划开孔孔径的百分比。若正负误差范围为±30%,则可判断各个有效孔孔径对应的平均响应参差是否处于该正负误差范围内,从而确定实际开孔是否可用。如表1所示的数据,当有效孔孔径为1.0毫米时,其对应的平均响应参差为-35%,超出正负误差范围,则可确定实际开孔处于不可用状态。在实际开孔的孔径为1.8毫米,计划开孔的孔径为1.4毫米的条件下,气体传感器能够接受的堵孔范围可以为1.8毫米~1.2毫米,扩大了可接受的堵孔范围。
在一些实施方式中,执行上述检测有效孔数据并与有效孔范围进行比对的步骤,可以为气体传感器,也可以为监控气体传感器的终端设备等,终端设备通过监控气体传感器的有效孔数据,可监测气体传感器的使用情况,并将气体传感器的使用情况在界面中进行显示,可使用户更直接地获取气体传感器的使用情况,例如,可显示实际开孔是否可用,可显示气体传感器检测到的气体浓度,气体传感器已使用时长等。可选地,在确定气体传感器的实际开孔为不可用状态时,也可生成提示信息,提示该气体传感器的实际开孔不可用。
在本申请实施例中,可根据实际开孔的第二开孔数据及堵孔范围,确定有效孔范围,在气体传感器的使用过程中检测有效孔数据,并在有效孔数据不处于该有效孔范围时,确定实际开孔为不可用状态,可及时获知气体传感器的使用状态,提高气体传感器的使用效率。
如图5所示,在另一个实施例中,提供一种气体传感器的标定方法,包括以下步骤:
步骤502,获取计划开孔的第一开孔数据,计划开孔小于气体传感器的实际开孔。
在一个实施例中,第一开孔数据可包括第一开孔面积,可确定预设的面积差值,面积差值为计划开孔的第一开孔面积与气体传感器的实际开孔的第二开孔面积之间的差值,并根据面积差值及第二开孔面积获取第一开孔面积。可选地,面积差值与正负误差范围的误差阈值成正相关关系。
步骤504,基于第一开孔数据对放置于样本气体环境中的气体传感器进行标定。
步骤506,根据第一开孔数据及预设的正负误差范围确定气体传感器能够接受的堵孔范围。
步骤502~506的描述,可参考上述实施例中的描述,在此不再一一赘述。
步骤508,在气体传感器处于使用状态时,检测实际开孔的堵孔数据。
堵孔可指的是实际开孔中被堵的部分,气体传感器在检测气体时,气体仅可通过实际开孔中未被堵住的部分(即有效孔)进行流通。在气体传感器处于使用状态时,可检测实际开孔的堵孔数据,堵孔数据可用于表征实际开孔在使用过程中的堵孔大小,即实际开孔在使用过程中已被堵住的部分。堵孔数据可包括但不限于堵孔的面积、半径及直径等。可以理解地,堵孔数据为半径或直径时,可以为数值范围,例如,堵孔半径为实际开孔中的10毫米~15毫米部分。
在一个实施例中,可获取气体传感器的总使用时长,总使用时长可指的是气体传感器的工作总时间,在气体传感器开启后,可统计每次的工作时间,并进行累加,得到气体传感器的总使用时长。可根据气体传感器的总使用时长获取堵孔数据。使用时长与堵孔数据可具备对应关系,使用时长越长,其对应的堵孔数据可越大。在检测堵孔数据时,可获取气体传感器当前的总使用时长,根据使用时长与堵孔数据之间的对应关系,获取气体传感器的总使用时长对应的堵孔数据。
使用时长与堵孔数据之间的对应关系可采用不同的方式建立。在一个实施例中,可通过实验数据构建使用时长与堵孔数据之间的对应关系,可将气体传感器放置于实验气体环境中,并监测在不同时间段下气体传感器的实际开孔的堵孔大小。例如,使用时长与堵孔数据的对应关系可如表1所示。
表1
Figure BDA0002405853690000111
Figure BDA0002405853690000121
表1中的堵孔数据采用实际开孔中被堵部分的半径范围表示,也可采用其他方式表示,在此不作限定。
在一个实施例中,利用实验数据构建使用时长与堵孔数据之间的对应关系,可将气体传感器放置于不同的实验气体环境中,各个实验气体环境的气体环境参数可不同,其中,该气体环境参数可包括实验气体环境中包含的气体成份,以及各种气体的浓度等。根据各个实验气体环境中采集的数据,可构建不同的使用时长与堵孔数据之间的对应关系。例如,在不同浓度的甲醛环境中,使用时长与堵孔数据的对应关系可如表2所示。
表2
甲醛浓度 使用时长 堵孔数据
0.1mg/m<sup>3</sup> 3个月 13毫米~15毫米
0.2mg/m<sup>3</sup> 3个月 12毫米~15毫米
0.3mg/m<sup>3</sup> 3个月 10毫米~15毫米
可以理解地,使用时长与堵孔数据之间的对应关系并不仅限于上述表1及表2中的数据,其对应关系可根据气体传感器的实际使用情况构建。
在一些实施方式中,在气体传感器处于使用状态时,可获取气体传感器所处的气体环境参数,该气体环境参数可包括所处气体环境中包含的气体成份,以及各种气体的浓度等。可根据该气体环境参数确定使用时长与堵孔数据之间的对应关系,不同气体环境参数下可匹配不同的对应关系。可获取气体传感器的总使用时长,并根据与当前所处气体环境的气体环境参数匹配的使用时长与堵孔数据之间的对应关系,获取总使用时长对应的堵孔数据。基于使用时长与堵孔数据之间的对应关系,检测气体传感器在使用过程中的堵孔数据,可使检测的数据更为准确。
步骤510,当堵孔数据不处于堵孔范围内时,确定实际开孔为不可用状态。
根据气体传感器在标定时所采用的计划开孔的第一开孔数据及正负误差范围确定气体传感器可接受的堵孔范围后,可判断检测到的堵孔数据是否处于该堵孔范围。当堵孔数据处于堵孔范围内时,可说明实际开孔中可用部分较大,不影响气体传感器的检测灵敏度。当堵数据不处于堵孔范围内时,可说明实际开孔的堵孔过大,影响了气体传感器的检测灵敏度,可确定实际开孔为不可用状态。
在一些实施方式中,也可根据实际开孔的第二开孔数据及堵孔范围,确定有效孔范围,在气体传感器处于使用状态时,检测实际开孔的有效孔数据,当有效孔数据不处于有效孔范围内时,确定实际开孔为不可用状态。可选地,有效孔数据可根据气体的流速、流动体积等气体数据进行检测,也可先检测堵孔数据后,根据堵孔数据及实际开孔的第二开孔数据得到有效孔数据,其检测方式在此不作限定。
在一些实施方式中,执行上述检测堵孔数据并与堵孔范围进行比对的步骤,可以为气体传感器,也可以为监控气体传感器的终端设备等。
在本申请实施例中,在气体传感器的使用过程中检测堵孔数据,并在堵孔数据不处于可接受的堵孔范围时,确定实际开孔为不可用状态,可及时获知气体传感器的使用状态,提高气体传感器的使用效率。
如图6所示,在一个实施例中,提供一种气体传感器的标定装置600,包括数据获取模块610、标定模块620及堵孔范围确定模块630。
数据获取模块610,用于获取计划开孔的第一开孔数据,计划开孔小于气体传感器的实际开孔。
标定模块620,用于基于第一开孔数据对放置于样本气体环境中的气体传感器进行标定。
堵孔范围确定模块630,用于根据第一开孔数据及预设的正负误差范围确定气体传感器能够接受的堵孔范围。
在本申请实施例中,获取计划开孔的第一开孔数据,该计划开孔小于气体传感器的实际开孔,基于该第一开孔数据对放置于样本气体环境中的气体传感器进行标定,并根据该第一开孔数据及预设的正负误差范围确定气体传感器能够接受的堵孔范围,采用小于实际开孔的计划开孔的开孔数据对气体传感器进行标定,在计划开孔的开孔数据的正负误差范围内均可作为能够接受的堵孔范围,从而可提高气体传感器能够接受的堵孔范围,延长气体传感器的使用寿命。
在一个实施例中,第一开孔数据包括第一开孔面积。
数据获取模块610,包括差值确定单元及面积获取单元。
差值确定单元,用于确定预设的面积差值,面积差值为计划开孔的第一开孔面积与气体传感器的实际开孔的第二开孔面积之间的差值。
在一个实施例中,该面积差值与正负误差范围的误差阈值成正相关关系。
面积获取单元,用于根据面积差值及第二开孔面积获取第一开孔面积。
在本申请实施例中,根据预设的面积差值确定计划开孔的第一开孔面积,采用小于实际开孔的开孔面积对气体传感器进行标定,可提高气体传感器能够接受的堵孔范围,且获取计划开孔的第一开孔面积的方式简单,提高了标定效率。
在一个实施例中,上述气体传感器的标定装置600,除了包括数据获取模块610、标定模块620及堵孔范围确定模块630,还包括有效孔范围确定模块、第一检测模块及状态确定模块。
有效孔范围确定模块,用于根据实际开孔的第二开孔数据及堵孔范围,确定有效孔范围,其中,有效孔为实际开孔中除堵孔以外的部分。
第一检测模块,用于在气体传感器处于使用状态时,检测实际开孔的有效孔数据,有效孔数据用于表征实际开孔在使用过程中的有效孔大小。
状态确定模块,用于当有效孔数据不处于有效孔范围内时,确定实际开孔为不可用状态。
在本申请实施例中,可根据实际开孔的第二开孔数据及堵孔范围,确定有效孔范围,在气体传感器的使用过程中检测有效孔数据,并在有效孔数据不处于该有效孔范围时,确定实际开孔为不可用状态,可及时获知气体传感器的使用状态,提高气体传感器的使用效率。
在一个实施例中,上述气体传感器的标定装置600,除了包括数据获取模块610、标定模块620、堵孔范围确定模块630、有效孔范围确定模块、第一检测模块及状态确定模块,还包括第二检测模块。
第二检测模块,用于在气体传感器处于使用状态时,检测实际开孔的堵孔数据,堵孔数据用于表征实际开孔在使用过程中的堵孔大小。
在一个实施例中,第二检测模块,包括时长获取单元及对应单元。
时长获取单元,用于获取气体传感器的总使用时长;
对应单元,用于根据使用时长与堵孔数据之间的对应关系,获取总使用时长对应的堵孔数据。
在一个实施例中,对应单元,包括参数获取子单元、关系确定子单元及数据获取子单元。
参数获取子单元,用于获取气体传感器所处的气体环境参数。
关系确定子单元,用于根据气体环境参数确定使用时长与堵孔数据之间的对应关系。
数据获取子单元,用于根据确定的对应关系,获取总使用时长对应的堵孔数据。
状态确定模块,还用于当堵孔数据不处于堵孔范围内时,确定实际开孔为不可用状态。
在本申请实施例中,在气体传感器的使用过程中检测堵孔数据,并在堵孔数据不处于可接受的堵孔范围时,确定实际开孔为不可用状态,可及时获知气体传感器的使用状态,提高气体传感器的使用效率。
图7为一个实施例中电子设备的结构框图。如图7所示,电子设备700可以包括一个或多个如下部件:处理器710、与处理器710耦合的存储器720,其中一个或多个应用程序可以被存储在存储器720中并被配置为由一个或多个处理器710执行,一个或多个程序配置用于执行如上述实施例描述的方法。
处理器710可以包括一个或者多个处理核。处理器710利用各种接口和线路连接整个电子设备700内的各个部分,通过运行或执行存储在存储器720内的指令、程序、代码集或指令集,以及调用存储在存储器720内的数据,执行电子设备700的各种功能和处理数据。可选地,处理器710可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable LogicArray,PLA)中的至少一种硬件形式来实现。处理器710可集成中央处理器(CentralProcessing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作***、用户界面和应用程序等;GPU用于负责显示内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器710中,单独通过一块通信芯片进行实现。
存储器720可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。存储器720可用于存储指令、程序、代码、代码集或指令集。存储器720可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作***的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等。存储数据区还可以存储电子设备700在使用中所创建的数据等。
可以理解地,电子设备700可包括比上述结构框图中更多或更少的结构元件,例如,包括电源、输入按键、摄像头、扬声器、屏幕、RF(Radio Frequency,射频)电路、Wi-Fi(Wireless Fidelity,无线保真)模块、蓝牙模块、传感器等,还可在此不进行限定。
本申请实施例公开一种计算机可读存储介质,其存储计算机程序,其中,该计算机程序被处理器执行时实现如上述实施例描述的方法。
本申请实施例公开一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,且该计算机程序可被处理器执行时实现如上述实施例描述的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
如此处所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定特征、结构或特性可以以任意适合的方式结合在一个或多个实施例中。本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物单元,即可位于一个地方,或者也可以分布到多个网络单元上。可根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元若以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可获取的存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或者部分,可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干请求用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本申请的各个实施例上述方法的部分或全部步骤。
以上对本申请实施例公开的一种体传感器的标定方法、装置、电子设备及存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

1.一种气体传感器的标定方法,其特征在于,包括:
获取计划开孔的第一开孔数据,所述计划开孔小于气体传感器的实际开孔;
基于所述第一开孔数据对放置于样本气体环境中的所述气体传感器进行标定;
根据所述第一开孔数据及预设的正负误差范围确定所述气体传感器能够接受的堵孔范围。
2.根据权利要求1所述的方法,其特征在于,所述第一开孔数据包括第一开孔面积;
所述获取计划开孔的第一开孔数据,包括:
确定预设的面积差值,所述面积差值为计划开孔的第一开孔面积与气体传感器的实际开孔的第二开孔面积之间的差值;
根据所述面积差值及第二开孔面积获取所述第一开孔面积。
3.根据权利要求2所述的方法,其特征在于,所述面积差值与所述正负误差范围的误差阈值成正相关关系。
4.根据权利要求1所述的方法,其特征在于,所述方法还包括:
根据所述实际开孔的第二开孔数据及所述堵孔范围,确定有效孔范围,其中,有效孔为所述实际开孔中除堵孔以外的部分;
在所述气体传感器处于使用状态时,检测所述实际开孔的有效孔数据,所述有效孔数据用于表征所述实际开孔在使用过程中的有效孔大小;
当所述有效孔数据不处于所述有效孔范围内时,确定所述实际开孔为不可用状态。
5.根据权利要求1所述的方法,其特征在于,所述方法还包括:
在所述气体传感器处于使用状态时,检测所述实际开孔的堵孔数据,所述堵孔数据用于表征所述实际开孔在使用过程中的堵孔大小;
当所述堵孔数据不处于所述堵孔范围内时,确定所述实际开孔为不可用状态。
6.根据权利要求5所述的方法,其特征在于,所述检测所述实际开孔的堵孔数据,包括:
获取所述气体传感器的总使用时长;
根据使用时长与堵孔数据之间的对应关系,获取所述总使用时长对应的堵孔数据。
7.根据权利要求6所述的方法,其特征在于,所述根据使用时长与堵孔数据之间的对应关系,获取所述总使用时长对应的堵孔数据,包括:
获取所述气体传感器所处的气体环境参数;
根据所述气体环境参数确定使用时长与堵孔数据之间的对应关系;
根据确定的所述对应关系,获取所述总使用时长对应的堵孔数据。
8.一种气体传感器的标定装置,其特征在于,包括:
数据获取模块,用于获取计划开孔的第一开孔数据,所述计划开孔小于气体传感器的实际开孔;
标定模块,用于基于所述第一开孔数据对放置于样本气体环境中的所述气体传感器进行标定;
堵孔范围确定模块,用于根据所述第一开孔数据及预设的正负误差范围确定所述气体传感器能够接受的堵孔范围。
9.一种电子设备,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现如权利要求1至7任一所述的方法。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一所述的方法。
CN202010163921.5A 2020-03-10 2020-03-10 气体传感器的标定方法、装置、电子设备及存储介质 Active CN111366682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010163921.5A CN111366682B (zh) 2020-03-10 2020-03-10 气体传感器的标定方法、装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010163921.5A CN111366682B (zh) 2020-03-10 2020-03-10 气体传感器的标定方法、装置、电子设备及存储介质

Publications (2)

Publication Number Publication Date
CN111366682A CN111366682A (zh) 2020-07-03
CN111366682B true CN111366682B (zh) 2022-07-26

Family

ID=71207340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010163921.5A Active CN111366682B (zh) 2020-03-10 2020-03-10 气体传感器的标定方法、装置、电子设备及存储介质

Country Status (1)

Country Link
CN (1) CN111366682B (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6948352B2 (en) * 2002-02-07 2005-09-27 Walter Kidde Portable Equipment, Inc. Self-calibrating carbon monoxide detector and method
JP4980974B2 (ja) * 2008-03-31 2012-07-18 日本碍子株式会社 ガスセンサおよびその制御装置ならびにNOx濃度測定方法
DE102009029415A1 (de) * 2009-09-14 2011-03-24 Robert Bosch Gmbh Sensorelement mit mehrteiliger Diffusionsbarriere
US9075029B2 (en) * 2011-01-31 2015-07-07 Scott Technologies, Inc. System and method for automatically adjusting gas sensor settings and parameters
CN102636542B (zh) * 2012-03-23 2014-02-26 华瑞科学仪器(上海)有限公司 气体传感器
CN104535478B (zh) * 2015-01-07 2017-04-12 深圳市帝迈生物技术有限公司 一种基于粒子流稳定性的堵孔判定及结果修正的方法
US10900928B2 (en) * 2016-01-28 2021-01-26 Alcotek, Inc. Gas sensor
US10788458B2 (en) * 2016-02-05 2020-09-29 Msa Technology, Llc Detection of blockage in a porous member
CN207007792U (zh) * 2016-11-30 2018-02-13 营口新星电子科技有限公司 一种车用可燃气体探测器
CN207318335U (zh) * 2017-10-08 2018-05-04 张兰田 一种矿用红外甲烷浓度检测仪
CN109696521B (zh) * 2017-10-24 2023-05-26 艾欧史密斯(中国)热水器有限公司 气体测量装置及其控制方法

Also Published As

Publication number Publication date
CN111366682A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
EP3475664B1 (en) Method and apparatus for sensing and for improving sensor accuracy
EP3518202B1 (en) Distributed sensor system with remote sensor nodes and centralized data processing
CN108287633B (zh) 一种压力传感器的校准方法及装置
US20180372703A1 (en) Calibrated mobile gas sensor
JP2015522153A (ja) センサ較正の方法および装置
WO2018232695A1 (zh) 触摸屏当前基准值的更新方法、装置、触摸屏及电子终端
CN110765414A (zh) 性能指标数据评估方法、装置、设备及存储介质
US9807561B2 (en) User settlement detection
Bhattacharjee et al. Development of smart detachable wireless sensing system for environmental monitoring
CN111366682B (zh) 气体传感器的标定方法、装置、电子设备及存储介质
CN111398202A (zh) 气体数据分析方法、装置、电子设备及存储介质
TWI626596B (zh) 指紋感測裝置、電子裝置以及指紋感測器的校準方法
CN114199394A (zh) 温度测量方法、装置以及电子设备
CN108594150B (zh) 一种校准方法、装置、终端及存储介质
CN116381164B (zh) 一种基于神经网络的燃气臭味剂浓度测量方法及装置
US11431596B1 (en) Real-time management of device maintenance
US20080118984A1 (en) Biosensing system and related biosensing method
CN115932170A (zh) 气体传感器的校准方法、装置、电子设备及存储介质
CN112540112B (zh) 传感器校准方法、装置、设备和存储介质
JP2023529386A (ja) 感知機器の較正システム及び方法
CN112415141A (zh) 一种甲醛测量浓度显示值的补偿方法及补偿装置
CN112255298A (zh) 燃气臭味剂浓度测量传感器的灵敏度校准***及方法
EP3943938B1 (en) Breath sensing device for a portable electronic device
CN117309091B (zh) 吸液量准确性压力检测方法、***和可读存储介质
US11408881B2 (en) Test meter and method for detecting undue pressure applied to an inserated test strip

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant