CN111331149B - 一种以球形碳酸钙为模板制备中空Pt纳米球的方法 - Google Patents

一种以球形碳酸钙为模板制备中空Pt纳米球的方法 Download PDF

Info

Publication number
CN111331149B
CN111331149B CN202010155377.XA CN202010155377A CN111331149B CN 111331149 B CN111331149 B CN 111331149B CN 202010155377 A CN202010155377 A CN 202010155377A CN 111331149 B CN111331149 B CN 111331149B
Authority
CN
China
Prior art keywords
calcium carbonate
hollow
nanospheres
aqueous solution
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010155377.XA
Other languages
English (en)
Other versions
CN111331149A (zh
Inventor
金普军
张瑜瑾
陈煜�
刘亚冲
李婷婷
罗婷
申嘉琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202010155377.XA priority Critical patent/CN111331149B/zh
Publication of CN111331149A publication Critical patent/CN111331149A/zh
Application granted granted Critical
Publication of CN111331149B publication Critical patent/CN111331149B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0549Hollow particles, including tubes and shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • C01F11/183Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds the additive being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Abstract

本发明公开了一种以球形碳酸钙为模板制备中空Pt纳米球的方法,该方法先采用反相微乳液法制备粒径为0.5~1μm的球形碳酸钙,然后以该球形碳酸钙为模板,氯亚铂酸钾为铂源,抗坏血酸为还原剂,简单高效地制备出形貌规整、尺寸均一,粒径为1~2μm窄分布的中空Pt纳米球。本发明制备方法简单、安全无毒,且成本较低,所得中空Pt纳米球在酸性条件下对甲醇催化氧化反应展现出较高的催化活性和稳定性,在电化学方面具有很好的应用前景。

Description

一种以球形碳酸钙为模板制备中空Pt纳米球的方法
技术领域
本发明属于催化剂制备技术领域,具体涉及一种以球形碳酸钙为模板制备中空Pt纳米球的方法,该中空Pt纳米球作为催化剂在酸性条件下对甲醇催化氧化反应展现出较高的催化活性和稳定性。
背景技术
贵金属铂、银、铑、钯、钌等,它们具有很多优点,如耐高温、耐腐蚀、抗氧化等,它们的催化活性都较高,是极为重要的催化剂材料。纳米中空贵金属球由于其独特的结构特点,具有低密度、比表面积大、表面活性高、表面渗透性强等特点,因此在化学、生物和材料科学等领域均有重要的应用。
目前,中空球材料的制备方法主要有喷雾干燥法、乳液法和模板合成法,而模板法是应用较广也是较重要的制备中空球的方法。模板法是合成纳米空心材料的一类重要方法,主要分为硬模板法和软模板法,其特点是模板剂几何形态可以间接地影响到纳米空心材料的外观形貌特点,具有有效控制空心结构的壳层厚度、粒径和分散性的显著优点。例如:Hyeon等在2008年报道了以SiO2为模板制备氧化铁纳米胶囊(Piao Y,Kim J,Na H B,etal.Wrap–bake–peel process for nanostructural transformation from β-FeOOHnanorods to biocompatible iron oxide nanocapsules[J].Nature Materials,2008,7(3):242-247.),Wu等组报道了以聚苯乙烯为模板,通过简单的方法合成中空SiO2球(Deng,Ziwei,Chen,Min,Zhou,Shuxue,等.A Novel Method for the Fabrication ofMonodisperse Hollow Silica Spheres[J].Langmuir the Acs Journal of Surfaces&Colloids,22(14):6403-6407.),Long等人利用双氧水分解产生的氧气为模板,合成中空TiO2球(Long L,Zhang H,Ye M,et al.Ammonia cation-assisted bubble template forsynthesizing hollow TiO2 nanospheres and their application in lithium ionstorage[J].RSC Advances,2015,5.),Zoldesi等人报道了一种以直接乳液为模板,制备中空SiO2微球和胶囊微球(C.I.Zoldesi,Imhof A.Synthesis of Monodisperse ColloidalSpheres,Capsules,and Microballoons by Emulsion Templating[J].AdvancedMaterials,2005,17(7):924-928.),Zheng等人以阴离子囊泡为软模板,制备的中空SeCd球(Zheng X,Xie Y,Zhu L,et al.Formation of vesicle-templated CdSe hollow spheresin an ultrasound-induced anionic surfactant solution[J].UltrasonicsSonochemistry,2002,9(6):311-316.)Dong等研发序列模板法制备ZnO多壳结构(Dong Z,Lai X,Halpert J E,et al.Accurate Control of Multishelled ZnO HollowMicrospheres for Dye-Sensitized Solar Cells with High Efficiency[J].AdvancedMaterials,2012,24(8):1046-1049.)康永强等(Kang Yong-Qiang,Xue Qi,Zhao Yue,etal.Selective Etching Induced Synthesis of Hollow Rh NanospheresElectrocatalyst for Alcohol Oxidation Reactions[J].Small:1801239.)以三氯化铑和氯金酸为原料,形成铑-金核壳结构,通过王水去除金核形成空心铑,该方法成本高,且王水毒性大,实验危险系数较高。因此,提供一种简单有效的低成本,无毒性的中空纳米材料的制备方法成为中空材料领域的热点和难点。
发明内容
针对目前硬模板法存在团聚、模板剂尺寸大,去除条件苛刻影响目标产物的问题,本发明基于窄分布、单分散和易去除的球形碳酸钙模板,通过Pt前驱液筛选和实验条件调控,克服了碳酸钙模板溶解和还原产物Pt提前产生,最终提供一种简单有效的以反相微乳液法制备的粒径为0.5~1μm的球形碳酸钙为模板制备中空Pt纳米球的方法。
针对上述目的,本发明所采用的技术方案由下述步骤组成:
1、制备球形碳酸钙模板
将氯化钙固体溶解于去离子水中,并加入聚丙烯酸,搅拌均匀后,再加入十二烷基苯磺酸钠,得到钙离子浓度为0.5~3.5mol/L的钙源溶液;将所得钙源溶液加入到环己烷、复配表面活性剂、助表面活性剂的混合液中,混合均匀,静置,取上清液,得到反相微乳液,以反相微乳液的总体积为100%计,其中钙源溶液占1.0%~7.0%、复配表面活性剂占0.5%~1.5%、助表面活性剂占0.5%~2%,其余为环己烷;向所得反相微乳液中滴加氨水,调节pH值至8~10,然后连续通入CO2气体,在25~28℃下反应0.5~1.5小时,离心、洗涤,得到表面呈多孔状的亚微米级球形碳酸钙。
2、制备空心Pt纳米球
将步骤1制得的球形碳酸钙超声分散于pH为7~10的1.3~1.6mol/L抗坏血酸水溶液中,然后在真空状态下静置2~4小时,迅速倒出上层清夜,并在60~70℃搅拌条件下向下层沉淀中加入pH为8~12的0.01~0.03mol/L氯亚铂酸钾水溶液,搅拌反应1.5~2小时后,离心、洗涤,再加入稀盐酸除碳酸钙,得到中空Pt纳米球。
上述步骤1中,优选所得钙源溶液中钙离子浓度为1.0~3.0mol/L、聚丙烯酸的浓度为0.16~0.24g/L、十二烷基苯磺酸钠的浓度为0.02~0.03mol/L,其中所述聚丙烯酸的数均分子量为5000。
上述步骤1中,以反相微乳液的总体积为100%计,优选其中钙源溶液占2.0%~5.0%、复配表面活性剂占0.7%~1.0%、助表面活性剂占1.5%~2.0%,其余为环己烷。
上述的复配表面活性剂是聚氧乙烯蓖麻油和司班-80质量比为55:45~65:35的混合物,助表面活性剂为乙醇。
上述步骤2中,优选将步骤1制得的球形碳酸钙超声分散于pH为7.5~8.5的1.3~1.6mol/L抗坏血酸水溶液中,然后在真空状态下静置2~4小时,迅速倒出上层清夜,并在60~70℃搅拌条件下向下层沉淀中加入pH为10~12的0.01~0.03mol/L氯亚铂酸钾水溶液,搅拌反应1.5~2小时。
上述抗坏血酸水溶液和氯亚铂酸钾水溶液的pH通过NaOH调节。
上述步骤2中,进一步优选所述球形碳酸钙与氯亚铂酸钾水溶液的质量体积比为1g:(200~500)mL。
本发明的有益效果如下:
本发明先采用反相微乳液法制备粒径为0.5~1μm且具有多孔性和高比表面积的亚微米级球形碳酸钙,然后以该球形碳酸钙为模板,氯亚铂酸钾为铂源,抗坏血酸为还原剂,利用球形碳酸钙多孔结构的特性,通过抽真空的方式使抗坏血酸渗入球形碳酸钙内部,待抗坏血酸稳定存在碳酸钙内部,取出,在抗坏血酸分子即将从CaCO3内部向外溢出时,迅速加入氯亚铂酸钾水溶液,使其在球形碳酸钙表面还原,形成核壳结构,最后再通过酸溶,去除碳酸钙,形成中空Pt纳米球。
本发明制备方法简单、安全无毒,且成本较低,制备的中空Pt纳米球形貌规整、尺寸均一、粒径分布窄(1~2μm),且在酸性条件下对甲醇催化氧化反应展现出较高的催化活性和稳定性,在电化学方面具有很好的应用前景。
附图说明
图1是实施例1得到的亚微米级球形碳酸钙的扫描电镜照片。
图2是实施例1得到的中空Pt纳米球的XRD谱图。
图3是实施例1得到的中空Pt纳米球的扫描电镜照片。
图4是图3的局部放大图。
图5是实施例1得到的中空Pt纳米球的场发射透射电镜照片。
图6是实施例2得到的中空Pt纳米球的扫描电镜照片。
图7是实施例3得到的中空Pt纳米球的扫描电镜照片。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但是本发明的保护范围不仅限于这些实施例。
实施例1
1、制备球形碳酸钙模板
将1.11g纯度为99%以上的氯化钙固体溶解于8mL去离子水中,并向其中加入2mL1.0g/L数均分子量为5000的聚丙烯酸水溶液,搅拌0.5小时后,再向其中加入0.0871g十二烷基苯磺酸钠,搅拌均匀,得到钙源溶液,其中钙离子浓度为1.0mol/L、聚丙烯酸的浓度为0.2g/L、十二烷基苯磺酸钠浓度为0.025mol/L。将0.6g聚氧乙烯蓖麻油和0.4g司班-80混合均匀,向其加入1.0mL乙醇,混合均匀后,在常温搅拌状态下,将所得混合物逐滴加入100mL环己烷中,再向其逐滴加入5mL钙源溶液,搅拌均匀,静置2小时,取上清液,得到反相微乳液。向反相微乳液中滴加氨水,调节pH值至9.4,然后向反相微乳液中连续通入CO2气体,在25℃下静置反应40分钟,离心分离,用乙醇洗涤3次、水洗1次,最后在70℃下真空干燥,得到亚微米级球形碳酸钙。由图1的可见,所得碳酸钙呈球形,形貌规整、尺寸均一、粒径分布较窄,粒径为500nm左右,是由10~20nm的微晶球粒组成,其表面粗糙,呈多孔状。
2、制备中空Pt纳米球
将0.02g步骤1制得的球形碳酸钙超声分散于5mL pH为8.84的1.5mol/L抗坏血酸水溶液(pH用NaOH调节)中,分散均匀后放入真空干燥箱中,抽真空至0.8MPa后放置3小时,迅速取出倒出上层清夜,并放入65℃水浴锅内在搅拌状态下向下层沉淀中加入6mL pH为11的0.025mol/L氯亚铂酸钾水溶液(pH用NaOH调节),在2~3分钟内氯亚铂酸钾在碳酸钙表面迅速还原成单质Pt,搅拌1.5小时后,离心、洗涤,再加入稀盐酸酸溶2小时除去碳酸钙,最后经过离心、洗涤即得到中空Pt纳米球。由图2可见所得产物确实为单质Pt,由图3~5可以明显看到所得金属Pt呈空心结构,粒径为1μm左右。
实施例2
本实施例中,将0.02g步骤1制得的球形碳酸钙超声分散在5mL pH为7.9的1.5mol/L抗坏血酸水溶液(pH用NaOH调节)中,分散均匀后放入真空干燥箱中,抽真空至0.8MPa后放置2小时。其他步骤与实施例1中相同,得到中空Pt纳米球,其粒径为1μm左右(见图6)。
实施例3
本实施例中,将0.02g步骤1制得的球形碳酸钙超声分散在5mL pH为8.84的1.5mol/L抗坏血酸水溶液(pH用NaOH调节)中,分散均匀后放入真空干燥箱中,抽真空至0.8MPa后放置3小时,迅速取出倒出上层清夜,并放入70℃水浴锅内在搅拌状态下向下层沉淀中加入6mL pH为11.5的0.025mol/L氯亚铂酸钾水溶液(pH用NaOH调节),在2~3分钟内氯亚铂酸钾在碳酸钙表面迅速还原成单质Pt,搅拌1.5小时。其他步骤与实施例1相同,得到空心Pt球,其粒径为1μm左右(见图7)。
实施例4
本实施例中,将3.33g纯度为99%以上的氯化钙固体溶解于8mL去离子水中,并向其中加入2mL 1.0g/L数均分子量为5000的聚丙烯酸水溶液,搅拌均匀后,再向其中加入0.0871g十二烷基苯磺酸钠,搅拌均匀,得到钙源溶液,其中钙离子浓度为3.0mol/L、聚丙烯酸的浓度为0.2g/L、十二烷基苯磺酸钠浓度为0.025mol/L。其他步骤与实施例1中相同,得到中空Pt纳米球。

Claims (6)

1.一种以球形碳酸钙为模板制备中空Pt纳米球的方法,其特征在于它由下述步骤组成:
(1)制备球形碳酸钙模板
将氯化钙固体溶解于去离子水中,并加入聚丙烯酸,搅拌均匀后,再加入十二烷基苯磺酸钠,得到钙离子浓度为0.5~3.5 mol/L的钙源溶液;将所得钙源溶液加入到环己烷、复配表面活性剂、助表面活性剂的混合液中,混合均匀,静置,取上清液,得到反相微乳液,以反相微乳液的总体积为100 %计,其中钙源溶液占1.0%~ 7.0%、复配表面活性剂占0.5%~1.5%、助表面活性剂占0.5%~2.0%,其余为环己烷,所述的复配表面活性剂是聚氧乙烯蓖麻油和司班-80质量比为55:45~65:35的混合物,所述的助表面活性剂为乙醇;向所得反相微乳液中滴加氨水,调节pH值至8~10,然后连续通入CO2气体,在25~28 ℃下反应0.5~1.5小时,离心、洗涤,得到表面呈多孔状的亚微米级球形碳酸钙;
(2)制备空心Pt纳米球
将步骤(1)制得的球形碳酸钙超声分散于pH为7~10的1.3~1.6 mol/L抗坏血酸水溶液中,然后在真空状态下静置2~4小时,迅速倒出上层清液,并在60~ 70 ℃搅拌条件下向下层沉淀中加入pH为8~12的0.01~0.03 mol/L氯亚铂酸钾水溶液,搅拌反应1.5~2小时后,离心、洗涤,再加入稀盐酸除碳酸钙,得到中空Pt纳米球。
2.根据权利要求1所述的制备中空Pt纳米球的方法,其特征在于:步骤(1)中,所得钙源溶液中钙离子浓度为1.0~3.0 mol/L、聚丙烯酸的浓度为0.16~0.24 g/L、十二烷基苯磺酸钠的浓度为0.02~0.03 mol/L,其中所述聚丙烯酸的数均分子量为5000。
3.根据权利要求1所述的制备中空Pt 纳米球的方法,其特征在于:步骤(1)中,以反相微乳液的总体积为100%计,其中钙源溶液占2.0%~5.0%、复配表面活性剂占0.7%~1.0%、助表面活性剂占1.5%~2.0%,其余为环己烷。
4.根据权利要求1所述的制备中空Pt纳米球的方法,其特征在于:步骤(2)中,将步骤(1)制得的球形碳酸钙超声分散于pH为7.5~8.5的1.3~1.6 mol/L抗坏血酸水溶液中,然后在真空状态下静置2~4小时,迅速倒出上层清夜,并在60~ 70 ℃搅拌条件下向下层沉淀中加入pH为10~12的0.01~0.03 mol/L氯亚铂酸钾水溶液,搅拌反应1.5~2小时。
5.根据权利要求1或4所述的制备中空Pt纳米球的方法,其特征在于:步骤(2)中,所述抗坏血酸水溶液和氯亚铂酸钾水溶液的pH通过NaOH调节。
6.根据权利要求1或4所述的制备中空Pt纳米球的方法,其特征在于:步骤(2)中,所述球形碳酸钙与氯亚铂酸钾水溶液的质量体积比为1g:(200~500)mL。
CN202010155377.XA 2020-03-09 2020-03-09 一种以球形碳酸钙为模板制备中空Pt纳米球的方法 Expired - Fee Related CN111331149B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010155377.XA CN111331149B (zh) 2020-03-09 2020-03-09 一种以球形碳酸钙为模板制备中空Pt纳米球的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010155377.XA CN111331149B (zh) 2020-03-09 2020-03-09 一种以球形碳酸钙为模板制备中空Pt纳米球的方法

Publications (2)

Publication Number Publication Date
CN111331149A CN111331149A (zh) 2020-06-26
CN111331149B true CN111331149B (zh) 2022-08-05

Family

ID=71176074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010155377.XA Expired - Fee Related CN111331149B (zh) 2020-03-09 2020-03-09 一种以球形碳酸钙为模板制备中空Pt纳米球的方法

Country Status (1)

Country Link
CN (1) CN111331149B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433279B (zh) * 2020-12-04 2023-03-14 宁波东旭成新材料科技有限公司 一种光扩散膜的制备方法
CN115043420B (zh) * 2022-07-13 2023-01-31 西安交通大学 一种多孔中空碳酸钙纳米球及制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923907A (zh) * 2010-08-11 2010-12-22 池州学院 一种碳酸钙/镍复合导电粉体及其制备方法
CN102786083A (zh) * 2012-06-08 2012-11-21 合肥工业大学 一种二氧化钛纳米空心球的制备方法
CN104259473A (zh) * 2014-09-23 2015-01-07 中国科学院化学研究所 一种空心球状贵金属纳米材料的制备方法
KR20150041212A (ko) * 2013-10-04 2015-04-16 한국생산기술연구원 W/O 마이크로에멀젼을 이용한 실리카 중공체 합성과 이종 물질 포획을 위한 one-pot synthesis 공정.
CN104787769A (zh) * 2015-03-21 2015-07-22 北京化工大学 一种以模板制备二氧化硅中空微球的方法
KR20150101743A (ko) * 2014-02-27 2015-09-04 인하대학교 산학협력단 은 입자가 부착된 중공형 메조포러스 실리카 입자 및 이의 제조방법
CN106935871A (zh) * 2015-12-31 2017-07-07 中国科学院化学研究所 一种空心球状介孔PtAu纳米材料及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923907A (zh) * 2010-08-11 2010-12-22 池州学院 一种碳酸钙/镍复合导电粉体及其制备方法
CN102786083A (zh) * 2012-06-08 2012-11-21 合肥工业大学 一种二氧化钛纳米空心球的制备方法
KR20150041212A (ko) * 2013-10-04 2015-04-16 한국생산기술연구원 W/O 마이크로에멀젼을 이용한 실리카 중공체 합성과 이종 물질 포획을 위한 one-pot synthesis 공정.
KR20150101743A (ko) * 2014-02-27 2015-09-04 인하대학교 산학협력단 은 입자가 부착된 중공형 메조포러스 실리카 입자 및 이의 제조방법
CN104259473A (zh) * 2014-09-23 2015-01-07 中国科学院化学研究所 一种空心球状贵金属纳米材料的制备方法
CN104787769A (zh) * 2015-03-21 2015-07-22 北京化工大学 一种以模板制备二氧化硅中空微球的方法
CN106935871A (zh) * 2015-12-31 2017-07-07 中国科学院化学研究所 一种空心球状介孔PtAu纳米材料及其制备方法与应用

Also Published As

Publication number Publication date
CN111331149A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
Cai et al. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects
Priecel et al. Anisotropic gold nanoparticles: Preparation and applications in catalysis
Ankamwar et al. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution
Yeo et al. Surfactant‐free platinum‐on‐gold nanodendrites with enhanced catalytic performance for oxygen reduction
Lim et al. Metal nanocrystals with highly branched morphologies
CN111331149B (zh) 一种以球形碳酸钙为模板制备中空Pt纳米球的方法
Bhol et al. Modern chemical routes for the controlled synthesis of anisotropic bimetallic nanostructures and their application in catalysis
US8529963B2 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
CN101003907A (zh) 纳米银包覆二氧化硅的金属介电复合颗粒的制备方法
KR20110040006A (ko) 나노래틀 구조물 및 그의 제조방법
CN108110265B (zh) 一种用于醇类燃料电池的Au@Au/Pt核-壳结构纳米催化剂
Zhong et al. Preparation of triangular silver nanoplates by silver seeds capped with citrate-CTA+
KR101168653B1 (ko) 나노덴드라이트의 제조방법
WO2012123435A1 (en) Platinium/silver noble metal single wall hollow nanoparticles and their preparation process
CN112086648A (zh) 一种合成AuPd@C材料用于氧还原反应电催化的方法
Hu et al. The morphology control on the preparation of silver nanotriangles
KR101390657B1 (ko) 다중 금 나노닷 코어와 실리카 외각으로 이루어진 구형 나노입자 및 그 합성방법
Guo et al. Noble metal nanodendrites: growth mechanisms, synthesis strategies and applications
Huang et al. Formation of CdSe/CdS/ZnS-Au/SiO 2 dual-yolk/shell nanostructures through a Trojan-type inside-out etching strategy
CN113059178B (zh) 中空合金纳米颗粒及其制备方法与应用
CN112893863B (zh) 金铂纳米材料的制备方法
KR101890463B1 (ko) 중공 금속 나노입자의 제조방법 및 이에 의해 제조된 중공 금속 나노입자
Hebié et al. Electrochemical reactivity at free and supported gold nanocatalysts surface
RU2729617C1 (ru) Поликомпонентная наноразмерная система для диагностики и терапии новообразований
Du et al. Origin of symmetry breaking in the seed-mediated growth of bi-metal nano-heterostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Jin Pujun

Inventor after: Zhang Yujin

Inventor after: Chen Yu

Inventor after: Liu Yachong

Inventor after: Li Tingting

Inventor after: Luo Ting

Inventor after: Shen Jiaqi

Inventor before: Jin Pujun

Inventor before: Zhang Yujin

Inventor before: Chen Yu

Inventor before: Liu Yachong

Inventor before: Li Tingting

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220805