CN111330599A - 一种高效析氢反应的复合纳米材料电催化剂及其制备方法 - Google Patents

一种高效析氢反应的复合纳米材料电催化剂及其制备方法 Download PDF

Info

Publication number
CN111330599A
CN111330599A CN202010084195.8A CN202010084195A CN111330599A CN 111330599 A CN111330599 A CN 111330599A CN 202010084195 A CN202010084195 A CN 202010084195A CN 111330599 A CN111330599 A CN 111330599A
Authority
CN
China
Prior art keywords
mos
graphene
doped
doped graphene
hydrogen evolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010084195.8A
Other languages
English (en)
Inventor
宋文龙
陈卫祥
施璐
李丹
田庆山
罗秋月
刘红杰
方明学
毛书彦
沈旭培
李靖
袁关锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianneng Battery Group Co Ltd
Original Assignee
Tianneng Battery Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianneng Battery Group Co Ltd filed Critical Tianneng Battery Group Co Ltd
Priority to CN202010084195.8A priority Critical patent/CN111330599A/zh
Publication of CN111330599A publication Critical patent/CN111330599A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高效析氢反应的复合纳米材料电催化剂及其制备方法。该电催化剂为MoS2与B‑掺杂石墨烯的复合纳米材料,也就是由缺陷和/或边缘较多的MoS2层均匀地负载在B‑掺杂石墨烯上所构成的异质复合纳米材料。其制备方法是在水热溶液中氧化石墨烯和硼酸存在条件下,并含有Na2MoO4和L‑半胱氨酸,通过一步水热反应途径制备得到MoS2/B‑掺杂石墨烯的复合纳米材料,作为析氢反应的电催化剂,所制备的MoS2/B‑掺杂石墨烯复合纳米材料显示了相当高的电催化活性和较低的Tafel斜率(46.3mV/dec)。本发明的MoS2/B‑掺杂石墨烯复合纳米材料作为一种高效低成本的析氢反应的电催化剂,在电解水制氢方面具有广泛的应用前景。

Description

一种高效析氢反应的复合纳米材料电催化剂及其制备方法
技术领域
本发明涉及高效析氢反应的复合纳米材料电催化剂及其制备方法,尤其涉及MoS2/B-掺杂石墨烯复合纳米材料电催化剂及其制备方法,属于新能源材料与应用技术领域。
背景技术
MoS2具有典型的层状结构,其层状结构由三明治结构的S-Mo-S层通过范德华力作用连接叠加而成。纳米级MoS2对析氢反应(HER)具有良好的电催化活性。尽管Pt和Pt基纳米材料对HER具有最优的电催化性能,但其资源的稀缺性和高的价格限制了在电解水制氢中的规模化应用。MoS2的电催化HER活性主要来源于其边缘位点(YAN Y,XIA B Y,GE X M,etal.Ultrathin MoS2nanoplates with rich active sites as highly efficientcatalyst for hydrogen evolution[J].ACS Applied Materials&Interfaces,2013,5(24):12794-12798.)但是由于范德华力的作用,S-Mo-S层容易发生堆叠,导致其边缘活性位点的减少。同时,MoS2的低导电能力限制了其作为电催化剂的应用。
将MoS2与具有高导电性和柔韧性的碳纳米材料(如石墨烯、碳纳米管等)复合是解决上述其电化学应用存在问题的一个有效途径(LI Y G,WANG H L,XIE L M,etal.MoS2nanoparticles grown on graphene:an advanced catalyst for the hydrogenevolution reaction[J].Journal of the American Chemical Society,2011,133(19):7296-7299;YAN Y,GE X M,LIU Z L,et al.Facile synthesis of low crystallineMoS2nanosheet-coated CNTs for enhanced hydrogen evolution reaction[J].Nanoscale,2013,5(17):7768-7771)。石墨烯具有高的电子导电能力和荷电迁移率,以及极大的比表面积和固有的良好柔韧性。石墨烯与MoS2复合不仅显著提高了复合材料的导电性,还能较好地抑制MoS2层的堆积或团聚,得到层数较少和边缘活性位较多的MoS2层。由于MoS2纳米片与石墨烯之间的这种相互作用可增强所制得的复合材料的电化学应用性能。
有研究表明异质原子(如N和S等)掺杂石墨烯能修饰石墨烯的电子结构,改变其物理和化学性质,从而增强石墨烯及其复合材料的电催化活性和电化学储锂等性能(YE J B,YU Z T,CHEN W X,et al.Facile synthesis of MoS2/nitrogen-doped graphenecomposites for enhanced electrocatalytic hydrogen evolution andelectrochemical lithium storage[J].Carbon,2016,107:711-722)。与未掺杂的石墨烯相比,掺杂石墨烯不仅能加快电极反应的电子转移,还能形成新的电催化活性中心。Duan等发现,N掺杂石墨烯降低了氢的吸附能,显示了比未掺杂石墨烯更好的电催化HER性能(DUANJ J,CHEN S,JARONIEC M,et al.Heteroatom-doped graphene-based materials forenergy-relevant electrocatalytic processes.ACS Catalysis,2015,5(9):5207-5234)。一步水热法制备的MoS2/S、N共掺杂石墨烯的复合材料也表现了较高的电催化HER活性(REN X P,REN X D,PANG L Q,et al.MoS2/sulfur and nitrogen co-doped reducedgraphene oxide nanocomposite for enhanced electrocatalytic hydrogenevolution.International Journal of Hydrogen Energy,2016,41(2):916-923)。与N和S元素相比,B的电负性更低(甚至比碳也低)。B掺杂将在石墨烯中形成p型载流子,从而改变石墨烯表面的一些物理和化学性质,使石墨烯更适合在传感器、电催化和电化学储能等方面的应用(HAN J,ZHANG LL,LEE S,et al.Generation of b-doped graphenenanoplatelets using a solution process and their supercapacitor applications[J].ACS Nano,2013,7(1):19-26;SHENG Z H,GAO H L,BAO W J,et al.Synthesis ofboron doped graphene for oxygen reduction reaction in fuel cells[J].Journalof Materials Chemistry,2012,22(2):390-395;KONG X K,HUANG Y M,LIU Q C.Two-dimensional boron-doped graphyne nanosheet:Anew metal-free catalyst foroxygen evolution reaction[J].Carbon,2017,123:558-564;SAHOO M,SREENAKP,VINAYANBP,et al.Green synthesis of boron doped graphene and its application as highperformance anode material in Li ion battery[J].Materials Research Bulletin,2015,61:383-390)。作为无金属的氧还原反应电催化剂,B掺杂石墨烯及其相关纳米结构具有高效和稳定性的电催化性能,以及更好的CO耐受性。Sathe等通过一种湿化学法,用B原子取代石墨烯上缺陷位的C原子制备了B掺杂的石墨烯,表现了良好的电催化HER活性,硼掺杂石墨烯可以为氢离子还原提供了一条较低的能量反应路径(SATHE BR,ZOU X X,ASEFAT.Metal-free B-doped graphene with efficient electrocatalytic activity forhydrogen evolution reaction[J].Catalysis Science&Technology,2014,4(7):2023-2030;NACHIMUTHU S,LAI P J,JIANG J C.Efficient hydrogen storage in boron dopedgraphene decorated by transition metals–A first-principles study[J].Carbon,2014,73:132-140),但是其电催化析氢反应的Tafel斜率依然较高(99mV/dec),析氢反应的电催化性能还有进一步提升的空间。
本发明提供了一种高效析氢反应的复合纳米材料电催化剂及其制备方法,该催化剂是由缺陷或边缘较多的MoS2层均匀地负载在B-掺杂石墨烯上所复合构成,并通过一步水热反应途径制备得到。与MoS2和MoS2/石墨烯复合材料相比,本发明的MoS2/B-掺杂石墨烯复合纳米材料,作为析氢反应的电催化剂,具有显著高的电催化活性和更低的Tafel斜率。但是,到目前为止,这种高效析氢反应的复合纳米材料电催化剂MoS2/B-掺杂石墨烯复合纳米材料及其制备方法还未见公开报道。
发明内容
本发明的目的在于提供一种高效析氢反应的复合纳米材料电催化剂及其制备方法。
本发明的高效析氢反应的复合纳米材料电催化剂是由MoS2层与B-掺杂的石墨烯所复合构成,其中石墨烯中B元素的掺杂量以摩尔百分比计为3.2-6.6%,其制备方法步骤如下:
(1)将氧化石墨烯超声分散在去离子水中,得到均匀的悬浮液,再将计量的硼酸溶液在搅拌下滴加到含有氧化石墨烯的悬浮液中,并不断搅拌12h,然后将含有Na2MoO4和L-半胱氨酸的混合溶液在搅拌下加入到上述的混合悬浮液中;
(2)将步骤(1)得到的的水热反应混合物转移到带有聚四氟乙烯内胆的水热反应釜中,并用去离子水将水热反应混合物体系的体积调整为水热反应釜内胆标称体积的80%左右,硼酸在水热反应化合物体系中的浓度控制在0.0125-0.0625mol/L;
(3)水热反应釜密封后,在180℃下反应24h,自然冷却至室温,将水热反应得到的沉淀产物离心分离,并用去离子水和无水乙醇充分洗涤,冷冻干燥48h后,得到MoS2/B-掺杂石墨烯的复合纳米材料,其中石墨烯中B元素的掺杂量为摩尔比为3.2-6.6%。
与水热制备的MoS2和MoS2/未掺杂石墨烯所复合材料相比,本发明的MoS2/B-掺杂石墨烯复合纳米材料具有更大的电化学活性比表面积,负载在B-掺杂石墨烯上的MoS2层具有更多的缺陷和/或边缘。
与现有技术比较:
本发明的高效析氢反应的复合纳米材料电催化剂是由缺陷或边缘较多的MoS2层与B-掺杂的石墨烯所复合构成,其中石墨烯中B元素的掺杂量为摩尔比为3.2-6.6%。本发明的高效析氢反应的复合纳米材料电催化剂及其制备方法具有以下显著的优点:
尽管纳米级MoS2对析氢反应具有良好的电催化活性,其电催化活性主要来源于MoS2的边缘位点,但是由于范德华力的作用,S-Mo-S层容易发生堆叠,导致其边缘活性位点的减少,同时,MoS2的低导电能力限制了其作为电催化剂的应用。MoS2与石墨烯复合是较好地解决上述2个缺点的一个有效途径。石墨烯具有高的电子导电能力和荷电迁移率,以及极大的比表面积和固有的良好柔韧性。石墨烯与MoS2复合能显著提高了复合材料的导电性,还能较好地抑制MoS2层的堆积或团聚,得到层数较少和边缘活性位较多的MoS2层。
异质原子(如N和S等)掺杂石墨烯能修饰石墨烯的电子结构,改变其物理和化学性质,从而增强石墨烯及其复合材料的电催化活性。与未掺杂的石墨烯相比,掺杂石墨烯不仅能加快电极反应的电子转移,还能形成新的电催化活性中心。如,N掺杂石墨烯降低了氢的吸附能,显示了比未掺杂石墨烯更好的电催化析氢反应性能;MoS2/S、N共掺杂石墨烯的复合材料也表现了较高的电催化HER活性。与N和S元素相比,B元素的电负性更低(甚至比碳也低)。B掺杂将在石墨烯中形成p型载流子,从而改变石墨烯表面的一些物理和化学性质,使石墨烯更适合在电催化和电化学储能等方面应用,并具有更好的应用性能。如,B掺杂石墨烯及其相关纳米结构对氧还原反应具有高效和稳定性的电催化性能,以及更好的CO耐受能力;B-掺杂的石墨烯对析氢反应也表现了良好的电催化活性,硼掺杂石墨烯可以为氢离子还原提供了一条较低的能量反应路径,但是其电催化析氢反应的Tafel斜率依然较高(99mV/dec)。
本发明的高效析氢反应的复合纳米材料电催化剂是由缺陷或边缘较多的MoS2层与B-掺杂的石墨烯所复合构成,并通过一步水热反应法制备得到。在水热反应条件下,氧化石墨烯被还原为石墨烯,同时被硼酸原位释放的B元素掺杂得到B-掺杂的石墨烯,同时Na2MoO4与L-半胱氨酸通过水热反应生成MoS2层,并均匀地负载在B-掺杂石墨烯上。与未掺杂的石墨烯相比,B-掺杂将在石墨烯中形成p型载流子,从而改变石墨烯表面的一些物理和化学性质,增强了其电子传递的能力。硼掺杂石墨烯也可以为氢离子还原提供了一条较低的能量反应路径,有利于改善电催化析氢反应的动力学性能。与未掺杂的石墨烯相比,B-掺杂石墨烯具有更好的开放多孔骨架结构,更高的导电性能,以及较低电极反应电子转移阻抗。另外,具有更好的开放多孔骨架结构的B-掺杂石墨烯能使得负载在其表面的MoS2层具有较多的缺陷和/或边缘,为析氢反应提供了更多的催化活性位。电化学测试结果表明,与MoS2,MoS2/石墨烯复合材料相比,本发明的MoS2/B-掺杂石墨烯复合纳米材料具有更大的电化学活性比表面积,作为电催化剂对析氢反应显示了显著提高的电催化活性和更低的Tafel斜率,以及显著降低的电极反应的电子转移阻抗。
本发明的高效析氢反应的复合纳米材料电催化剂主要是由Mo,S,C,B等地球上储量丰富的元素组成,不含Pt等贵金属元素,因此可以实现较低的成本。
本发明制备高效析氢反应的复合纳米材料电催化剂的一步水热制备方法也具有工艺简单、方便和易于扩大应用的特点。
附图说明
图1:MoS2和不同复合纳米材料电催化剂的XRD图,(a)MoS2,(b)MoS2/石墨烯,(c)MoS2/B-掺杂石墨烯-1,(d)MoS2/B-掺杂石墨烯-2,(e)MoS2/B-掺杂石墨烯-3;
图2:MoS2和不同复合纳米材料电催化剂的SEM图,(a)MoS2,(b)MoS2/石墨烯,(c)MoS2/B-掺杂石墨烯-1,(d)MoS2/B-掺杂石墨烯-2,(e)MoS2/B-掺杂石墨烯-3;
图3:MoS2和不同复合纳米材料电催化剂的TEM/HRTEM图,(a,b)MoS2,(c,d)MoS2/石墨烯,(e,f)MoS2/B-掺杂石墨烯-1,(g,h)MoS2/B-掺杂石墨烯-2,(i,j)MoS2/B-掺杂石墨烯-3;
图4:(a)MoS2,MoS2/石墨烯,MoS2/B-掺杂石墨烯-1,MoS2/B-掺杂石墨烯-2和MoS2/B-掺杂石墨烯-3电催化剂电极上析氢反应的极化曲线;(b)MoS2/B-掺杂石墨烯-2催化剂上析氢反应电催化性能稳定性测试(室温,电解液为0.5M H2SO4);
图5:(a)MoS2,(b)MoS2/石墨烯,(c)MoS2/B-掺杂石墨烯-1,(d)MoS2/B-掺杂石墨烯-2和(e)MoS2/B-掺杂石墨烯-3电催化剂电极上析氢反应的Tafel曲线(室温,电解液为0.5M H2SO4);
图6:(a)MoS2,(b)MoS2/石墨烯,(c)MoS2/B-掺杂石墨烯-1,(d)MoS2/B-掺杂石墨烯-2和(e)MoS2/B-掺杂石墨烯-3电催化剂电极上析氢反应的电化学阻抗谱Nyquist图(室温,电解液为0.5mol/L H2SO4),图中的插图为电化学阻抗分析的等效电路,其中Rs为电解液的电阻,Rct为电子转移阻抗,CPE1是与催化剂与电解液界面有关的恒相位元。
具体实施方式
以下结合实施例和附图进一步说明本发明。
实施例1
在超声波作用下将氧化石墨烯均匀地分散在去离子水中,得到均匀的悬浮液,再把计量的硼酸溶液在搅拌下滴加到含有氧化石墨烯的悬浮液中,并不断搅拌12h,然后将含有Na2MoO4和L-半胱氨酸的混合溶液在搅拌下加入到上述的混合悬浮液中,得到水热反应的混合物,该混合物中含有1.5mmol Na2MoO4,7.5mmol L-半胱氨酸,3.0mmol氧化石墨烯(以碳元素计量),硼酸含量的物质的量为1.0,2.0或5.0mmol;将上述水热反应的混合物转移到100mL的水热反应釜中,用去离子水将水热反应混合物体积调整到80mL左右,水热反应釜密封后,在180℃下保温24h,反应完成后,反应釜自然冷却到室温,用去离子水洗涤5~6次后,采用离心分离得到黑色沉淀物,将其冷冻干燥48h,得到MoS2/B-掺杂石墨烯的复合材料。水热反应混合溶液中含有的硼酸的物质的量分别为1.0,2.0和5.0mmol,相应所制得的复合纳米材料电催化剂分别被命名为MoS2/B-掺杂石墨烯-1,MoS2/B-掺杂石墨烯-2和MoS2/B-掺杂石墨烯-3。
对比例1:在不添加硼酸的情况下,用类似的水热制备了MoS2/石墨烯复合材料。
在超声波作用下将氧化石墨烯均匀地分散在去离子水中,得到均匀的悬浮液,然后将含有Na2MoO4和L-半胱氨酸的混合溶液在搅拌下加入到该悬浮液中,得到水热反应的混合物,该混合物中含有1.5mmol Na2MoO4,7.5mmol L-半胱氨酸,3.0mmol氧化石墨烯(以碳元素计量),没有添加硼酸;将得到的水热反应混合物转移到100mL的水热反应釜中,并用去离子水将水热反应混合物体积调整到80mL左右,水热反应釜密封后,180℃下保温24h,反应完成后,反应釜自然冷却到室温,用去离子水洗涤5~6次后,采用离心分离得到黑色沉淀物,将其冷冻干燥48h,得到MoS2/石墨烯的复合材料。
对比例2:在没有氧化石墨烯存在和不添加硼酸的情况下,用类似的水热反应法制备了MoS2纳米材料。
用X-射线衍射(XRD),扫描电镜(SEM),透射电镜/高分辨透射电镜(TEM/HRTEM)和XPS对上述制备的MoS2,MoS2/石墨烯和MoS2/B-掺杂石墨烯复合材料样品进行表征和分析。
电催化剂对析氢反应电催化性能的测试:采用三电极***,Pt为对电极,参比电极为饱和甘汞电极(SCE),电解液为0.5mol/L的H2SO4溶液。工作电极的制备:将4.0mg的催化剂分散在80μL的5wt%Nafion溶液和1.0mL的水/乙醇混合液(体积比4:1)中,超声1h,得到均匀的催化剂浆料。移取5.0μL催化剂浆料涂抹在直径3.0mm玻碳电极上,60℃下干燥后,即得到工作电极。在CHI660E电化学工作站上,用线性扫描伏安法(LSV)、循环伏安法和电化学阻抗技术测试比较催化剂的电催化析氢性能。析氢反应的电势值均相对于可逆氢电极(RHE),也就是其电势值等于相对于SCE的电势值再加0.272V。用电化学阻抗测试了不同复合纳米材料电催化剂电极上析氢反应的电子转移阻抗。为了比较MoS2,MoS2/石墨烯和MoS2/B-掺杂石墨烯复合纳米材料的电化学活性比表面积,用循环伏安法测试了其与微分电容。复合纳米材料的电化学活性比表面积的大小与其微分电容值成正比的关系,因此,可以用所测得的微分电容值比较电化学活性比表面积的大小。
不同电催化剂微观结构和形貌表征结果:
图1是不同电催化剂样品的XRD图。结果显示,所有样品在2θ=32.8°,35.3°,43.0°,56.8°出现了4个衍射峰,分别对应于2H-MoS2的(100),(103),(006)和(110)晶面。但是,对应于MoS2的(002)面在2θ=14.4°的衍射峰没有出现,样品在2θ=9.3°却出现了一个较明显的宽化衍射峰(#标记),该峰对应的层间距为0.95nm。3个MoS2/B-石墨烯复合纳米材料在2θ=24.5°出现了弱的衍射峰,对应于石墨烯的(002)面。这是由于B掺杂石墨烯的层与层之间π-π堆叠在一定程度上的有所增强,B原子在碳晶格中形成sp2杂化,水热还原氧化石墨烯中sp2共轭结构部分恢复,改善了石墨烯片的π-π堆积或交联叠加程度。
图2的不同催化剂样品SEM微观形貌表征结果显示,单纯的MoS2样品呈现了由纳米片交错叠加形成的花状形貌;MoS2/石墨烯复合纳米材料显示了具有片状类石墨烯的形貌,MoS2纳米片均匀地负载在石墨烯上;3个MoS2/B-掺杂石墨烯复合纳米材料也都呈现了类石墨烯的形貌,B掺杂石墨烯具有更多的褶皱,MoS2层更好地均匀分散在B掺杂石墨烯上。
图3的TEM/HRTEM表征结果显示,MoS2样品由MoS2纳米片交错组成;对于MoS2/G复合纳米材料,MoS2层能均匀地分散在石墨烯上;与MoS2/石墨烯和MoS2相比,MoS2/B-掺杂石墨烯复合纳米材料中,MoS2层显示了更短的长度和更多的暴露边缘,并均匀地分散在B掺杂石墨烯上,尤其是MoS2/B-掺杂石墨烯-2复合纳米材料,其中的MoS2的晶格条纹出现较多的无序结构或缺陷,暴露出更多的边缘或缺陷位点。
XPS分析表明,对于MoS2/B-掺杂石墨烯-1,MoS2/B-掺杂石墨烯-2和MoS2/B-掺杂石墨烯-3样品,石墨烯中的B元素的掺杂量分别为3.2%,4.6%和6.6%,Mo和S之间的物质的量比例分别为1:1.9,1:2.1和1:2.1,符合MoS2的化学计量比。
不同电催化剂对析氢反应电催化性能的测试比较:
图4(a)的不同电催化剂对析氢反应电催化性能测试比较结果显示,单纯的MoS2催化剂表现了相当高的起始过电位(185mV),即使在300mV的高过电位下,其电流密度仅为16mA/cm2;与MoS2催化剂相比,MoS2/石墨烯催化剂上析氢反应的起始过电位降低为153mV,电流密度也有较明显的增加;与MoS2/石墨烯相比,MoS2/B-掺杂石墨烯显示了显著提高的电催化析氢反应催化活性,尤其是MoS2/B-掺杂石墨烯-2,其析氢反应的起始过电位降低到130mV,在300mV的过电位下,其电流密度达180mA/cm2,其值高于已报道的MoS2/N-掺杂石墨烯的电流密度(136.3mA/cm2)。
稳定性也是评价电催化剂性能的一个重要因素。在0.5M H2SO4电解液中,以5mV/s扫速用循环伏安法对MoS2/B-掺杂石墨烯-2进行了1000次循环。如图5(b)所示,在1000个循环后得到的析氢反应极化曲线和初始的极化曲线几乎重合,表明在酸性电解质中MoS2/B-掺杂石墨烯对HER的电催化性能是稳定的。
图5是析氢反应的极化曲线的Tafel斜率分析。Tafel公式可以表示为:η=a+blogj,b为Tafel斜率,j为电流密度。酸性电解液中析氢反应包括3个基本步骤,Volmer反应(H++e→Had,Had代表吸附氢原子),Heyrovsky反应(H++e→H2)和Tafel反应(Had+Had→H2)。室温下,这3个步骤的Tafel斜率分别为120mV/dec,40mV/dec和30mV/dec左右。图6显示,MoS2表现了较高的Tafel斜率(100.5mV/dec),表明Volmer反为其析氢反应的的速率决定步骤,这是由于MoS2的活性位点比较有限,导电性也低,在MoS2电极上进行Volmer反应非常困难,导致较高的Tafel斜率;MoS2/石墨烯的Tafel斜率为75.6mV/dec,低于MoS2的,表明其析氢反应受Volmer反应和Heyrovsky反应的混合控制,这是由于与石墨烯的复合提高了复合材料的导电能力,增加了MoS2的边缘活性位点,改善了析氢反应的Volmer反应过程;MoS2/B-掺杂石墨烯复合材料的Tafel斜率进一步降低到46-50mV/dec,更低的Tafel斜率是由于掺硼石墨烯独特的电子结构和表面特性,以及更多边缘或缺陷的MoS2纳米片均匀地负载在B掺杂石墨烯上,使复合材料催化剂具有大量电催化活性中心和明显增加的电催化活性位点,并在析氢电极反应中具有更好的电子转移能力,尤其是MoS2/B-掺杂石墨烯-2具有最小的Tafel斜率(46.3mV/dec),表明其HER是通过Volmer-Heyrovsky步骤进行的,其中Heyrovsky反应为速率决定步骤。
图6是在不同电催化剂电极上析氢反应的电化学阻的Nyquist图,表1为电化学阻抗测试数据拟合析氢反应电化学动力学参数的结果。结果表明,由于MoS2较低的导电性能,MoS2电极显示了最大的电子转移(Rct=1131Ω);MoS2/石墨烯电极的Rct降低为339Ω,这是由于石墨烯复合提高了复合材料电催化剂的导电性,改善了析氢反应电极过程中电子转移能力;MoS2/B-掺杂石墨烯电极的Rct有进一步的降低的,其中MoS2/B-掺杂石墨烯催化剂电极显示了最小的Rct(87Ω),其值为MoS2/石墨烯电极的25.6%,说明MoS2/B-掺杂石墨烯-2电极上的析氢反应具有更好的电子转移能力。
表1电化学阻抗数据拟合所得的析氢反应电极动力学参数
Figure BDA0002381451800000091
循环伏安法测试微分电容的结果表明,MoS2,MoS2/石墨烯,MoS2/B-掺杂石墨烯-1,MoS2/B-掺杂石墨烯-2和MoS2/B-掺杂石墨烯-3复合纳米材料电极的微分电容分别为3.5mF/cm2,5.3mF/cm2,8.8mF/cm2,16.2mF/cm2和12.0mF/cm2。与MoS2,MoS2/石墨烯相比,MoS2/B-掺杂石墨烯复合纳米材料的电极具有更大的微分电容,其中MoS2/B-掺杂石墨烯-2具有最大的微分电容,说明与MoS2,MoS2/石墨烯相比,MoS2/B-掺杂石墨烯复合纳米材料具有更大的电化学活性比表面积,其中MoS2/B-掺杂石墨烯-2具有最大的电化学活性比表面积。

Claims (2)

1.一种高效析氢反应的复合纳米材料电催化剂,其特征在于,该复合纳米材料电催化剂是由MoS2层与B-掺杂的石墨烯所复合构成,其中B-掺杂的石墨烯中B元素的掺杂量以摩尔百分比计为3.2-6.6%,与单纯的MoS2和MoS2/未掺杂石墨烯的复合纳米材料相比,MoS2/B-掺杂石墨烯的复合纳米材料具有更大的电化学活性比表面积,负载在B-掺杂石墨烯上的MoS2层具有更多的缺陷和/或边缘。
2.一种权利要求1所述高效析氢反应的复合纳米材料电催化剂的制备方法,其特征在于,所述制备方法步骤如下:
(1)将氧化石墨烯超声分散在去离子水中,得到均匀的悬浮液,再将计量的硼酸溶液在搅拌下滴加到含有氧化石墨烯的悬浮液中,并不断搅拌12h,然后将含有Na2MoO4和L-半胱氨酸的混合溶液在搅拌下加入到上述的混合悬浮液中;
(2)将步骤(1)得到的的水热反应混合物转移到带有聚四氟乙烯内胆的水热反应釜中,并用去离子水将水热反应混合物体系的体积调整到水热反应釜内胆标称体积的80%,硼酸在水热反应混合物体系中的浓度控制在0.0125-0.0625mol/L;
(3)水热反应釜密封后,在180℃下反应24h,自然冷却至室温,将水热反应得到的沉淀产物离心分离,并用去离子水和无水乙醇充分洗涤,冷冻干燥48h后,得到MoS2/B-掺杂石墨烯的复合纳米材料。
CN202010084195.8A 2020-02-10 2020-02-10 一种高效析氢反应的复合纳米材料电催化剂及其制备方法 Pending CN111330599A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010084195.8A CN111330599A (zh) 2020-02-10 2020-02-10 一种高效析氢反应的复合纳米材料电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010084195.8A CN111330599A (zh) 2020-02-10 2020-02-10 一种高效析氢反应的复合纳米材料电催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN111330599A true CN111330599A (zh) 2020-06-26

Family

ID=71173772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010084195.8A Pending CN111330599A (zh) 2020-02-10 2020-02-10 一种高效析氢反应的复合纳米材料电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111330599A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346020A (zh) * 2013-07-25 2013-10-09 南京理工大学 二氧化锡/硼掺杂石墨烯纳米复合物及其制备方法
CN104091931A (zh) * 2014-07-17 2014-10-08 浙江大学 多边缘MoS2纳米片/石墨烯复合纳米材料及制备方法
CN104103829A (zh) * 2014-07-17 2014-10-15 浙江大学 MoS2带孔纳米片/石墨烯复合纳米材料及制备方法
CN105161691A (zh) * 2015-10-10 2015-12-16 岭南师范学院 一种少层数MoS2/磷掺杂石墨烯电化学储钠复合电极的制备方法
CN106532040A (zh) * 2016-11-23 2017-03-22 广东轻工职业技术学院 一种H‑MoS2/NG纳米复合材料及制备方法与应用
US20170342578A1 (en) * 2014-11-11 2017-11-30 William Marsh Rice University A new class of electrocatalysts
CN108636427A (zh) * 2018-04-27 2018-10-12 重庆文理学院 一种二硫化钼-氮硫掺杂石墨箔复合纳米材料及制备方法
CN109876833A (zh) * 2018-12-29 2019-06-14 江苏索普(集团)有限公司 氧化镍负载硫磷掺杂石墨烯复合电催化剂及其制备方法
CN110247038A (zh) * 2019-06-14 2019-09-17 天能电池集团股份有限公司 一种Bi2S3-MoS2/石墨烯复合纳米材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346020A (zh) * 2013-07-25 2013-10-09 南京理工大学 二氧化锡/硼掺杂石墨烯纳米复合物及其制备方法
CN104091931A (zh) * 2014-07-17 2014-10-08 浙江大学 多边缘MoS2纳米片/石墨烯复合纳米材料及制备方法
CN104103829A (zh) * 2014-07-17 2014-10-15 浙江大学 MoS2带孔纳米片/石墨烯复合纳米材料及制备方法
US20170342578A1 (en) * 2014-11-11 2017-11-30 William Marsh Rice University A new class of electrocatalysts
CN105161691A (zh) * 2015-10-10 2015-12-16 岭南师范学院 一种少层数MoS2/磷掺杂石墨烯电化学储钠复合电极的制备方法
CN106532040A (zh) * 2016-11-23 2017-03-22 广东轻工职业技术学院 一种H‑MoS2/NG纳米复合材料及制备方法与应用
CN108636427A (zh) * 2018-04-27 2018-10-12 重庆文理学院 一种二硫化钼-氮硫掺杂石墨箔复合纳米材料及制备方法
CN109876833A (zh) * 2018-12-29 2019-06-14 江苏索普(集团)有限公司 氧化镍负载硫磷掺杂石墨烯复合电催化剂及其制备方法
CN110247038A (zh) * 2019-06-14 2019-09-17 天能电池集团股份有限公司 一种Bi2S3-MoS2/石墨烯复合纳米材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BINGQIAO XIE等: "Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance", 《CARBON》, vol. 99, 10 December 2015 (2015-12-10), XP029396277, DOI: 10.1016/j.carbon.2015.11.077 *
RIYANTO等: "Boron Doped Graphene Quantum Structure and MoS2 Nanohybrid as Anode Materials for Highly Reversible Lithium Storage", 《,FRONTIERS IN CHEMISTRY》 *
RIYANTO等: "Boron Doped Graphene Quantum Structure and MoS2 Nanohybrid as Anode Materials for Highly Reversible Lithium Storage", 《,FRONTIERS IN CHEMISTRY》, vol. 7, 13 March 2019 (2019-03-13), pages 2 - 3 *
黄克靖等: "《二维过渡金属二硫属化合物的电化学储能应用》", 冶金工业出版社, pages: 145 *

Similar Documents

Publication Publication Date Title
Wang et al. A highly efficient Fe-doped Ni 3 S 2 electrocatalyst for overall water splitting
Chi et al. Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting
Wen et al. Well-dispersed Co3Fe7 alloy nanoparticles wrapped in N-doped defect-rich carbon nanosheets as a highly efficient and methanol-resistant catalyst for oxygen-reduction reaction
Niu et al. Prussian blue analogue-derived CoFe nanocrystals wrapped in nitrogen-doped carbon nanocubes for overall water splitting and Zn-air battery
Shi et al. FeNi-functionalized 3D N, P doped graphene foam as a noble metal-free bifunctional electrocatalyst for direct methanol fuel cells
Luo et al. Self-assembled Ni2P nanosheet-implanted reduced graphene oxide composite as highly efficient electrocatalyst for oxygen evolution reaction
Guo et al. Confined-space-assisted preparation of Fe3O4-nanoparticle-modified Fe–N–C catalysts derived from a covalent organic polymer for oxygen reduction
Jia et al. Facile synthesis of N-doped carbon nanoframes encapsulated by CoP nanoparticles for hydrogen evolution reaction
Tang et al. Template-free synthesis of three-dimensional nanoporous N-doped graphene for high performance fuel cell oxygen reduction reaction in alkaline media
Song et al. Uniform multilayer graphene-coated iron and iron-carbide as oxygen reduction catalyst
Wang et al. Integrating Ni nanoparticles into MoN nanosheets form Schottky heterojunctions to boost its electrochemical performance for water electrolysis
Cai et al. MoS2|| CoP heterostructure loaded on N, P-doped carbon as an efficient trifunctional catalyst for oxygen reduction, oxygen evolution, and hydrogen evolution reaction
Qu et al. Ni2P/C nanosheets derived from oriented growth Ni-MOF on nickel foam for enhanced electrocatalytic hydrogen evolution
Osaimany et al. A study of synergistic effect on oxygen reduction activity and capacitive performance of NiCo2O4/rGO hybrid catalyst for rechargeable metal-air batteries and supercapacitor applications
Chen et al. Facile and scale synthesis of Co/N/S-Doped porous graphene-like carbon architectures as electrocatalysts for sustainable Zinc-Air battery cells
Tong et al. 3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
Liu et al. Porous Cobalt-nickel phosphides prepared from Al-doped NiCo-LDH precursors for supercapacitor and electrocatalysis applications
Shi et al. Three dimensional nitrogen, phosphorus and sulfur doped porous graphene as efficient bifunctional electrocatalysts for direct methanol fuel cell
Qian et al. Template synthesis of two-dimensional ternary nickel-cobalt-nitrogen co-doped porous carbon film: Promoting the conductivity and more active sites for oxygen reduction
Yue et al. Porous interwoven CoSe2/C microsphere: a highly efficient and stable nonprecious electrocatalyst for hydrogen evolution reaction
Feng et al. FeNC Catalysts with high catalytic activity and stability for oxygen reduction reaction
Qu et al. In-situ growth of hierarchical trifunctional Co4S3/Ni3S2@ MoS2 core-shell nanosheet array on nickel foam for overall water splitting and supercapacitor
Wu et al. Self-supported hollow Co (OH) 2/NiCo sulfide hybrid nanotube arrays as efficient electrocatalysts for overall water splitting
Yang et al. Lattice strain assisted with interface engineering for designing efficient CoSe2-CoO core-shell microspheres as promising electrocatalysts towards overall water splitting
Zhao et al. Growth of carbon nanotubes coated CoP as electrocatalyst for hydrogen evolution reaction under acidic and alkaline solutions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200626

RJ01 Rejection of invention patent application after publication