CN111305954B - 输入受限的航空发动机降保守性鲁棒增益调度控制器 - Google Patents

输入受限的航空发动机降保守性鲁棒增益调度控制器 Download PDF

Info

Publication number
CN111305954B
CN111305954B CN202010261758.6A CN202010261758A CN111305954B CN 111305954 B CN111305954 B CN 111305954B CN 202010261758 A CN202010261758 A CN 202010261758A CN 111305954 B CN111305954 B CN 111305954B
Authority
CN
China
Prior art keywords
engine
degradation
linear
input
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010261758.6A
Other languages
English (en)
Other versions
CN111305954A (zh
Inventor
刘志丹
缑林峰
杨江
孙瑞谦
蒋宗霆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202010261758.6A priority Critical patent/CN111305954B/zh
Publication of CN111305954A publication Critical patent/CN111305954A/zh
Application granted granted Critical
Publication of CN111305954B publication Critical patent/CN111305954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明提出一种输入受限的航空发动机降保守性鲁棒增益调度控制器,包括线性降保守性鲁棒控制器组解算模块、输入限制模块和退化参数估计回路。本发明设计的线性降保守性鲁棒控制器采用小摄动不确定性发动机模型,消除了发动机不确定性中的退化项,降低了不确定模型的摄动范围,降低了鲁棒增益调度控制器的保守性。退化参数估计回路实现了退化参数的可靠估计,在保证发动机安全工作的前提下,实现发动机性能退化时的增益调度控制,最大限度提高发动机性能退化时增益调度的控制精度,缩短控制***的过渡时间,减小其动态偏差及静态偏差,具有较强的鲁棒性且保守性低,充分发挥发动机的性能。

Description

输入受限的航空发动机降保守性鲁棒增益调度控制器
技术领域
本发明涉及航空发动机控制技术领域,尤其涉及一种输入受限的航空发动机降保守性鲁棒增益调度控制器。
背景技术
航空发动机是一个复杂的非线性动力学***,在范围宽广的飞行包线内工作时,发动机的工作状态随着外部条件和飞行条件的变化而不断变化。针对航空发动机的强非线性和模型的不确定性,现有技术中有提出鲁棒增益调度控制方法,将发动机划分为一系列工作点,并在每一个工作点设计鲁棒控制器,最终采用增益调度的方法选择合适的鲁棒控制器对发动机进行控制。
上述航空发动机鲁棒增益调度控制方法可以对航空发动机进行控制。然而,它们是非常保守的,因为它们将发动机退化看作发动机模型的不确定性进行鲁棒控制器的设计。事实上,发动机的性能退化程度可以通过测量参数来估计,从而消除不确定性模型中的退化项,缩小不确定性模型的范围,降低鲁棒增益调度控制器的保守性,提高发动机的性能。
此外,过大的控制输入会导致发动机损坏,因此我们需要考虑控制输入受限的控制器的设计。
发明内容
为解决现有技术存在的问题,本发明提出一种输入受限的航空发动机降保守性鲁棒增益调度控制器,具有较强的鲁棒性且保守性低,将发动机的性能退化程度通过测量参数来估计,从而消除不确定性模型中的退化项,缩小不确定性模型的范围,降低鲁棒增益调度控制器的保守性,能够在发动机性能发生退化的情况下依旧对真实发动机进行良好控制,充分发挥发动机的性能,提高飞机全寿命效能。并且考虑控制输入受限,保证发动机安全工作。
本发明的技术方案为:
所述一种输入受限的航空发动机降保守性鲁棒增益调度控制器,其特征在于:包括线性降保守性鲁棒控制器组解算模块、输入限制模块和退化参数估计回路;
其中线性降保守性鲁棒控制器组解算模块、输入限制模块、退化参数估计回路与航空发动机本体以及航空发动机上的若干传感器组成退化参数调度控制回路;
所述线性降保守性鲁棒控制器组解算模块产生控制向量v并输出给输入限制模块,输入限制模块产生限制后的控制输入向量u并输出给航空发动机本体,传感器得到航空发动机测量参数y;控制输入向量u以及测量参数y共同输入到退化参数估计回路,退化参数估计回路解算得到航空发动机的退化参数h,并输出到线性降保守性鲁棒控制器组解算模块;
线性降保守性鲁棒控制器组解算模块、输入限制模块与航空发动机本体以及航空发动机上的若干传感器还组成调度参数调度控制回路;由传感器输出调度参数α至线性降保守性鲁棒控制器组解算模块;
所述输入限制模块限制了控制输入向量的幅值,避免给发动机过大的控制输入导致发动机损坏;
所述线性降保守性鲁棒控制器组解算模块内设计有若干线性降保守性鲁棒控制器,所述线性降保守性鲁棒控制器是利用若干小摄动不确定性发动机模型而分别设计得到的,所述小摄动不确定性发动机模型是对航空发动机不同设定工作点下的、包含退化参数的航空发动机非线性模型进行线性化后再加入不含发动机性能退化的摄动块得到的;针对某一退化状态下的航空发动机非线性模型,所加入的不含发动机性能退化的摄动块为能够覆盖航空发动机除退化外所有不确定性的最小摄动半径摄动块;
所述线性降保守性鲁棒控制器组解算模块根据输入的退化参数h以及调度参数α,利用内部设计的若干线性降保守性鲁棒控制器计算得到适应的线性降保守性鲁棒控制器,该线性降保守性鲁棒控制器根据参考输入r和测量参数y的差值e产生控制向量v。
进一步的,所述线性降保守性鲁棒控制器组解算模块内设计若干线性降保守性鲁棒控制器的过程为:分别在发动机正常状态h1和设定退化程度hbase处,在全飞行包线内根据调度参数α选取n个工作点对包含退化参数的发动机非线性模型进行线性化得到2n个线性化模型,对线性化模型加入不含发动机性能退化的摄动块得到小摄动不确定性发动机模型,并对这2n个小摄动不确定性发动机模型分别设计鲁棒控制器,作为对应的线性降保守性鲁棒控制器,并组成线性降保守性鲁棒控制器组。
进一步的,所述退化参数估计回路中包括非线性机载发动机模型和分段线性化卡尔曼滤波器;
所述非线性机载发动机模型为带退化参数的发动机非线性模型:
Figure BDA0002439600310000031
y=g(x,u,h)
其中
Figure BDA0002439600310000032
为控制输入向量,
Figure BDA0002439600310000033
为状态向量,
Figure BDA0002439600310000034
为输出向量,
Figure BDA0002439600310000035
为退化参数向量,f(·)为表示***动态的n维可微非线性向量函数,g(·)为产生***输出的m维可微非线性向量函数;非线性机载发动机模型输入为控制输入向量u以及上一周期的退化参数h,其输出的健康稳态参考值(xaug,NOBEM,yNOBEM)作为分段线性化卡尔曼滤波器当前周期的估计初始值;
所述分段线性化卡尔曼滤波器的输入为测量参数y以及非线性机载发动机模型输出的健康稳态参考值(xaug,NOBEM,yNOBEM),根据公式
Figure BDA0002439600310000036
计算得到当前周期的发动机的退化参数h;其中
Figure BDA0002439600310000037
K为卡尔曼滤波的增益,满足
Figure BDA0002439600310000038
P为Ricati方程
Figure BDA0002439600310000039
的解;系数Aaug和Caug根据公式
Figure BDA00024396003100000310
确定,而A、C、L、M是将退化参数h看作发动机的控制输入,并对非线性机载发动机模型在健康稳态参考点处进行线性化得到的反映发动机性能退化的增广线性状态变量模型
Figure BDA00024396003100000311
的系数:
Figure BDA0002439600310000041
Figure BDA0002439600310000042
w为***噪声,r为测量噪声,相应的协方差矩阵为对角阵Q和R。
进一步的,所述线性降保守性鲁棒控制器组解算模块根据输入的退化参数h以及调度参数α插值得到的适应的线性降保守性鲁棒控制器。
进一步的,所述线性降保守性鲁棒控制器组解算模块先根据航空发动机当前的调度参数α选择前后相邻的两个设定工作点αi和αi+1,并获取两个设定工作点αi和αi+1对应发动机正常状态h1和设定退化程度hbase处的线性降保守性鲁棒控制器Ki
Figure BDA0002439600310000043
Ki+1
Figure BDA0002439600310000044
根据公式
Figure BDA0002439600310000045
Figure BDA0002439600310000046
计算得到考虑航空发动机当前退化参数h后,在两个设定工作点αi和αi+1下的线性降保守性鲁棒控制器Ki和Ki+1;再根据公式
Figure BDA0002439600310000047
计算得到航空发动机当前适应的线性降保守性鲁棒控制器K(α)。
进一步的,所述输入限制模块采用多维矩形饱和函数,控制输入向量u为:
Figure BDA0002439600310000048
Figure BDA0002439600310000049
其中v1和vm为控制向量v的元素,v1,max和vm,max为控制向量v对应元素的限幅值。
进一步的,所述调度参数α包括航空发动机的风扇转速或者压气机转速。
进一步的,所述测量参数包括进气道出口、风扇出口、压气机出口、高压涡轮后、低压涡轮后的温度和压力,风扇转速和压气机转速。
有益效果
与现有技术相比较,本发明提出的输入受限的航空发动机降保守性鲁棒增益调度控制器利用传统增益调度控制器中固有的模块,通过新增退化参数估计回路、输入限制模块,并对增益调度控制器组进行了改进,新增了发动机一定退化程度下的一组线性降保守性鲁棒控制器,得到线性降保守性鲁棒控制器组解算模块。设计的线性降保守性鲁棒控制器采用小摄动不确定性发动机模型,消除了发动机不确定性中的退化项,降低了不确定模型的摄动范围,降低了鲁棒增益调度控制器的保守性。退化参数估计回路实现了退化参数的可靠估计,进而结合传统的调度参数,在保证发动机安全工作的前提下,实现发动机性能退化时的增益调度控制,最大限度的提高发动机性能退化时增益调度的控制精度,缩短控制***的过渡时间,减小其动态偏差及静态偏差,不仅具有较强的鲁棒性而且保守性低,充分发挥发动机的性能。经控制器控制非线性受控***,以使***在整个工作范围内,获得理想的动静态控制品质。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明输入受限的航空发动机降保守性鲁棒增益调度控制器的结构简图;
图2是本发明输入受限的航空发动机降保守性鲁棒增益调度控制器中线性降保守性鲁棒控制器组的结构示意图;
图3是本实施例退化参数调度控制回路中退化参数估计回路的结构示意图;
图4是本实施例退化参数估计回路中卡尔曼滤波器的结构示意图;
图5是发动机模型摄动结构图;
图6是退化项分离的发动机模型摄动结构图;
图7是退化后新的发动机模型摄动结构图;
图8是不确定模型结构示意图;
图9是发动机非线性模型不确定模型示意图;
图10是控制器插值示意图。
具体实施方式
航空发动机具有强非线性和模型的不确定性,传统的鲁棒增益调度控制直接将发动机退化看做发动机模型的不确定性进行鲁棒控制器的设计,极大的增大了控制器的保守性,严重降低了发动机的性能,并且过大的控制输入会导致发动机损坏。针对这一问题,下面给出本发明的分析研究过程。
1、发动机性能退化的估计
发动机性能退化是指发动机经过多次循环运行后,由于自然磨损、疲劳、积垢等原因造成的正常老化现象。此时,有些发动机的性能会慢慢偏离额定状态。以涡轮部件为例,当它与发动机一起工作多个周期时,其工作效率会缓慢下降。将高温高压气体转化为机械能的能力将会降低,发动机在一个工作点处的线性化模型也会改变。
发动机性能退化的最终特征是不同转子部件的工作效率和流量的变化,风扇、压气机、主燃烧、高压涡轮和低压涡轮部件的效率系数或流量系数的变化可以表征发动机性能的退化,风扇、压气机、主燃烧室、高压涡轮和低压涡轮部件的效率系数或流量系数被称为退化参数或健康参数。
基于部件法,建立带退化参数的发动机非线性模型
Figure BDA0002439600310000061
y=g(x,u,h)
其中
Figure BDA0002439600310000062
为控制输入向量,
Figure BDA0002439600310000063
为状态向量,
Figure BDA0002439600310000064
为输出向量,
Figure BDA0002439600310000065
为退化参数向量,f(·)为表示***动态的n维可微非线性向量函数,g(·)为产生***输出的m维可微非线性向量函数。
将退化参数h看作发动机的控制输入,采用小扰动法或拟合法对发动机非线性模型在健康稳态参考点处进行线性化。
Figure BDA0002439600310000071
其中
A′=A,B′=(B L),C′=C,
D′=(D M),Δu′=(Δu Δh)T
w为***噪声,r为测量噪声,h为退化参数,Δh=h-h0;上述w与r皆为不相关的高斯白噪声,其均值均为0,协方差矩阵为对角阵Q和R,即满足条件如下:
E(w)=0 E[wwT]=Q
E(r)=0 E[rrT]=R
Δ表示该参数的变化量,h0表示发动机初始状态退化参数。
进一步得到了反映发动机性能退化的增广线性状态变量模型
Figure BDA0002439600310000072
其中系数矩阵可由下式得到:
Figure BDA0002439600310000073
Figure BDA0002439600310000074
这些系数在发动机不同的工作状态具有不同的值。
实际上,退化参数很难测量,甚至不可能测量,而发动机各部分的压力、温度、转速等参数比较容易通过测量得到,通常称为“测量参数”,主要包括进气道出口、风扇出口、压气机出口、高压涡轮后、低压涡轮后的温度和压力,风扇转速和压气机转速。当发动机工作环境不发生变化时,退化参数的变化会引起被测参数的相应变化,二者之间存在气动热力学关系。因此,可以设计最优估计滤波器,通过测量参数来实现退化参数的最优估计。
由于发动机的性能退化过程相对较慢,可以做出以下合理假设,即Δh的变化率
Figure BDA0002439600310000075
将退化参数进一步转化为状态变量,可以得到
Figure BDA0002439600310000076
其中
Figure BDA0002439600310000081
Figure BDA0002439600310000082
建立的退化参数估计回路主要由两部分组成,一部分是基于性能退化的非线性机载发动机模型,另一部分是由分段线性化模型和稳态点对应的卡尔曼滤波器组成的分段线性卡尔曼滤波器。基本工作原理是将非线性机载发动机模型的输出作为分段线性卡尔曼滤波器的稳态参考值,并扩展退化参数,通过分段线性卡尔曼滤波器进行在线实时估计,最后反馈给非线性机载发动机模型进行在线实时更新。实现对实际发动机的实时跟踪,建立发动机的机载自适应模型。
卡尔曼估计方程为:
Figure BDA0002439600310000083
K为卡尔曼滤波的增益,满足
Figure BDA0002439600310000084
P为Ricati方程
Figure BDA0002439600310000085
的解;利用非线性机载模型输出的健康稳态参考值(xaug,NOBEM,yNOBEM)作为式
Figure BDA0002439600310000086
的初值,可得计算公式:
Figure BDA0002439600310000087
根据该计算公式可以得到发动机的退化参数h。
2.具有退化参数的不确定模型的鲁棒控制器设计
任何实际***都不可避免地存在不确定性,它可以分为两类:扰动信号和模型不确定性。扰动信号包括干扰、噪声等。模型的不确定性代表了数学模型与实际对象之间的差异。
模型不确定性可能有几个原因:线性模型中总有一些参数是有误差的;线性模型中的参数可能由于非线性或工作条件的变化而变化;建模时人为的简化;由于磨损等因素发动机性能的退化。
不确定性可能会对控制***的稳定性和性能产生不利影响。
实际的发动机和标称模型(标称模型是一个常规的不带退化参数的发动机非线性模型)之间的误差可以表示为一个摄动块Δ。请参阅图5,在标称模型加入摄动块建立发动机不确定模型
Figure BDA0002439600310000091
Figure BDA0002439600310000092
它也可以表示为
G(s)=[I+Δ(s)]Gnom(s)
式中G(s)为发动机的不确定模型,Gnom(s)为标称模型,Δ(s)为摄动块。
摄动块Δ(s)包含性能退化,请参阅图6,可以通过测量参数进行预测。将摄动块Δ(s)分为不含发动机性能退化的摄动块Δh(s)和退化参数。请参阅图7,在标称模型加入不含发动机性能退化的摄动块Δh(s)与退化参数,将发动机不确定模型表示为
Figure BDA0002439600310000093
Figure BDA0002439600310000094
它也可以表示为
G(s)=[I+Δh(s)]Gh_nom(s)
式中Δh(s)为不含发动机性能退化的摄动块,Gh_nom(s)为在发动机性能退化状态h下的新的标称模型,满足
G(s)=[I+Δ(s)]Gnom(s)
=[I+Δh(s)+h(s)]Gnom(s)
=[I+Δh(s)]Gh_nom(s)
我们可以得到,
Figure BDA0002439600310000096
请参阅图8,上、下小圆区域分别代表无退化和性能退化h的发动机线性不确定模型,大圆区域代表一般鲁棒控制器设计中发动机线性不确定模型。在一般鲁棒控制器的设计中,直接将发动机的退化看作是模型中的不确定性,不改变发动机的标称模型。因此,不确定项的不确定半径必须足够大,以容纳退化发动机的不确定模型,使不确定模型的摄动半径过大。本专利针对发动机性能退化h的情况,在此状态下建立了新的标称模型,并以新的标称模型为圆心建立了不确定发动机模型。针对某一退化状态下的新的标称模型,在选择不含发动机性能退化的摄动块Δh(s)时,要选择能够覆盖发动机除退化外所有不确定性的最小摄动半径摄动块。请参阅图8,通过对发动机性能退化的估计,发动机不确定性中摄动块的摄动半径||Δh||=||Δ||-||h||<||Δ||,不确定性模型的摄动范围减小了
Figure BDA0002439600310000101
最后根据小摄动不确定模型利用传统的鲁棒控制器设计方法设计鲁棒控制器,这里设计的鲁棒控制器保守性更低。
3、具有退化参数的增益调度控制设计
增益调度控制的实质是设计一组线性化的控制器,然后将它们有规律地组合起来,从而能够控制非线性***。具有退化参数的增益调度控制的基本原理是选择一系列的工作点,获得在正常状态和某些性能退化状态的发动机线性化模型并分别设计对应的线性降保守性鲁棒控制器得到图1中的线性降保守性鲁棒控制器组。
请参阅图9,选择一组调度参数值αi,i=1,2,...,n,代表***的动态范围,并将飞行包线划分为几个子区间,并将这些点作为工作点。在工作点,有这些方程
Figure BDA0002439600310000102
Figure BDA0002439600310000103
其中
Figure BDA0002439600310000104
为所选择的第i个工作点,udi为在时刻
Figure BDA0002439600310000105
保持平衡所需的稳态控制输入,hdi为时刻
Figure BDA0002439600310000106
的退化参数。
利用小扰动法,可以得到各工况点退化参数的线性模型,并得到发动机正常状态和性能退化h状态下的线性模型。
请参阅图9,上、下实线分别表示发动机无退化和有性能退化h的非线性模型。一系列的黑色小圆点表示发动机不同的工作点,在每一个工作点进行线性化得到线性模型。上、下一系列的小虚线圆分别表示没有退化和有退化下的一系列不含退化项的小摄动范围,大虚线圆表示含退化项的大范围摄动。针对发动机正常状态和退化状态下的小摄动不确定线性模型,分别设计一系列线性降保守性鲁棒控制器得到图1中的线性降保守性鲁棒控制器组。然后,在选定的工作点之间,对控制器增益进行线性内插,使得对于所有的固定参数值,闭环***都具有良好的性能。参数α是调度参数,这里可以定义为航空发动机的风扇转速或者压气机转速,可以实时测量。控制***的另一个调度变量是反映发动机性能退化的退化参数h。工作原理是图1中的线性降保守性鲁棒控制器组解算模块根据调度参数和退化参数进行线性插值获得相应的线性降保守性鲁棒控制器来控制***。
4、控制器的插值
这部分说明了图1中的线性降保守性鲁棒控制器组解算模块通过调度参数和退化参数调度线性插值获得相应的线性降保守性鲁棒控制器的调度计算原理。
分别在发动机正常状态和性能退化hbase状态下设计一系列线性降保守性鲁棒控制器,对每个选定的工作点αi进行控制。这将产生图1中的线性降保守性鲁棒控制器组解算模块中的控制器
Figure BDA0002439600310000111
然后根据调度参数α和退化参数h对控制器进行插值,继而使用得到的插值控制器来控制***。
请参阅图10,根据发动机当前的调度参数α选定周围相邻的两个工作点αi和αi+1,根据发动机在选定的工作点αi的实际退化程度,在发动机性能退化h处的控制器Ki,使用所选的工作点αi处发动机正常状态和性能退化h-base状态的控制器Ki
Figure BDA0002439600310000112
通过线性插值得到
Figure BDA0002439600310000113
同样的,可以得到在工作点αi+1处实际退化h处的控制器
Figure BDA0002439600310000121
我们使用分段线性插值的方法,从线性降保守性鲁棒控制器集K1,K2,..,Kn中对每一对控制器之间进行线性插值。得到当前调度参数α当前退化程度h处的线性插值控制器K(α),i=1,2,...,n-1为
Figure BDA0002439600310000122
根据该公式可以得到某一调度参数某一退化参数下相应的控制器,并对发动机进行有效控制。
5.***的输入限制
请参考图1,图1中的输入限制模块是为了建模***控制输入上的物理限制,使用了多维矩形饱和函数。限制航空发动机控制的输入,尤其是对于燃油流量输入。多维饱和函数还可以处理其他控制输入的限制,包括尾喷嘴的喉部面积。
该函数是一个多维矩形饱和函数,定义为
Figure BDA0002439600310000123
其中v1和vm为控制向量v的元素,v1,max和vm,max为控制向量v对应元素的限幅值。对于所有的
Figure BDA0002439600310000124
下式给出了sat(·)
Figure BDA0002439600310000125
基于上述过程,下面给出本实施例中提出的一种基于健康退化的航空发动机降保守性鲁棒增益调度控制器,如图1所示,主要包括线性降保守性鲁棒控制器组解算模块、输入限制模块和退化参数估计回路。
其中线性降保守性鲁棒控制器组解算模块、输入限制模块、退化参数估计回路与航空发动机本体以及航空发动机上的若干传感器组成退化参数调度控制回路10。
所述线性降保守性鲁棒控制器组解算模块产生控制向量v并输出给输入限制模块,输入限制模块产生限制后的控制输入向量u并输出给航空发动机本体,传感器得到航空发动机测量参数y;控制输入向量u以及测量参数y共同输入到退化参数估计回路,退化参数估计回路解算得到航空发动机的退化参数h,并输出到线性降保守性鲁棒控制器组解算模块。
线性降保守性鲁棒控制器组解算模块、输入限制模块与航空发动机本体以及航空发动机上的若干传感器还组成调度参数调度控制回路20;由传感器输出调度参数α至线性降保守性鲁棒控制器组解算模块。
所述输入限制模块限制了控制输入向量的幅值,避免给发动机过大的控制输入导致发动机损坏。
优选的一种具体实现方式,所述输入限制模块采用多维矩形饱和函数,控制输入向量u为:
Figure BDA0002439600310000131
Figure BDA0002439600310000132
其中v1和vm为控制向量v的元素,v1,max和vm,max为控制向量v对应元素的限幅值。
所述线性降保守性鲁棒控制器组解算模块内设计有若干线性降保守性鲁棒控制器,所述线性降保守性鲁棒控制器是利用若干小摄动不确定性发动机模型而分别设计得到的,所述小摄动不确定性发动机模型是对航空发动机不同设定工作点下的、包含退化参数的航空发动机非线性模型进行线性化后再加入不含发动机性能退化的摄动块得到的;针对某一退化状态下的航空发动机非线性模型,所加入的不含发动机性能退化的摄动块为能够覆盖航空发动机除退化外所有不确定性的最小摄动半径摄动块。
优选的一种具体实现方式,可以通过以下过程得到设计若干线性降保守性鲁棒控制器:分别在发动机正常状态h1和设定退化程度hbase处,在全飞行包线内根据调度参数α选取n个工作点对包含退化参数的发动机非线性模型进行线性化得到2n个线性化模型,对线性化模型加入不含发动机性能退化的摄动块得到小摄动不确定性发动机模型,并对这2n个小摄动不确定性发动机模型分别设计鲁棒控制器,作为对应的线性降保守性鲁棒控制器,并组成线性降保守性鲁棒控制器组。
所述线性降保守性鲁棒控制器组解算模块根据输入的退化参数h以及调度参数α,利用内部设计的若干线性降保守性鲁棒控制器计算得到适应的线性降保守性鲁棒控制器,该线性降保守性鲁棒控制器根据参考输入r和测量参数y的差值e产生控制向量v。
优选的一种具体实现方式,可以根据输入的退化参数h以及调度参数α插值得到的适应的线性降保守性鲁棒控制器:
先根据航空发动机当前的调度参数α选择前后相邻的两个设定工作点αi和αi+1,并获取两个设定工作点αi和αi+1对应发动机正常状态h1和设定退化程度hbase处的线性降保守性鲁棒控制器Ki
Figure BDA0002439600310000141
Ki+1
Figure BDA0002439600310000142
根据公式
Figure BDA0002439600310000143
Figure BDA0002439600310000144
计算得到考虑航空发动机当前退化参数h后,在两个设定工作点αi和αi+1下的线性降保守性鲁棒控制器Ki和Ki+1;再根据公式
Figure BDA0002439600310000145
计算得到航空发动机当前适应的线性降保守性鲁棒控制器K(α)。
所述退化参数估计回路中包括非线性机载发动机模型和分段线性化卡尔曼滤波器;
所述非线性机载发动机模型为带退化参数的发动机非线性模型:
Figure BDA0002439600310000146
y=g(x,u,h)
其中
Figure BDA0002439600310000147
为控制输入向量,
Figure BDA0002439600310000148
为状态向量,
Figure BDA0002439600310000149
为输出向量,
Figure BDA00024396003100001410
为退化参数向量,f(·)为表示***动态的n维可微非线性向量函数,g(·)为产生***输出的m维可微非线性向量函数;非线性机载发动机模型输入为控制输入向量u以及上一周期的退化参数h,其输出的健康稳态参考值(xaug,NOBEM,yNOBEM)作为分段线性化卡尔曼滤波器当前周期的估计初始值。
所述分段线性化卡尔曼滤波器的输入为测量参数y以及非线性机载发动机模型输出的健康稳态参考值(xaug,NOBEM,yNOBEM),根据公式
Figure BDA0002439600310000151
计算得到当前周期的发动机的退化参数h;其中
Figure BDA0002439600310000152
K为卡尔曼滤波的增益,满足
Figure BDA0002439600310000153
P为Ricati方程
Figure BDA0002439600310000154
的解;系数Aaug和Caug根据公式
Figure BDA0002439600310000155
确定,而A、C、L、M是将退化参数h看作发动机的控制输入,并对非线性机载发动机模型在健康稳态参考点处进行线性化得到的反映发动机性能退化的增广线性状态变量模型
Figure BDA0002439600310000156
的系数:
Figure BDA0002439600310000157
Figure BDA0002439600310000158
w为***噪声,r为测量噪声,相应的协方差矩阵为对角阵Q和R。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

1.一种输入受限的航空发动机降保守性鲁棒增益调度控制器,其特征在于:包括线性降保守性鲁棒控制器组解算模块、输入限制模块和退化参数估计回路;
其中线性降保守性鲁棒控制器组解算模块、输入限制模块、退化参数估计回路与航空发动机本体以及航空发动机上的若干传感器组成退化参数调度控制回路;
所述线性降保守性鲁棒控制器组解算模块产生控制向量v并输出给输入限制模块,输入限制模块产生限制后的控制输入向量u并输出给航空发动机本体,传感器得到航空发动机测量参数y;控制输入向量u以及测量参数y共同输入到退化参数估计回路,退化参数估计回路解算得到航空发动机的退化参数h,并输出到线性降保守性鲁棒控制器组解算模块;
线性降保守性鲁棒控制器组解算模块、输入限制模块与航空发动机本体以及航空发动机上的若干传感器还组成调度参数调度控制回路;由传感器输出调度参数α至线性降保守性鲁棒控制器组解算模块;
所述输入限制模块限制了控制输入向量的幅值,避免给发动机过大的控制输入导致发动机损坏;
所述线性降保守性鲁棒控制器组解算模块内设计有若干线性降保守性鲁棒控制器,所述线性降保守性鲁棒控制器是利用若干小摄动不确定性发动机模型而分别设计得到的,所述小摄动不确定性发动机模型是对航空发动机不同设定工作点下的、包含退化参数的航空发动机非线性模型进行线性化后再加入不含发动机性能退化的摄动块得到的;针对某一退化状态下的航空发动机非线性模型,所加入的不含发动机性能退化的摄动块为能够覆盖航空发动机除退化外所有不确定性的最小摄动半径摄动块;
所述线性降保守性鲁棒控制器组解算模块根据输入的退化参数h以及调度参数α,利用内部设计的若干线性降保守性鲁棒控制器计算得到适应的线性降保守性鲁棒控制器,该线性降保守性鲁棒控制器根据参考输入r和测量参数y的差值e产生控制向量v。
2.根据权利要求1所述一种输入受限的航空发动机降保守性鲁棒增益调度控制器,其特征在于:所述线性降保守性鲁棒控制器组解算模块内设计若干线性降保守性鲁棒控制器的过程为:分别在发动机正常状态h1和设定退化程度hbase处,在全飞行包线内根据调度参数α选取n个工作点对包含退化参数的发动机非线性模型进行线性化得到2n个线性化模型,对线性化模型加入不含发动机性能退化的摄动块得到小摄动不确定性发动机模型,并对这2n个小摄动不确定性发动机模型分别设计鲁棒控制器,作为对应的线性降保守性鲁棒控制器,并组成线性降保守性鲁棒控制器组。
3.根据权利要求1所述一种输入受限的航空发动机降保守性鲁棒增益调度控制器,其特征在于:所述退化参数估计回路中包括非线性机载发动机模型和分段线性化卡尔曼滤波器;
所述非线性机载发动机模型为带退化参数的发动机非线性模型:
Figure FDA0002439600300000021
y=g(x,u,h)
其中
Figure FDA0002439600300000022
为控制输入向量,
Figure FDA0002439600300000023
为状态向量,
Figure FDA0002439600300000024
为输出向量,
Figure FDA0002439600300000025
为退化参数向量,f(·)为表示***动态的n维可微非线性向量函数,g(·)为产生***输出的m维可微非线性向量函数;非线性机载发动机模型输入为控制输入向量u以及上一周期的退化参数h,其输出的健康稳态参考值(xaug,NOBEM,yNOBEM)作为分段线性化卡尔曼滤波器当前周期的估计初始值;
所述分段线性化卡尔曼滤波器的输入为测量参数y以及非线性机载发动机模型输出的健康稳态参考值(xaug,NOBEM,yNOBEM),根据公式
Figure FDA0002439600300000026
计算得到当前周期的发动机的退化参数h;其中
Figure FDA0002439600300000027
K为卡尔曼滤波的增益,满足
Figure FDA0002439600300000028
P为Ricati方程
Figure FDA0002439600300000029
的解;系数Aaug和Caug根据公式
Figure FDA00024396003000000210
Caug=(C M)
确定,而A、C、L、M是将退化参数h看作发动机的控制输入,并对非线性机载发动机模型在健康稳态参考点处进行线性化得到的反映发动机性能退化的增广线性状态变量模型
Figure FDA0002439600300000031
的系数:
Figure FDA0002439600300000032
Figure FDA0002439600300000033
w为***噪声,r为测量噪声,相应的协方差矩阵为对角阵Q和R。
4.根据权利要求2所述一种输入受限的航空发动机降保守性鲁棒增益调度控制器,其特征在于:所述线性降保守性鲁棒控制器组解算模块根据输入的退化参数h以及调度参数α插值得到的适应的线性降保守性鲁棒控制器。
5.根据权利要求1所述一种输入受限的航空发动机降保守性鲁棒增益调度控制器,其特征在于:所述线性降保守性鲁棒控制器组解算模块先根据航空发动机当前的调度参数α选择前后相邻的两个设定工作点αi和αi+1,并获取两个设定工作点αi和αi+1对应发动机正常状态h1和设定退化程度hbase处的线性降保守性鲁棒控制器Ki
Figure FDA0002439600300000034
Ki+1
Figure FDA0002439600300000035
根据公式
Figure FDA0002439600300000036
Figure FDA0002439600300000037
计算得到考虑航空发动机当前退化参数h后,在两个设定工作点αi和αi+1下的线性降保守性鲁棒控制器Ki和Ki+1;再根据公式
Figure FDA0002439600300000038
计算得到航空发动机当前适应的线性降保守性鲁棒控制器K(α)。
6.根据权利要求1所述一种输入受限的航空发动机降保守性鲁棒增益调度控制器,其特征在于:所述输入限制模块采用多维矩形饱和函数,控制输入向量u为:
Figure FDA0002439600300000041
Figure FDA0002439600300000042
其中v1和vm为控制向量v的元素,v1,max和vm,max为控制向量v对应元素的限幅值。
7.根据权利要求1所述一种输入受限的航空发动机降保守性鲁棒增益调度控制器,其特征在于:所述调度参数α包括航空发动机的风扇转速或者压气机转速。
8.根据权利要求1所述一种输入受限的航空发动机降保守性鲁棒增益调度控制器,其特征在于:所述测量参数包括进气道出口、风扇出口、压气机出口、高压涡轮后、低压涡轮后的温度和压力,风扇转速和压气机转速。
CN202010261758.6A 2020-04-04 2020-04-04 输入受限的航空发动机降保守性鲁棒增益调度控制器 Active CN111305954B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010261758.6A CN111305954B (zh) 2020-04-04 2020-04-04 输入受限的航空发动机降保守性鲁棒增益调度控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010261758.6A CN111305954B (zh) 2020-04-04 2020-04-04 输入受限的航空发动机降保守性鲁棒增益调度控制器

Publications (2)

Publication Number Publication Date
CN111305954A CN111305954A (zh) 2020-06-19
CN111305954B true CN111305954B (zh) 2022-09-20

Family

ID=71159157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010261758.6A Active CN111305954B (zh) 2020-04-04 2020-04-04 输入受限的航空发动机降保守性鲁棒增益调度控制器

Country Status (1)

Country Link
CN (1) CN111305954B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856933B (zh) * 2020-07-06 2022-08-09 大连理工大学 一种考虑不确定性的航空发动机自适应控制器设计方法
CN114326404B (zh) * 2021-12-30 2024-01-23 中国航发控制***研究所 基于低选-高选架构的航空发动机超限保护控制律设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104389685A (zh) * 2014-11-24 2015-03-04 西北工业大学 一种航空发动机自适应寿命延长控制***的设计方法
CN106647253A (zh) * 2016-09-28 2017-05-10 南京航空航天大学 航空发动机分布式控制***多性能鲁棒跟踪控制方法
CN107908114A (zh) * 2017-12-29 2018-04-13 北京航空航天大学 飞行器鲁棒非线性控制方法及鲁棒控制器***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7577483B2 (en) * 2006-05-25 2009-08-18 Honeywell Asca Inc. Automatic tuning method for multivariable model predictive controllers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104389685A (zh) * 2014-11-24 2015-03-04 西北工业大学 一种航空发动机自适应寿命延长控制***的设计方法
CN106647253A (zh) * 2016-09-28 2017-05-10 南京航空航天大学 航空发动机分布式控制***多性能鲁棒跟踪控制方法
CN107908114A (zh) * 2017-12-29 2018-04-13 北京航空航天大学 飞行器鲁棒非线性控制方法及鲁棒控制器***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
涡扇发动机早期退化性能的线性变参数估计;韩小宝等;《航空动力学报》;20090115(第01期);第98-103页 *

Also Published As

Publication number Publication date
CN111305954A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
CN111271181B (zh) 航空发动机降保守性增益调度二自由度μ控制器
CN111273554B (zh) 航空发动机最大推力状态降保守性二自由度h∞控制器
CN111859555A (zh) 输入受限的航空发动机最大推力状态鲁棒容错控制器
CN111305954B (zh) 输入受限的航空发动机降保守性鲁棒增益调度控制器
CN110502840B (zh) 航空发动机气路参数在线预测方法
CN110821683B (zh) 一种航空发动机在最优加速跟踪控制中的自适应动态规划方法
CN110647052B (zh) 一种变循环发动机模式切换自适应身份证模型构建方法
CN111880403A (zh) 航空发动机最大推力状态容错二自由度μ控制器
CN111856919A (zh) 航空发动机气路部件故障增益调度容错控制器
CN111852663A (zh) 变循环发动机降保守性鲁棒增益调度控制器
Yiyang et al. Direct thrust control for multivariable turbofan engine based on affine linear parameter-varying approach
CN111456857B (zh) 航空发动机降保守性增益调度二自由度h∞控制器
CN111456856B (zh) 航空发动机最大推力状态降保守性鲁棒控制器
Cheng et al. Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions
CN111443607B (zh) 基于健康退化的航空发动机降保守性鲁棒增益调度控制器
CN111459028B (zh) 航空发动机最大推力状态降保守性二自由度μ控制器
CN111856929B (zh) 航空发动机容错增益调度二自由度h∞控制器
CN110985216B (zh) 一种含在线修正的航空发动机智能多变量控制方法
CN112947064A (zh) 考虑气路部件故障的航空发动机最大推力控制优化方法
CN111443606B (zh) 输入受限的航空发动机最大推力状态降保守性鲁棒控制器
CN112327602A (zh) 变循环发动机气路部件故障增益调度容错控制器
CN111830827B (zh) 航空发动机容错增益调度二自由度μ控制器
CN111443595B (zh) 基于健康退化的航空发动机增益调度控制器
CN112346336A (zh) 航空发动机气路部件故障鲁棒增益调度容错控制器
CN111443596A (zh) 基于性能退化的输入受限航空发动机增益调度控制器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant