CN111255446A - 一种基于地层模拟的电阻率校正方法 - Google Patents

一种基于地层模拟的电阻率校正方法 Download PDF

Info

Publication number
CN111255446A
CN111255446A CN202010059532.8A CN202010059532A CN111255446A CN 111255446 A CN111255446 A CN 111255446A CN 202010059532 A CN202010059532 A CN 202010059532A CN 111255446 A CN111255446 A CN 111255446A
Authority
CN
China
Prior art keywords
rock
resistivity
model
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010059532.8A
Other languages
English (en)
Other versions
CN111255446B (zh
Inventor
向葵
童小龙
严良俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze University
Original Assignee
Yangtze University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze University filed Critical Yangtze University
Priority to CN202010059532.8A priority Critical patent/CN111255446B/zh
Publication of CN111255446A publication Critical patent/CN111255446A/zh
Application granted granted Critical
Publication of CN111255446B publication Critical patent/CN111255446B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种基于地层模拟的电阻率校正方法,通过实验室测试建立不同岩性电阻率随包括温度、压力、孔隙度在内的因素变化的理论模型,将测区岩石电性的测井资料、实验室测量资料校正至相应的地层条件,建立有效的地电初始模型。本发明通过模拟岩样所在测区不同深度的温压环境,测量岩石不同深度条件下的复电阻率振幅与相位,获取岩石激电参数与温度压力关系,进而对已有的地电资料进行校正,获取电磁勘探意义下的初始地电模型,其目的是解决岩石地电的测井资料、实验室资料与勘探条件不匹配问题,为电磁勘探反演解释评价提供重要参数依据。

Description

一种基于地层模拟的电阻率校正方法
技术领域
本发明属于石油、天然气勘探与开发技术领域,涉及到岩石物理和电磁勘探技术,具体涉及一种基于地层模拟的电阻率校正方法。
背景技术
石油勘探,是为了寻找和查明油气资源,利用各种勘探手段了解地下的地质状况,认识生油、储油、油气运移、聚集、保存等条件,综合评价含油气远景,确定油气聚集的有利地区,找到储油气的圈闭,并探明油气田面积,搞清油气层情况和产出能力的过程,为国家增加原油储备及相关油气产品。
近年来,随着对石油的需求越来越大,石油的消耗也越来越大,石油勘探的对象从浅层转向深层,从常规油气藏转向非常规油气藏。基于地下岩矿石电阻率的电磁勘探技术是石油勘探的重要手段,其反演解释有赖于电阻率初始模型的建立,由于地层压力及温度作用,常规的测井资料及常温常压的实验室测量结果与真实地层电阻率存在较大的差异,极大地影响了反演解释。
现有技术中存在的主要问题包括:岩石地电的测井资料、实验室资料与勘探条件不匹配,严重影响到电磁勘探意义下的初始地电模型,进而极大地影响了反演解释。
发明内容
针对现有技术中存在的上述问题,本发明提供了一种基于地层模拟的电阻率校正方法,该方法以高温高压岩石物理实验***(AUTOLAB1000)为手段,通过模拟岩样所在测区不同深度的温压环境,测量岩石不同深度条件下的复电阻率振幅与相位,获取岩石激电参数与温度压力关系,进而对已有的地电资料进行校正,获取电磁勘探意义下的初始地电模型,其目的是解决岩石地电的测井资料、实验室资料与勘探条件不匹配问题,为电磁勘探反演解释评价提供重要参数依据。
为此,本发明采用了以下技术方案:
一种基于地层模拟的电阻率校正方法,通过实验室测试建立不同岩性电阻率随包括温度、压力、孔隙度在内的因素变化的理论模型,将测区岩石电性的测井资料、实验室测量资料校正至相应的地层条件,建立有效的地电初始模型。
进一步地,包括以下步骤:
步骤一,测区调研;获取测区信息,建立物性参数深度模型;
步骤二,前处理;筛选测区不同岩性数块均质性好、孔隙度有差异的岩样,洗油洗盐干燥,测量基本物性,饱和确定矿化度的流体;
步骤三,电性测量;针对测区温压的深度模型进行岩石深度模拟,测量得到岩石的复电阻率振幅与相位,通过参数估计获取岩石不同深度条件下的复电阻率参数;
步骤四,模型匹配;针对不同地层条件下孔隙度有差异的不同岩性岩石,建立包括孔隙度、饱和度、温度、压力参数在内的电阻率模型,确定模型参数;
步骤五,参数校正;针对测区资料的测试环境,将电阻率数据校正至真实地下温度压力环境,用于初始地电模型的建立。
优选地,步骤一中,测区信息包括电性测井资料、流体矿化度、不同岩性岩样;物性参数包括流体矿化度、饱和度、地层温度、地层压力。
进一步地,根据测区地质报告,获得地层温度与等效压力关于深度的模型如下:
T=14+0.03(D-20)
P=1.048×10-2D;
其中,T表示地层温度,单位为℃;P表示等效压力,单位为MPa;D表示深度,单位为m。
优选地,步骤二中,对测区不同岩性的井样岩石进行筛选,获取均质性较好、孔隙度有差异的岩样各5块,共15块岩石样品;对样品进行洗油洗盐,烘干,测量包括孔隙度在内的相应几何参数;选择4%NaCl溶液饱和,满足地层矿化度条件。
优选地,步骤三中,通过Autolab1000高温高压岩石测试***对岩石样品进行模拟地层的复电阻率测量,测试模拟1000m-3000m,用于研究温压变化趋势;根据测量数据,进行复电阻率模型参数估计,获得岩石不同温度条件下的复电阻率参数。
优选地,步骤四中,通过基于复电阻率实验获得的岩石低频电阻率参数,分不同岩性建立相应的Archie关系。
进一步地,以双水模型为基础建立电导率频散关系为:
Figure BDA0002373989070000031
其中:σf和σH分别对应孔隙流体和高导矿物的电导率,Ff和FH分别对应孔隙流体和高导矿物的地层因子,主要由孔隙度决定;ω为测量圆频率,N对应了不同双电层结构的数量,σHgi对应了第i个双层结构提供的高频电导,其中
Figure BDA0002373989070000032
低频条件下电导率对应Archie关系:
Figure BDA0002373989070000033
其中:φ为岩石孔隙度,m为岩石胶结指数;
得到岩石对数电阻率与深度的变化关系:
Figure BDA0002373989070000034
其中:T表示温度,P表示压力,D表示深度。
进一步地,根据对数电阻率与孔隙度斜率获得不同岩性岩石在不同深度下的胶结指数,通过假设胶结指数变化极小,而将这一影响归结为岩石孔隙在压力作用下的压缩,得到不同岩性的胶结指数和孔隙度的变化规律:
m碎屑岩=2.2492,φ碎屑岩(P)=φ0 1+0.0032×P
m碳酸盐岩=2.066,φ碳酸盐岩(P)=φ0 1+0.00077×P
m火成岩=2.4836,φ火成岩(P)=φ0 1+0.0014×P
其中:φ0为岩石在无围压条件下的初始孔隙度;结合确定流体矿化度的孔隙流体随温度变化规律获得岩石电阻率随温度、压力、孔隙度变化的模型:
Figure BDA0002373989070000041
Figure BDA0002373989070000042
Figure BDA0002373989070000043
这一电阻率模型适用于不远超过模拟深度的岩石电阻率估计。
优选地,根据先验地电模型的岩性、测试环境进行勘探用地电模型校正;将校正后的地电模型用于反演,可以降低反演的非唯一性,用于提高油气识别能力。
与现有技术相比,本发明的有益效果是:
(1)本发明通过结合测区物性资料和理论模型提取岩石电阻率的关键影响因素,获得地下岩石岩性、矿化度、孔隙度、温度、压力等因素决定的电阻率模型,可以有效降低测试成本。
(2)本发明建立合理的电阻率模型对常规资料进行校正,可以获得更加真实的反演结果,降低反演非唯一性,提高油气识别能力。
(3)本发明利用BGP测量的测区测线数据进行电阻率与极化率深度校正后,电阻率异常更加明显,极化率异常纵向分辨率明显提高。
(4)本发明方法原理简单,结果准确实用,适用于不同岩性的岩石,在实际应用中,随着目的层深度的增加,同一块岩石在常温常压下的电阻率会与地层条件下的电阻率差异会有数倍乃至数十倍,严重影响反演初始模型建立的准确性。经过地层深度校正的初始模型,有利于准确有效地电磁勘探反演解释。
附图说明
图1是本发明所提供的一种基于地层模拟的电阻率校正方法的流程图。
图2是不同模拟深度条件下岩样2035-6的复电阻率幅值曲线。
图3是不同模拟深度条件下岩样2035-6的复电阻率相位曲线。样品2035-6随着模拟深度的增加,电阻率逐渐降低,极化也有下降趋势。
图4是不同深度碎屑岩电阻率随孔隙度变化特征。
图5是不同深度碳酸盐岩电阻率随孔隙度变化特征。
图6是不同深度火成岩电阻率随孔隙度变化特征。不同模拟深度不同岩性的电阻率变化特征:在同一深度时,岩石对数电阻率与岩石孔隙度基本保持了线性关系(Archie关系),而对不同深度,线性关系的斜率(胶结指数)有一定变化。
图7是火成岩孔隙度随压力变化特征。孔隙度随压力逐渐降低,这一模型在不远超过测试最大压力一定的范围内适用。
图8是地电模型校正前电阻率与极化率反演断面。
图9是地电模型校正后电阻率与极化率反演断面。地电模型校正前后电阻率与极化率反演断面对比,利用BGP测量的测区测线数据进行电阻率与极化率深度校正,电阻率异常更加明显,极化率异常纵向分辨率明显提高。
具体实施方式
下面结合附图以及具体实施例来详细说明本发明,其中的具体实施例以及说明仅用来解释本发明,但并不作为对本发明的限定。
本发明公开了一种基于地层模拟的电阻率校正方法,通过实验室测试建立不同岩性电阻率随包括温度、压力、孔隙度在内的因素变化的理论模型,将测区岩石电性的测井资料、实验室测量资料校正至相应的地层条件,建立有效的地电初始模型。
具体地,如图1所示,包括以下步骤:
步骤一,测区调研;获取测区信息(电性测井资料、流体矿化度、不同岩性岩样),建立物性参数(流体矿化度、饱和度、地层温度、地层压力)深度模型;
步骤二,前处理;筛选测区不同岩性数块均质性好、孔隙度有差异的岩样,洗油洗盐干燥,测量基本物性,饱和确定矿化度的流体;
步骤三,电性测量;针对测区温压的深度模型进行岩石深度模拟,测量得到岩石的复电阻率振幅与相位,通过参数估计获取岩石不同深度条件下的复电阻率参数;
步骤四,模型匹配;针对不同地层条件下孔隙度有差异的不同岩性岩石,建立包括孔隙度、饱和度、温度、压力参数在内的电阻率模型,确定模型参数;
步骤五,参数校正;针对测区资料的测试环境,将电阻率数据校正至真实地下温度压力环境,用于初始地电模型的建立。
发明内容具体实现如下:
通过物性测试及电性测试,获得不同深度条件下,不同岩性岩石低频电阻率的Archie关系。
确定岩石内流体电阻率随深度(主要受温度影响)的变化规律。
确定岩石胶结指数随地层深度(主要受压力影响)的变化规律。在胶结指数不变的假设下建立岩石孔隙度随地层压力的变化规律。
建立测区不同岩性电阻率随温度、压力、孔隙度变化的理论模型。
针对测区地电资料的来源(缺少地层压力的测井资料、常温常压的实验室测试资料)进行相应的地层条件校正。
将校正后的地电模型作为初始模型进行相应电磁勘探方法的反演解释。
本发明所采用的理论模型如下:
地下岩石电阻率的决定因素主要是具有低阻的岩石矿物及岩石孔隙流体。在电导模型下,岩石的电导率可以看成是岩石各相介质电导率的综合结果。实际岩石由于异相界面的双电层结构发生电化学作用,界面电容效应使得岩石的有效导电通道随着频率下降不断减少,形成低频激发极化现象,也使得电导率出现频散特性。
岩石中的高导流体是提供岩石电导率的主要原因,事实上,如果岩石内存在其他高导介质(粘土、金属矿物等)时,在高频可以有效提供电导,电导关系更符合Waxman-Smits模型,但在由于其与流体通道界面的电容特性,在低频时的岩石电阻率更符合Archie理论模型。
以双水模型为基础建立的电导率频散关系为:
Figure BDA0002373989070000061
其中:σ表示电导率,σf和σH分别对应孔隙流体和高导矿物的电导率,Ff和FH分别对应孔隙流体和高导矿物的地层因子,主要由孔隙度决定,ω为测量圆频率,N对应了不同双电层结构的数量,σHgi对应了第i个双层结构提供的高频电导,其中
Figure BDA0002373989070000062
低频条件下电导率对应Archie关系:
Figure BDA0002373989070000071
其中φ为岩石孔隙度,m为岩石胶结指数。
随着地层深度D增加,岩石温度T与压力P环境发生变化,岩石电导率也会发生相应的变化,分别考虑温度和压力对岩石电导率作用。
实验表明温度变化主要会影响孔隙流体及混合介质(在泥页岩中即为湿粘土)的电导率,通常都随着温度上升而上升。压力变化主要影响岩石孔隙及结构,进而改变岩石孔隙度,由于同一地区同一岩性的岩石,其胶结指数通常被认为是相同的,通常压力上升孔隙度降低。通过不同温度、压力的实验确定各参数随温度、压力的变化趋势,以此可以建立某一地区某岩性,在地层条件下岩石电导率与深度见的定量关系。
结合式(2)可以得到岩石对数电阻率与深度的变化关系。
Figure BDA0002373989070000072
调查地区地层温度、压力随深度变化、岩石孔隙流体及混合介质随温度变化及岩石地层因子(孔隙度)随压力变化即能获得这一定量关系,相应的在获得不同地层条件下的岩石电导率,也可以有效对某些岩石物性特征进行预测。
实施例
结合某地区岩石实验及测区反演资料进行实施例具体方案的说明。
测区调研:获得某测区由测井资料建立的勘探地电模型如表1所示。
表1测区初始地电模型
初始模型(Ω·m) 地层厚度(m) 岩性
200 1000 碎屑岩
300 200 碎屑岩
2500 300 灰岩
3000 40 灰岩
300 300 碎屑岩
10000 5000 火成岩
初始模型由测区内井样测量综合统计获得,为常温常压数据。
根据该地区地质报告,获得温度与等效压力关于深度的模型:
Figure BDA0002373989070000081
其中:温度T的单位为℃,压力P的单位为MPa,深度D的单位为m,测区地层水盐度为40000ppm。
前处理:
对测区不同岩性的井样岩石进行筛选,获取均质性较好、孔隙度有差异的岩样各5块,共15块岩石样品。对样品进行洗油洗盐,烘干,测量相应几何参数,包括孔隙度等,见表2。
表2岩石样品基本物性
序号 岩心编号 岩性分类 高度/cm 直径/cm 孔隙度 渗透率/mD
1 W1-14 碎屑岩 5.24 2.53 12.90% 2.8550
2 W1-15 碎屑岩 5.04 2.53 13.38% 3.8997
3 W68-28 碎屑岩 5.18 2.52 10.14% 0.8549
5 W103-H6 碎屑岩 5.18 2.52 8.60% 1.3839
6 W103-H22 碎屑岩 4.40 2.51 9.16% 0.8186
9 2035-4 碳酸盐岩 4.47 2.49 5.23% 0.1586
10 2035-6 碳酸盐岩 3.89 2.49 4.42% 0.1004
11 2035-7 碳酸盐岩 4.17 2.49 4.70% 0.0848
12 2035-9 碳酸盐岩 4.56 2.53 6.19% 0.4711
13 2035-12 碳酸盐岩 4.40 2.50 4.78% 0.2838
14 J16-15 火成岩 2.64 2.43 8.38% 0.0343
15 FN1-35 火成岩 2.08 2.43 5.32% 0.1114
16 T50-37 火成岩 2.12 2.42 15.11% 0.3903
17 F24-38 火成岩 2.00 2.43 10.28% 0.0442
18 DT1-41 火成岩 2.47 2.41 8.05% 0.0453
选择4%NaCl溶液饱和,满足地层矿化度条件。
电性测试:
通过Autolab1000高温高压岩石测试***对岩石样品进行模拟地层的复电阻率测量,模拟的温度压力条件对应测区温压特征,如式(4)。测试模拟1000m-3000m,用于研究温压变化趋势。图2和图3为在不同模拟深度条件下岩样T50-37的复电阻率振幅与相位。根据测量数据,进行复电阻率模型参数估计,获得岩石不同温度条件下的复电阻率参数。
模型匹配:
通过基于复电阻率实验获得的岩石低频电阻率参数,分不同岩性建立相应的Archie关系,图4-图6为三种岩性低频电阻率与孔隙度建立的Archie关系。根据对数电阻率与孔隙度斜率获得不同岩性岩石在不同深度下的胶结指数,通过假设胶结指数变化极小,而将这一影响归结为岩石孔隙在压力作用下的压缩,可以得到不同岩性的胶结指数和孔隙度的变化规律:
Figure BDA0002373989070000095
其中:φ0为岩石在无围压条件下的初始孔隙度。可以得到不同岩性不同孔隙度在压力条件下的变化规律,如图7所示。以此结合确定流体矿化度的孔隙流体随温度变化规律获得的岩石电阻率随温度、压力、孔隙度变化的模型:
Figure BDA0002373989070000092
其中:φ0为岩石初始孔隙度(常压条件下),这一电阻率模型适用于不远超过模拟深度的岩石电阻率估计。
参数校正:
根据先验地电模型的岩性、测试环境等结合式(6)进行勘探用地电模型校正,针对表1进行模型校正,校正信息与结果见表3。
表3地层校正信息及结果
Figure BDA0002373989070000101
表3中初始电阻率与校正电阻率存在较大差异,将校正后的地电模型用于反演,可降低反演的非唯一性,提高油气识别能力。
图8和图9为地电模型校正前后电阻率与极化率反演断面对比,利用BGP测量的测区测线数据进行电阻率与极化率深度校正后,电阻率异常更加明显,极化率异常纵向分辨率明显提高。
以上所述仅为本发明的较佳实施例,并不用于限制本发明,凡在本发明的精神和原则范围之内所作的任何修改、等同替换以及改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于地层模拟的电阻率校正方法,其特征在于:通过实验室测试建立不同岩性电阻率随包括温度、压力、孔隙度在内的因素变化的理论模型,将测区岩石电性的测井资料、实验室测量资料校正至相应的地层条件,建立有效的地电初始模型。
2.根据权利要求1所述的一种基于地层模拟的电阻率校正方法,其特征在于:包括以下步骤:
步骤一,测区调研;获取测区信息,建立物性参数深度模型;
步骤二,前处理;筛选测区不同岩性数块均质性好、孔隙度有差异的岩样,洗油洗盐干燥,测量基本物性,饱和确定矿化度的流体;
步骤三,电性测量;针对测区温压的深度模型进行岩石深度模拟,测量得到岩石的复电阻率振幅与相位,通过参数估计获取岩石不同深度条件下的复电阻率参数;
步骤四,模型匹配;针对不同地层条件下孔隙度有差异的不同岩性岩石,建立包括孔隙度、饱和度、温度、压力参数在内的电阻率模型,确定模型参数;
步骤五,参数校正;针对测区资料的测试环境,将电阻率数据校正至真实地下温度压力环境,用于初始地电模型的建立。
3.根据权利要求2所述的一种基于地层模拟的电阻率校正方法,其特征在于:步骤一中,测区信息包括电性测井资料、流体矿化度、不同岩性岩样;物性参数包括流体矿化度、饱和度、地层温度、地层压力。
4.根据权利要求3所述的一种基于地层模拟的电阻率校正方法,其特征在于:根据测区地质报告,获得地层温度与等效压力关于深度的模型如下:
T=14+0.03(D-20)
P=1.048×10-2D;
其中,T表示地层温度,单位为℃;P表示等效压力,单位为MPa;D表示深度,单位为m。
5.根据权利要求2所述的一种基于地层模拟的电阻率校正方法,其特征在于:步骤二中,对测区不同岩性的井样岩石进行筛选,获取均质性较好、孔隙度有差异的岩样各5块,共15块岩石样品;对样品进行洗油洗盐,烘干,测量包括孔隙度在内的相应几何参数;选择4%NaCl溶液饱和,满足地层矿化度条件。
6.根据权利要求2所述的一种基于地层模拟的电阻率校正方法,其特征在于:步骤三中,通过Autolab1000高温高压岩石测试***对岩石样品进行模拟地层的复电阻率测量,测试模拟1000m-3000m,用于研究温压变化趋势;根据测量数据,进行复电阻率模型参数估计,获得岩石不同温度条件下的复电阻率参数。
7.根据权利要求2所述的一种基于地层模拟的电阻率校正方法,其特征在于:步骤四中,通过基于复电阻率实验获得的岩石低频电阻率参数,分不同岩性建立相应的Archie关系。
8.根据权利要求7所述的一种基于地层模拟的电阻率校正方法,其特征在于:以双水模型为基础建立电导率频散关系为:
Figure FDA0002373989060000021
其中:σf和σH分别对应孔隙流体和高导矿物的电导率,Ff和FH分别对应孔隙流体和高导矿物的地层因子,主要由孔隙度决定;ω为测量圆频率,N对应了不同双电层结构的数量,σHgi对应了第i个双层结构提供的高频电导,其中
Figure FDA0002373989060000022
低频条件下电导率对应Archie关系:
Figure FDA0002373989060000023
其中:φ为岩石孔隙度,m为岩石胶结指数;
得到岩石对数电阻率与深度的变化关系:
Figure FDA0002373989060000024
其中:T表示温度,P表示压力,D表示深度。
9.根据权利要求8所述的一种基于地层模拟的电阻率校正方法,其特征在于:根据对数电阻率与孔隙度斜率获得不同岩性岩石在不同深度下的胶结指数,通过假设胶结指数变化极小,而将这一影响归结为岩石孔隙在压力作用下的压缩,得到不同岩性的胶结指数和孔隙度的变化规律:
Figure FDA0002373989060000031
其中:φ0为岩石在无围压条件下的初始孔隙度;结合确定流体矿化度的孔隙流体随温度变化规律获得岩石电阻率随温度、压力、孔隙度变化的模型:
Figure FDA0002373989060000032
这一电阻率模型适用于不远超过模拟深度的岩石电阻率估计。
10.根据权利要求2-9中任一项所述的一种基于地层模拟的电阻率校正方法,其特征在于:根据先验地电模型的岩性、测试环境进行勘探用地电模型校正;将校正后的地电模型用于反演,可以降低反演的非唯一性,用于提高油气识别能力。
CN202010059532.8A 2020-01-19 2020-01-19 一种基于地层模拟的电阻率校正方法 Active CN111255446B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010059532.8A CN111255446B (zh) 2020-01-19 2020-01-19 一种基于地层模拟的电阻率校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010059532.8A CN111255446B (zh) 2020-01-19 2020-01-19 一种基于地层模拟的电阻率校正方法

Publications (2)

Publication Number Publication Date
CN111255446A true CN111255446A (zh) 2020-06-09
CN111255446B CN111255446B (zh) 2022-09-20

Family

ID=70947262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010059532.8A Active CN111255446B (zh) 2020-01-19 2020-01-19 一种基于地层模拟的电阻率校正方法

Country Status (1)

Country Link
CN (1) CN111255446B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948114A (zh) * 2020-08-24 2020-11-17 中国石油天然气集团有限公司 一种含粘土砂砾岩岩心三孔隙度的测量方法
CN114624163A (zh) * 2022-04-18 2022-06-14 成都理工大学 基于覆压孔渗测试的富浊沸石碎屑岩储层物性校正方法
CN117371267A (zh) * 2023-09-19 2024-01-09 中国矿业大学 一种基于地面瞬变电磁的矿区突水定量预测方法
CN117769644A (zh) * 2022-07-26 2024-03-26 中国石油大学(华东) 含水合物沉积物渗透率评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992228A (en) * 1996-10-23 1999-11-30 Dunham; Lanny L. Method for determining resistivity derived porosity and porosity derived resistivity
CN103995297A (zh) * 2014-04-15 2014-08-20 西南石油大学 一种裂缝性碳酸盐岩地层电阻率校正的方法
CN106154351A (zh) * 2016-08-09 2016-11-23 中国石油天然气集团公司 一种低孔渗储层渗透率的估算方法
CN109901238A (zh) * 2019-02-28 2019-06-18 中国石油天然气集团有限公司 一种基于应力差电阻率实验的高应力地层电阻率校正方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5992228A (en) * 1996-10-23 1999-11-30 Dunham; Lanny L. Method for determining resistivity derived porosity and porosity derived resistivity
CN103995297A (zh) * 2014-04-15 2014-08-20 西南石油大学 一种裂缝性碳酸盐岩地层电阻率校正的方法
CN106154351A (zh) * 2016-08-09 2016-11-23 中国石油天然气集团公司 一种低孔渗储层渗透率的估算方法
CN109901238A (zh) * 2019-02-28 2019-06-18 中国石油天然气集团有限公司 一种基于应力差电阻率实验的高应力地层电阻率校正方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
向葵等: "页岩气储层特征及地球物理预测技术", 《特种油气藏》 *
孙斌等: "高温高压条件下泥质砂岩复电阻率测试与分析", 《工程地球物理学报》 *
王亮等: "W-S模型与双水模型对泥质...岩附加导电性描述的对比分析", 《测井技术》 *
袁龙等: "库车前陆盆地强挤压应力条件下的测井电阻率校正方法", 《石油地球物理勘探》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948114A (zh) * 2020-08-24 2020-11-17 中国石油天然气集团有限公司 一种含粘土砂砾岩岩心三孔隙度的测量方法
CN114624163A (zh) * 2022-04-18 2022-06-14 成都理工大学 基于覆压孔渗测试的富浊沸石碎屑岩储层物性校正方法
CN114624163B (zh) * 2022-04-18 2023-05-05 成都理工大学 基于覆压孔渗测试的富浊沸石碎屑岩储层物性校正方法
CN117769644A (zh) * 2022-07-26 2024-03-26 中国石油大学(华东) 含水合物沉积物渗透率评价方法
CN117769644B (zh) * 2022-07-26 2024-06-04 中国石油大学(华东) 含水合物沉积物渗透率评价方法
CN117371267A (zh) * 2023-09-19 2024-01-09 中国矿业大学 一种基于地面瞬变电磁的矿区突水定量预测方法
CN117371267B (zh) * 2023-09-19 2024-05-14 中国矿业大学 一种基于地面瞬变电磁的矿区突水定量预测方法

Also Published As

Publication number Publication date
CN111255446B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN111255446B (zh) 一种基于地层模拟的电阻率校正方法
US10386529B2 (en) Subsurface estimation of level of organic maturity
Wurmstich et al. Modeling of streaming potential responses caused by oil well pumping
Tong et al. Determining capillary-pressure curve, pore-size distribution, and permeability from induced polarization of shaley sand
Lai et al. Geophysical well-log evaluation in the era of unconventional hydrocarbon resources: a review on current status and prospects
Attwa et al. Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
Cai et al. Advances in multiscale rock physics for unconventional reservoirs.
Ehsan et al. Identification of hydrocarbon potential of Talhar shale: Member of lower Goru Formation using well logs derived parameters, southern lower Indus basin, Pakistan
US8005619B2 (en) Method of determining reservoir parameters
Liu et al. Numerical simulation to determine the fracture aperture in a typical basin of China
Norbisrath et al. Complex resistivity spectra and pore geometry for predictions of reservoir properties in carbonate rocks
Fan et al. Using image logs to identify fluid types in tight carbonate reservoirs via apparent formation water resistivity spectrum
Li et al. Classification of tight sandstone reservoirs based on NMR logging
Kahraman et al. Predicting the physico-mechanical properties of rocks from electrical impedance spectroscopy measurements
Anderson et al. Observations of large dielectric effects on LWD propagation-resistivity logs
Barach et al. Development and identification of petrophysical rock types for effective reservoir characterization: Case study of the Kristine Field, Offshore Sabah
Tan et al. Identification of natural gas fractured volcanic formation by using numerical inversion method
Yanran et al. Mathematical modeling for total organic carbon content prediction with logging parameters by neural networks: A case study of shale gas well in South China
Wang et al. Estimation of permeability for tight sandstone reservoir using conventional well logs based on mud-filtrate invasion model
Tan et al. Research Progress on the Electrical Properties of Gas Hydrate‐bearing Sediments
Al-Heeti et al. Review of historical studies for water saturation determination techniques
Shreya et al. Petrophysical reservoir characterization of Habiganj gas field, Surma Basin, Bangladesh
Zhao et al. Reservoir evaluation method for complex resistivity using the borehole–surface electromagnetic method: A case study of an igneous reservoir in the K exploration area, China
CN114086938A (zh) 一种非均质性砂岩储层的含气饱和度预测方法
Binley et al. Characterization of heterogeneity in unsaturated sandstone using borehole logs and cross-borehole tomography

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant