CN111250078B - MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用 - Google Patents

MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN111250078B
CN111250078B CN202010277922.2A CN202010277922A CN111250078B CN 111250078 B CN111250078 B CN 111250078B CN 202010277922 A CN202010277922 A CN 202010277922A CN 111250078 B CN111250078 B CN 111250078B
Authority
CN
China
Prior art keywords
mno
ceo
flue gas
low
gas denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010277922.2A
Other languages
English (en)
Other versions
CN111250078A (zh
Inventor
喻成龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Agricultural University
Original Assignee
Jiangxi Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Agricultural University filed Critical Jiangxi Agricultural University
Priority to CN202010277922.2A priority Critical patent/CN111250078B/zh
Publication of CN111250078A publication Critical patent/CN111250078A/zh
Application granted granted Critical
Publication of CN111250078B publication Critical patent/CN111250078B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Abstract

本发明公开了MnOx@Eu‑CeOx低温SCR烟气脱硝催化剂及其制备方法与应用。本发明以水热法制备的MnOx纳米棒为内核,通过改进的化学沉淀法将Eu‑CeOx的前驱体包裹在MnOx纳米棒的外层,再经过焙烧制备出核壳结构的MnOx@Eu‑CeOx低温SCR烟气脱硝催化剂,制备的MnOx@Eu‑CeOx低温SCR烟气脱硝催化剂中,MnOx纳米棒与CeOx和EuOx的摩尔质量比为1:0.4~1.2:0.2~0.8。本发明MnOx@Eu‑CeOx低温SCR烟气脱硝催化剂具有核壳结构,且壳为复合氧化物型壳,极大的提高了活性组分的氧化还原能力和活性组分之间的相互作用,在100~200℃展现出优异的NOx催化还原的活性和低温强抗硫中毒性能。

Description

MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用
技术领域
本发明属于环境保护与环境催化领域,具体涉及MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用。
背景技术
氮氧化物(NOx)是造成酸雨、光化学烟雾、臭氧层破坏的主要大气污染物之一,对人体健康和生态环境产生严重的危害,如何有效控制和减少NOx的排放受到了各国研究者的关注。据统计,2014年中国氮氧化物排放量的70.9%来自于电力、热力生产和供应业等工业源氮氧化物的排放,其中火电厂氮氧化物排放量占工业企业氮氧化物排放总量的62.1%,是我国氮氧化物的排放大户。因此,控制工业源特别是电力行业氮氧化物的排放是中国大气污染防治的关键。
在众多氮氧化物污染控制技术中,选择性催化还原(SCR)技术是应用最广泛、技术最成熟的治理工业源NOx的方法。而SCR技术去除NOx的核心是催化剂的性能好坏,目前商用钒基催化剂(V2O5-WO3/TiO2)在中温段(300~450℃)催化性能优越,该温度段是将脱硝装置布设在脱硫除尘装置之前,因此催化剂在高SO2和高灰量的环境中易失活。如将脱硝装置放到脱硫除尘装置之后就可以减轻SO2和灰尘的影响,但此时烟气温度会下降到200℃以下,为了避免中温催化剂需要再加热烟气浪费能耗,开发低温、高效非钒脱硝催化剂对解决这一问题具有非常重要的意义。
纳米微粒的表面修饰己形成了一个研究领域,并把纳米材料研究推向了一个新的阶段。对纳米微粒表面修饰领域研究的意义在于可以有更多的对纳米微粒表面进行改性,既可深入认识纳米微粒的基本物理化学效应,又可扩大纳米微粒的应用范围。核壳结构材料的结构独特性、可设计性和各组分之间的协同性使其在环保、电化学、能源、石油化工等领域展现了其优异的性能。将其应用于低温SCR反应过程中,核壳结构催化剂特殊的性能主要体现在壳层对内核具有较强的保护作用及壳层对内核具有调控和修饰功能。
由于在低温选择性催化还原应用中,锰基催化剂具有较高的低温催化活性。但Mn基催化剂的抗硫中毒能力较差。因此,本发明以MnOx纳米棒为核,设计合成出具有复合壳的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂,使其具有优异的低温SCR性能和强抗中毒性能。
发明内容
为了克服现有技术的不足,本发明提供了MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用。
本发明通过以下技术方案实现。
MnOx@Eu-CeOx低温SCR烟气脱硝催化剂的制备方法,其特征在于,该制备方法先水热合成出具有高活性的MnOx纳米棒,以MnOx纳米棒为核,通过改进的化学沉淀法将Eu-CeOx包裹到MnOx纳米棒的外层,再经过焙烧制备出MnOx@Eu-CeOx低温SCR烟气脱硝催化剂,所述MnOx@Eu-CeOx低温SCR烟气脱硝催化剂中,MnOx纳米棒与CeOx和EuOx的摩尔质量比为1∶0.4~1.2∶0.2~0.8。
进一步地,该制备方法包括以下步骤:
(1)MnOx纳米棒的制备:将1.2156 g KMnO4加入到157.4 mL的去离子中水搅拌溶解。溶解后加入一定浓度的盐酸后继续搅拌,最后定容至160 mL。将溶液转移至200 mL反应釜中,升温至140 ℃,反应一定时间。自然冷却至室温,取出产物,并将产物洗涤至中性后,80℃干燥,取得粉末状固体产物。
(2)MnOx@Eu-CeOx的制备:将一定量的MnOx纳米棒粉末加入到无水乙醇中,超声并搅拌分散均匀后,依次加入六亚甲基四胺溶液、六水合硝酸铈溶液及六水合硝酸铕溶液,并控制三种溶液的加入速率后水浴加热搅拌下进行反应,反应产物经洗涤和干燥后,焙烧后冷却至室温,最终得到所述MnOx@Eu-CeOx低温SCR烟气脱硝催化剂。
其中,步骤(1)中所述盐酸为37 wt%的HCl溶液,用量为2.0~3.0 mL,所述反应的时间为6~24 h;所述干燥为80℃下干燥6~24 h。
优选地,步骤(1)中,所述盐酸用量为2.6 mL。
优选地,步骤(1)中,所述反应的时间为12h;所述干燥为80℃下干燥12h。
其中,步骤(2)中,所述无水乙醇用量为40~80 mL;所述锰氧化物的用量为0.7~2.5 g;所述六亚甲基四胺、六水合硝酸铈和六水合硝酸铕的摩尔比例为0.6~1.9∶2.5~10∶0.8~3.4;所述六亚甲基四胺、六水合硝酸铈和六水合硝酸铕的加入顺序为先加六亚甲基四胺溶液,然后同时加入六水合硝酸铈溶液和六水合硝酸铕溶液。控制六亚甲基四胺溶液、六水合硝酸铈溶液和六水合硝酸铕溶液的加入速率为0.05 mL/min ~2 mL/min;所述的水浴加热的温度为70~ 80℃;所述反应的时间为2~4 h;所述干燥是在70~80℃下干燥为8~12 h;所述焙烧是在空气气氛中,以0.5~1.5℃/min的升温速率升温至400~600℃焙烧2~4 h。
优选地,步骤(2)中,所述无水乙醇用量为60 mL。
优选地,步骤(2)中,所述锰氧化物的用量为1.14g。
优选地,步骤(2)中,所述六亚甲基四胺、六水合硝酸铈和六水合硝酸铕的摩尔比例为1.3:5:1.7。
优选地,步骤(2)中,所述六亚甲基四胺、六水合硝酸铈和六水合硝酸铕的加入顺序为先加六亚甲基四胺溶液,然后同时加入六水合硝酸铈溶液和六水合硝酸铕溶液。控制六亚甲基四胺溶液、六水合硝酸铈溶液和六水合硝酸铕溶液的加入速率分别优先为0.05mL/min、0.1 mL/min 、0.2 mL/min。
优选地,步骤(2)中,所述的水浴加热的温度为75℃;所述反应的时间分别优先为2h、3h、4h。
优选地,步骤(2)所述干燥是在80℃下干燥为12 h;所述焙烧是在空气气氛中,以1℃/min的升温速率升温至一定的焙烧温度,所述的焙烧温度分别优先为400℃、500℃、600℃。所述的焙烧时间为2 h。
本发明还公开了由上述方法制备的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂。所制备的MnOx@Eu-CeOx在反应温度100 ~ 200 ℃的低温区间内呈现出高于90%的SCR活性。本发明还公开了以上所述的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂应用于低温SCR烟气脱硝***中。
本发明是以MnOx纳米棒为核,设计合成出具有复合壳的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂。MnOx@Eu-CeOx催化剂的特点有1)催化剂中存在较强的Mn-Ce之间的强相互作用,能显著提高其催化活性;2)催化剂壳中存在两种不同稀土金属氧化物,这两种稀土金属氧化物对SO2的吸附反应性能不同,使其具有强抗SO2中毒性能,并且Eu和Ce的均匀分布,使其具有对内核的多重保护效应;3)采用的改进的化学沉淀法将双稀土金属氧化物包裹在MnOx纳米棒表面,提高了活性组分的分散性,同时提高了催化剂的氧化还原性能和表面酸性,使得催化剂在低温阶段(200℃以下)表现出优异的NH3-SCR性能。
附图说明
图1是本发明中对比例1(MnOx)、对比例2(Eu-CeOx/MnOx)、实施例1(MnOx@Eu-CeOx)的XRD图谱
图2是本发明中对比例1(MnOx)、对比例2(Eu-CeOx/MnOx)、实施例1(MnOx@Eu-CeOx)的XPS图谱
图3是本发明中对比例1(MnOx)、对比例2(Eu-CeOx/MnOx)、实施例1(MnOx@Eu-CeOx)的HRTEM图谱
其中,a、b、c为MnOx;d、e、f为Eu-CeOx/MnOx);g、h、i为MnOx@Eu-CeOx
图4是本发明中实施例1(MnOx@Eu-CeOx)的TEM 面扫描图
以下结合附图及实施例对本发明作进一步说明。
具体实施方式
本发明提供了MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用,下面结合具体实施方式对本发明做进一步说明。但本发明的实施方式不限于此,如有未特别注明的工艺参数,可参照常规技术进行。
实施例1
(1)MnOx纳米棒的制备:将1.2156 g KMnO4加入到157.4 mL的去离子水中搅拌溶解。溶解后加入2.6 mL的37 wt%的盐酸后继续搅拌,最后定容至160 mL。将溶液转移至200mL反应釜中,升温至140 ℃,反应12 h。自然冷却至室温,取出产物,并将产物洗涤至中性后,80℃干燥12 h,取得粉末状固体产物。
(2)MnOx@Eu-CeOx的制备:将1.14g的MnOx纳米棒粉末加入到60 mL无水乙醇中,超声并搅拌分散均匀后,依次加入六亚甲基四胺溶液、六水合硝酸铈溶液及六水合硝酸铕溶液,并控制三种溶液的加入速率后在75℃水浴加热搅拌下进行反应3h(控制六亚甲基四胺溶液、六水合硝酸铈溶液和六水合硝酸铕溶液的加入速率分别优先为0.1 mL/min),同时控制三种物质的摩尔比例为1.3:5:1.7。反应产物经洗涤,80℃干燥12h后,500℃焙烧3 h后冷却至室温(升温速率为1.0℃/min),最终得到所述MnOx@Eu-CeOx低温SCR烟气脱硝催化剂,其中,MnOx纳米棒与CeOx和EuOx的摩尔质量比为1∶0.8∶0.5。
实施例2
(1)MnOx纳米棒的制备:将1.2156 g KMnO4加入到157.4 mL的去离子水中搅拌溶解。溶解后加入2.0 mL的37 wt%的盐酸后继续搅拌,最后定容至160 mL。将溶液转移至200mL反应釜中,升温至140 ℃,反应6 h。自然冷却至室温,取出产物,并将产物洗涤至中性后,80℃干燥6 h,取得粉末状固体产物。
(2)MnOx@Eu-CeOx的制备:将0.7g的MnOx纳米棒粉末加入到40 mL无水乙醇中,超声并搅拌分散均匀后,依次加入六亚甲基四胺溶液、六水合硝酸铈溶液及六水合硝酸铕溶液,并控制三种溶液的加入速率后在70℃水浴加热搅拌下进行反应4h(控制六亚甲基四胺溶液、六水合硝酸铈溶液和六水合硝酸铕溶液的加入速率分别优先为0.05 mL/min),同时控制三种物质的摩尔比例为0.6:2.5:0.8。反应产物经洗涤,70℃干燥12h后,400℃焙烧4 h后冷却至室温(升温速率为0.5℃/min),最终得到所述MnOx@Eu-CeOx低温SCR烟气脱硝催化剂,其中,MnOx纳米棒与CeOx和EuOx的摩尔质量比为1∶0.4∶0.2。
实施例3
(1)MnOx纳米棒的制备:将1.2156 g KMnO4加入到157.4 mL的去离子水中搅拌溶解;溶解后加入3 mL的37 wt%的盐酸后继续搅拌,最后定容至160 mL;将溶液转移至200 mL反应釜中,升温至140 ℃,反应24 h;自然冷却至室温,取出产物,并将产物洗涤至中性后,80℃干燥24 h,取得粉末状固体产物;
(2)MnOx@Eu-CeOx的制备:将2.5g的MnOx纳米棒粉末加入到80 mL无水乙醇中,超声并搅拌分散均匀后,依次加入六亚甲基四胺溶液、六水合硝酸铈溶液及六水合硝酸铕溶液,并控制三种溶液的加入速率后在80℃水浴加热搅拌下进行反应2 h(控制六亚甲基四胺溶液、六水合硝酸铈溶液和六水合硝酸铕溶液的加入速率分别优先为0.2 mL/min),,同时控制三种物质的摩尔比例为1.9:10:3.4。反应产物经洗涤,80℃干燥6 h后,600℃焙烧2h后冷却至室温(升温速率为1.5℃/min),最终得到所述MnOx@Eu-CeOx低温SCR烟气脱硝催化剂,其中,MnOx纳米棒与CeOx和EuOx的摩尔质量比为1∶1.2∶0.8。
对比例1
MnOx纳米棒的制备:1.2156 g KMnO4加入到157.4 mL的去离子水中搅拌溶解;溶解后加入2.6 mL的37 wt%的盐酸后继续搅拌,最后定容至160 mL;将溶液转移至200 mL反应釜中,升温至140 ℃,反应12 h。自然冷却至室温,取出产物,并将产物洗涤至中性后,80℃干燥,取得粉末状固体产物,而所得的固体产物在400℃焙烧2h后冷却至室温,最终得到所述MnOx纳米棒;本对比例中的催化剂为未包裹的纯MnOx纳米棒催化剂。
对比例2
在对比例1的基础上,通过传统浸渍法制备Eu-CeOx/MnOx催化剂样品,将比例1所以应的MnOx纳米棒浸渍在硝酸铈和硝酸铕混合溶液中。具体步骤如下:将一定量的六水硝酸铈和六水硝酸铕溶于80ml去离子水中,加入1.14g的MnOx纳米棒,室温搅拌1h。浸渍法制备的催化剂中Mn:Ce:Eu的摩尔比与实施例1相同。
对比例3
(1)MnOx纳米棒的制备:1.2156 g KMnO4加入到157.4 mL的去离子水中搅拌溶解;溶解后加入2.6 mL的37 wt%的盐酸后继续搅拌,最后定容至160 mL;将溶液转移至200 mL反应釜中,升温至140 ℃,反应12 h。自然冷却至室温,取出产物,并将产物洗涤至中性后,80℃干燥,取得粉末状固体产物;
(2)MnOx@CeOx的制备:将一定量的MnOx纳米棒粉末加入到无水乙醇中,超声并搅拌分散均匀后,依次加入六亚甲基四胺溶液有六水合硝酸铈溶液溶液,并控制溶液的加入速率后在75℃水浴加热搅拌下进行反应2h(控制六亚甲基四胺溶液和六水合硝酸铈溶液的加入速率分别优先为0.05 mL/min),同时控制二种物质的摩尔比例为1.3:5.0;反应产物经洗涤和干燥后,400℃焙烧2h后冷却至室温,最终得到所述MnOx@ CeOx低温SCR烟气脱硝催化剂。
活性评价试验
采用实验室模拟烟气条件将实施例和对比例制备的催化剂置于石英管固定床反应器中进行活性评价,以NH3为还原气,测试条件为:NO和O2的体积分数分别为0.06%和2.5%,氨氮比为1:1,Ar为平衡气,空速为90,000h-1。气体分析采用德国德图350(NO-NO2-NO x 烟气分析仪),实施例和对比例制备的催化剂的脱硝活性结果如表1所示:
表1 实施例与对比例的活性评价结果
Figure DEST_PATH_IMAGE001
由表1可见,实施例所制备的催化剂均取得了较好的低温SCR活性,其中实施例1的低温SCR活性最优,100℃即可达到接近100%的NOx转化率。对比例1是未包裹壳层的纯MnOx纳米棒催化剂,通过对其进行SCR活性评价,结果发现对比例1的低温还原NOx性能比实施例1的SCR活性明显更低(50~175 ℃),而对比例2是采用传统浸渍法制备的Eu-CeOx/MnOx催化剂样品,其SCR活性甚至比对比例1差,这进一步说明采用的改进的化学沉淀法将双稀土金属氧化物包裹在MnOx纳米棒表面,提高了活性组分的分散性,同时提高了催化剂的氧化还原性能和表面酸性,使得催化剂在低温阶段(200℃以下)表现出优异的NH3-SCR性能。
抗中毒评价试验
采用实验室模拟烟气条件将实施例和对比例制备的催化剂置于石英管固定床反应器中进行耐SO2中毒实验,以NH3为还原气,测试条件为:NO和O2的体积分数分别为0.06%和2.5%,氨氮比为1:1,SO2的体积分数为0.01%,Ar为平衡气,反应温度为200 ℃,空速为90000h-1。气体分析采用德国德图350(NO-NO2-NO x 烟气分析仪),抗中毒实验结果如表2所示:
表2 实施例与对比例的抗硫测试
Figure 654461DEST_PATH_IMAGE002
由表2可见,实施例1所制备的催化剂具有较强的抗硫中毒性能。在长时间含硫烟气条件下仍然维持较高的NOx转化率。
从图1中可以看,对比例2中Eu-CeOx/MnOx是通过传统浸渍法制备的催化剂(通过制备好未焙烧的MnOx纳米棒作为载体,然后通过过夜浸泡在硝酸铈和硝酸铕溶液中,然后干燥、焙烧制备,制备时其Mn:Ce:Eu的比例与实施例1相同),明显可以看出实施例1中关于CeO2的特征峰明显向高角度偏移,这说明实施例1中存在明显的强相互作用(Mn与Ce)。
由图2可知,实施例1所对应该的XPS O 1s的峰向结合能方向偏移,这说明实施例1中存在明显的强相互作用。
从图3中可以看出,实施例1对应的催化剂为纳米核壳结构,尺寸也属于纳米范围,且表面较对比例1粗糙,但表面的纳米颗粒分布均匀,但从对比例2可以看出,负载的表面EuOx和CeOx都分布不均匀,在出现了聚集现象。说明浸渍方法不利于催化组分的分散,所制备的产品表面粒子分布不均匀,且出现大颗粒聚集现象。
图4为实施例1的TEM面扫描图,从图中可以看出Mn主要分布在内部,Ce与Eu分布在纳米棒的外圈,且分散均匀,说明本发明中制备方法提高了活性组分的分散性,同时可以证实催化剂存在明显核壳结构。
最后需要强调的是,以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.MnOx@Eu-CeOx低温SCR烟气脱硝催化剂的制备方法,其特征在于,所述制备方法先水热合成出具有高活性的MnOx纳米棒,以MnOx纳米棒为核,通过改进的化学沉淀法将Eu-CeOx的前驱体包裹到MnOx纳米棒的外层,再经过焙烧制备出MnOx@Eu-CeOx低温SCR烟气脱硝催化剂,所述MnOx@Eu-CeOx低温SCR烟气脱硝催化剂中,MnOx纳米棒与CeOx和EuOx的摩尔质量比为1∶0.4~1.2∶0.2~0.8。
2.根据权利要求1所述的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂的制备方法,其特征在于,包括以下步骤:
(1)MnOx纳米棒的制备:将1.2156 g KMnO4加入到157.4 mL的去离子水中搅拌溶解;溶解后加入盐酸后继续搅拌,最后定容至160 mL;将溶液转移至200 mL反应釜中,升温至140℃反应;自然冷却至室温,取出产物,并将产物洗涤至中性后,80℃干燥,取得粉末状固体产物;
(2)MnOx@Eu-CeOx的制备:将MnOx纳米棒粉末加入到无水乙醇中,超声并搅拌分散均匀后,依次加入六亚甲基四胺溶液、六水合硝酸铈溶液及六水合硝酸铕溶液,并控制三种溶液的加入速率后水浴加热搅拌下进行反应,反应产物经洗涤和干燥后,焙烧后冷却至室温,最终得到所述MnOx@Eu-CeOx低温SCR烟气脱硝催化剂。
3.根据权利要求2所述的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂的制备方法,其特征在于,步骤(1)中,所述盐酸为37 wt%的HCl溶液,用量为2.0~3.0 mL,所述反应的时间为6~24 h;所述干燥为80℃下干燥6~24 h。
4.根据权利要求2所述的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂的制备方法,其特征在于,步骤(2)中,所述无水乙醇用量为40~80 mL,所述锰氧化物的用量为0.7~2.5 g。
5.根据权利要求2所述的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂的制备方法,其特征在于,步骤(2)中,所述六亚甲基四胺、六水合硝酸铈和六水合硝酸铕的摩尔比例为0.6~1.9∶2.5~10∶0.8~3.4。
6.根据权利要求2所述的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂的制备方法,其特征在于,步骤(2)中,所述六亚甲基四胺、六水合硝酸铈和六水合硝酸铕的加入顺序为先加六亚甲基四胺溶液,然后同时加入六水合硝酸铈溶液和六水合硝酸铕溶液,控制六亚甲基四胺溶液、六水合硝酸铈溶液和六水合硝酸铕溶液的加入速率为0.05 mL/min ~2 mL/min。
7.根据权利要求2所述的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂的制备方法,其特征在于,步骤(2)中,所述的水浴加热的温度为70~ 80℃;所述反应的时间为2~4 h。
8.根据权利要求2所述的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂的制备方法,其特征在于,步骤(2)中,所述干燥是在70~80℃下干燥为8~12 h;所述焙烧是在空气气氛中,以0.5~1.5℃/min的升温速率升温至400~600℃焙烧2~4 h。
9.由权利要求1~8任一项所述的制备方法制备得到的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂。
10.根据权利要求9所述的MnOx@Eu-CeOx低温SCR烟气脱硝催化剂应用于低温SCR烟气脱硝***中。
CN202010277922.2A 2020-04-10 2020-04-10 MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用 Active CN111250078B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010277922.2A CN111250078B (zh) 2020-04-10 2020-04-10 MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010277922.2A CN111250078B (zh) 2020-04-10 2020-04-10 MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111250078A CN111250078A (zh) 2020-06-09
CN111250078B true CN111250078B (zh) 2020-11-20

Family

ID=70948213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010277922.2A Active CN111250078B (zh) 2020-04-10 2020-04-10 MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111250078B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114984944B (zh) * 2022-06-24 2023-11-03 河北工业大学 一种高抗硫低温scr催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104759277A (zh) * 2015-03-18 2015-07-08 华南理工大学 一种CeOx-MnOx/石墨烯低温SCR烟气脱硝催化剂及其制备方法
CN105833901A (zh) * 2016-04-30 2016-08-10 华南理工大学 一种PrOx-MnOx/SAPO-34低温SCR烟气脱硝催化剂及其制备方法与应用
CN106732536A (zh) * 2016-11-17 2017-05-31 华南理工大学 一种CeO2@MnOx低温SCR烟气脱硝催化剂及其制备方法与应用
CN108855123A (zh) * 2018-07-05 2018-11-23 天津大学 用于燃气锅炉尾气的低温抗水scr催化剂的制备方法
CN109589969A (zh) * 2018-12-22 2019-04-09 北京工业大学 铝锰共柱撑蒙脱石负载Eu-Ce复合催化剂的制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104759277A (zh) * 2015-03-18 2015-07-08 华南理工大学 一种CeOx-MnOx/石墨烯低温SCR烟气脱硝催化剂及其制备方法
CN105833901A (zh) * 2016-04-30 2016-08-10 华南理工大学 一种PrOx-MnOx/SAPO-34低温SCR烟气脱硝催化剂及其制备方法与应用
CN106732536A (zh) * 2016-11-17 2017-05-31 华南理工大学 一种CeO2@MnOx低温SCR烟气脱硝催化剂及其制备方法与应用
CN108855123A (zh) * 2018-07-05 2018-11-23 天津大学 用于燃气锅炉尾气的低温抗水scr催化剂的制备方法
CN109589969A (zh) * 2018-12-22 2019-04-09 北京工业大学 铝锰共柱撑蒙脱石负载Eu-Ce复合催化剂的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu;Peng Sun et al.;《Applied Catalysis A:General》;20161029;第531卷;129-138 *

Also Published As

Publication number Publication date
CN111250078A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN105597777B (zh) 一种有序介孔碳负载Cu-Mn双金属脱硝催化剂及其制备方法
CN112337504B (zh) 一种处理同时含HCN和AsH3的工业尾气的方法
CN109772463B (zh) 一种CO还原低温脱硝催化剂ZIF-67-Me/CuOx及其制备方法和应用
CN106732581A (zh) 一种用于低温SCR反应的Ru/CeTiOX催化剂的制备方法
CN110052287B (zh) 一种协同控制no和甲苯的核壳结构分子筛催化剂及制备方法
CN107008323B (zh) 一种用于烟气脱硫脱硝的活性炭催化剂制备方法
CN109701657A (zh) 一种MOF-74-NiCo材料的合成方法及其应用
CN108479762A (zh) 一种锰氧化物催化剂及其制备方法和应用
CN111450876A (zh) 一种利用不同粒径载体负载Mn的低温SCR脱硝催化剂及其制备方法
CN113649015A (zh) 一种烟气脱硝催化剂及其制备方法与应用
CN110124710B (zh) 一种复合金属氧化物催化剂及其制备方法
CN112337460A (zh) 一种络合酸液制备Mn基尖晶石低温脱硝催化剂的方法
CN111250078B (zh) MnOx@Eu-CeOx低温SCR烟气脱硝催化剂及其制备方法与应用
CN113398920B (zh) 一种超长二氧化铈纳米棒负载氧化锰低温脱硝催化剂及其制备方法
CN107983354B (zh) 一种抗碱中毒铜基尖晶石低温脱硝催化剂的制备方法
CN107185555B (zh) 一种铜掺杂的硫化铈基纳米晶脱硝催化剂的制备方法
CN113262780A (zh) 高活性和高稳定性的锰基碳烟催化剂及其制备方法和应用
CN112221488A (zh) 一种协同脱硝脱汞的新型核壳结构催化剂及制备方法
CN111111641B (zh) 一种二氧化铈基催化剂及其制备方法和应用
CN110947396B (zh) 球状氧化锰包覆氧化铁核壳结构复合物及制备方法和应用
CN110252317B (zh) 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂
CN107469811A (zh) 一种宽温度窗口脱硝催化剂及其制备方法和应用
CN115318303B (zh) 一种低温去除柴油车碳烟颗粒的催化剂及其制备方法
CN112246268A (zh) 一种新型高效的臭氧催化材料及其制备方法
CN109289906B (zh) 一种氨气净化催化剂及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant