CN111249005A - 一种穿刺手术机器人柔顺控制*** - Google Patents

一种穿刺手术机器人柔顺控制*** Download PDF

Info

Publication number
CN111249005A
CN111249005A CN202010201389.1A CN202010201389A CN111249005A CN 111249005 A CN111249005 A CN 111249005A CN 202010201389 A CN202010201389 A CN 202010201389A CN 111249005 A CN111249005 A CN 111249005A
Authority
CN
China
Prior art keywords
control
force
robot
control module
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010201389.1A
Other languages
English (en)
Inventor
韩玥
牛福永
乔飞
李振晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou New Medical Zhiyue Robot Technology Co Ltd
Original Assignee
Suzhou New Medical Zhiyue Robot Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou New Medical Zhiyue Robot Technology Co Ltd filed Critical Suzhou New Medical Zhiyue Robot Technology Co Ltd
Priority to CN202010201389.1A priority Critical patent/CN111249005A/zh
Publication of CN111249005A publication Critical patent/CN111249005A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及一种穿刺手术机器人柔顺控制***,包括:基于微分控制器的PD控制模块,用于抑制测量噪声以及跟踪原始信号;阻抗控制位置模型建立模块,用于建立机器人控制循环的动态运动模型;力反馈控制模块,跟随操作者实现零力跟随控制即机械臂关节所受外力合力为0。本发明通过基于微分控制器的而改进的PD控制模块来实现对人体模型的实时跟踪效果,不仅能很好地对测量噪声进行抑制,还能够无超调的跟踪原始信号,实用性强,效率高,并且通过阻抗控制位置模型建立模块,使用内部位置控制器来实现跟踪理想阻抗模型的位置,降低了算法复杂度,提高了实时性。

Description

一种穿刺手术机器人柔顺控制***
技术领域
本发明涉及穿刺手术机器人领域,特别涉及一种穿刺手术机器人柔顺控制***。
背景技术
柔顺控制(随动控制)指机器人能够对外界环境有顺从的能力,大范围柔顺控制指其在所能迗到的所有构型下都能够实现柔顺运动。手术操纵者通过视觉确定机器人末端执行器所在的位置,和大脑中所期望的目标点进行比较并得到相应的位置偏差,然后使用手臂对机器人末端执行器施加力的作用,通过机器人腕部安装的力传感器得到外部的作用力,并反馈到控制器,使机器人能够实时跟随操纵者的意志进行运动。现在手术过程中,手术精密度要求越来越高,常规的肉眼手术已经不能满足高难度手术了,因此,急需一种工作精度高、工作稳定且效率高的穿刺手术机器人柔顺控制***装置。
发明内容
本发明要解决的问题在于提供一种工作精度高、工作稳定且效率高的一种穿刺手术机器人柔顺控制***。
为解决上述问题,本发明提供一种穿刺手术机器人柔顺控制***装置,包括:
基于微分控制器的PD控制模块,用于抑制测量噪声以及跟踪原始信号;
阻抗控制位置模型建立模块,用于建立机器人控制循环的动态运动模型;
力反馈控制模块,跟随操作者实现零力跟随控制即机械臂关节所受外力合力为0。
本发明的有益效果是,通过基于微分控制器的而改进的PD控制模块来实现对人体模型的实时跟踪效果,不仅能很好地对测量噪声进行抑制,还能够无超调的跟踪原始信号,实用性强,效率高,并且通过阻抗控制位置模型建立模块,使用内部位置控制器来实现跟踪理想阻抗模型的位置,降低了算法复杂度,提高了实时性。
进一步的,所述基于微分控制器的PD控制模块具体包括:
微分***的离散模型单元,用于建立机器人行程轨迹的运动数学关系;
逆运动学数学关系建立单元,用于将目标位置进行求解从而得出各个机器人的关节的控制量。
进一步的,所述阻抗控制位置模型建立模块具体包括:
位置控制模块单元,用于将具体空间位置通过逆运动学反解到关节空间中;
卡尔曼滤波器单元,用于对使用中产生的噪声进行抑制。
进一步的,所述位置控制模块单元还具体包括:
重力补偿算法单元,用于滤除末端执行器所造成的影响;
力衰减修正单元,用于控制偏差通过死区衰减后输入力控制器,从而得到修正值。
进一步的,所述力反馈控制模块包括力数字矩阵计算单元,用于将外部力通过计算反馈给控制器进行控制移动。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一种穿刺手术机器人柔顺控制***的柔顺控制的应用示意图;
图2是本发明一种穿刺手术机器人柔顺控制***的基于微分***的PD控制原理框图;
图3是本发明一种穿刺手术机器人柔顺控制***的大范围柔顺控制原理图;
图4是本发明一种穿刺手术机器人柔顺控制***的位置跟踪曲线及其受力图;
图5是本发明一种穿刺手术机器人柔顺控制***的柔顺控制接触力曲线图。
具体实施方式
下面结合具体实施例,对本发明的内容做进一步的详细说明:
本发明要解决的问题在于提供一种工作精度高、工作稳定且效率高的一种穿刺手术机器人柔顺控制***。
如图1所示,为解决上述问题,本发明提供一种穿刺手术机器人柔顺控制***装置,包括:
基于微分控制器的PD控制模块,用于抑制测量噪声以及跟踪原始信号;
阻抗控制位置模型建立模块,用于建立机器人控制循环的动态运动模型;
力反馈控制模块,跟随操作者实现零力跟随控制即机械臂关节所受外力合力为0。
本发明的有益效果是,通过基于微分控制器的而改进的PD控制模块来实现对人体模型的实时跟踪效果,不仅能很好地对测量噪声进行抑制,还能够无超调的跟踪原始信号,实用性强,效率高,并且通过阻抗控制位置模型建立模块,使用内部位置控制器来实现跟踪理想阻抗模型的位置,降低了算法复杂度,提高了实时性。
进一步的,所述基于微分控制器的PD控制模块具体包括:
微分***的离散模型单元,用于建立机器人行程轨迹的运动数学关系;
逆运动学数学关系建立单元,用于将目标位置进行求解从而得出各个机器人的关节的控制量。
如图2,图3所示,在实际操作中,微分***的离散模型单元的模型如下:
Figure BDA0002419514240000041
其中u(k)是在k时刻的控制变量;
X1是输入信号的跟踪信号;
X2为跟踪信号的近似微分信号;
T是米样时间;
h是滤波系数;
r是速度系数;
fst函数形式如下:
Figure BDA0002419514240000051
其中:
Figure BDA0002419514240000052
δ=rh,δ0=δh;
Y=x0-u+hx2;
Figure BDA0002419514240000053
操纵者根据作业现场的情况判断出机器人所期望的目标点,并对机器人末端执行器施加力的作用,通过六维力传感器得到外部的作用力fs,将该信号通过死区衰减后输入微分***(TD),对力信号进行处理,得到力信号的跟踪信号和力信号的近似微分信号,分别输入给PD控制器中的P项和D项,并输出位置修正值X,和当前位置进行比较后得到笛卡尔空间目标位姿,最后对目标位姿进行逆运动学求解后将各关节的控制量输入机器人位置控制内环完成一个控制循环。
进一步的,所述阻抗控制位置模型建立模块具体包括:
位置控制模块单元,用于将具体空间位置通过逆运动学反解到关节空间中;
卡尔曼滤波器单元,用于对使用中产生的噪声进行抑制。
进一步的,所述位置控制模块单元还具体包括:
重力补偿算法单元,用于滤除末端执行器所造成的影响;
力衰减修正单元,用于控制偏差通过死区衰减后输入力控制器,从而得到修正值。
在实际操作中,阻抗控制位置模型建立模块如下:
Fh=Md(Xd-Xc)+Bd(Xd-Xc)+Kd(Xd-Xc);
Xc表示当前位置,
Xd表示期望位置,
Md表示机器人的虚拟惯性矩阵,
Bd表示机器人的虚拟阻尼矩阵,
Kd表示机器人的虚拟刚度矩阵,
模型中的Md,Kd为机器人的阻抗特性系数,都为对角阵。Md虚拟惯性矩阵对冲击力较强,速度变换较大的运动过程有较大影响;Bd虚拟阻尼矩阵对外界干扰以及位置变化较快的运动有较大的影响;虚拟刚度矩阵对低速运动或静止状态附近的运动影响较大。
机器人所需位置可以在拉普拉斯域中表示为:
△X(S)=Fh(s)/Mds2+BdS+Kd=Fh(s)H(s);
△X(S)是△X的拉普拉斯变换,Fh(s)是Fh和s的拉普拉斯变换。
通过上述分析,机器人关节空间的柔顺位置控制器为:
Figure BDA0002419514240000061
通过使用向后差分的方法得到速度与加速度的表达式:
△X(k)=a0△F(k)+a1△x(k-1)+a2△x(k-2);
其中:
Figure BDA0002419514240000071
Figure BDA0002419514240000072
Figure BDA0002419514240000073
如图4所示,经过此方式,在工作中,在追踪误差时候,当到达0.25秒之后,机器人已经能够跟踪上给定信号,并且随着时间推进,跟随误差缓缓减小,而所受到的外界接触力基本稳定在0.2N左右。
如图5所示,并且,在柔顺控制接触力曲线中可以发现在未施加外力的情况下,机器人计算得到的基座标系下的受力几乎等于0,机器人可以很好的保持稳定不会出现抖动的情况;而在外力拖动时,机器人受到的外界拖动力也维持在一个较低的水平(小于4N),这说明机器人能够在任何位姿下都能达到快速的跟随,实现大范围的柔顺控制。
进一步的,所述力反馈控制模块包括力数字矩阵计算单元,用于将外部力通过计算反馈给控制器进行控制移动。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (5)

1.一种穿刺手术机器人柔顺控制***,其特征在于,包括:
基于微分控制器的PD控制模块,用于抑制测量噪声以及跟踪原始信号;
阻抗控制位置模型建立模块,用于建立机器人控制循环的动态运动模型;
力反馈控制模块,跟随操作者实现零力跟随控制即机械臂关节所受外力合力为0。
2.根据权利要求1所述的穿刺手术机器人柔顺控制***,其特征在于,所述基于微分控制器的PD控制模块具体包括:
微分***的离散模型单元,用于建立机器人行程轨迹的运动数学关系;
逆运动学数学关系建立单元,用于将目标位置进行求解从而得出各个机器人的关节的控制量。
3.根据权利要求1所述的穿刺手术机器人柔顺控制***,其特征在于,所述阻抗控制位置模型建立模块具体包括:
位置控制模块单元,用于将具体空间位置通过逆运动学反解到关节空间中;
卡尔曼滤波器单元,用于对使用中产生的噪声进行抑制。
4.根据权利要求3所述的穿刺手术机器人柔顺控制***,其特征在于,所述位置控制模块单元还具体包括:
重力补偿算法单元,用于滤除末端执行器所造成的影响;
力衰减修正单元,用于控制偏差通过死区衰减后输入力控制器,从而得到修正值。
5.根据权利要求1所述的穿刺手术机器人柔顺控制***,其特征在于,所述力反馈控制模块包括力数字矩阵计算单元,用于将外部力通过计算反馈给控制器进行控制移动。
CN202010201389.1A 2020-03-20 2020-03-20 一种穿刺手术机器人柔顺控制*** Pending CN111249005A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010201389.1A CN111249005A (zh) 2020-03-20 2020-03-20 一种穿刺手术机器人柔顺控制***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010201389.1A CN111249005A (zh) 2020-03-20 2020-03-20 一种穿刺手术机器人柔顺控制***

Publications (1)

Publication Number Publication Date
CN111249005A true CN111249005A (zh) 2020-06-09

Family

ID=70947862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010201389.1A Pending CN111249005A (zh) 2020-03-20 2020-03-20 一种穿刺手术机器人柔顺控制***

Country Status (1)

Country Link
CN (1) CN111249005A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112336461A (zh) * 2020-11-05 2021-02-09 苏州微创畅行机器人有限公司 手术机器人、控制方法、***及可读存储介质
CN112405531A (zh) * 2020-11-06 2021-02-26 广东电网有限责任公司电力科学研究院 位置域阻抗控制方法、装置、存储介质及作业机器人
CN112809686A (zh) * 2021-02-02 2021-05-18 杭州柳叶刀机器人有限公司 一种机器人体态随动控制方法及装置
CN113171177A (zh) * 2021-04-07 2021-07-27 上海交通大学 可捕捉腰椎穿刺组织层突破感的人机交互控制方法及***
CN113977602A (zh) * 2021-10-27 2022-01-28 华南理工大学 一种力反馈末端夹持器导纳控制方法
CN114001753A (zh) * 2021-10-29 2022-02-01 南京佗道医疗科技有限公司 一种输入信号补偿***及其方法、抖动模拟输出***及其方法
CN114052929A (zh) * 2021-11-22 2022-02-18 中国计量大学 一种基于阻抗控制模型的力反馈遥操作超声扫查装置
CN114700951A (zh) * 2022-04-25 2022-07-05 浙江工业大学 一种用于医护机器人的柔顺控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105345823A (zh) * 2015-10-29 2016-02-24 广东工业大学 一种基于空间力信息的工业机器人自由驱动示教方法
CN106272428A (zh) * 2016-09-13 2017-01-04 江苏大学 一种苹果采摘机器人末端执行器抓取力主动柔顺控制方法
CN106483964A (zh) * 2015-08-31 2017-03-08 中南大学 一种基于接触力观测器的机器人柔顺控制方法
US10286550B2 (en) * 2016-12-02 2019-05-14 National Taipei University Of Technology Robot teaching system and control method thereof
CN109773792A (zh) * 2019-02-14 2019-05-21 中科新松有限公司 串联弹性驱动器的位置控制装置及方法、存储介质、设备
CN109910005A (zh) * 2019-03-04 2019-06-21 上海电气集团股份有限公司 用于机器人的变导纳控制方法以及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483964A (zh) * 2015-08-31 2017-03-08 中南大学 一种基于接触力观测器的机器人柔顺控制方法
CN105345823A (zh) * 2015-10-29 2016-02-24 广东工业大学 一种基于空间力信息的工业机器人自由驱动示教方法
CN106272428A (zh) * 2016-09-13 2017-01-04 江苏大学 一种苹果采摘机器人末端执行器抓取力主动柔顺控制方法
US10286550B2 (en) * 2016-12-02 2019-05-14 National Taipei University Of Technology Robot teaching system and control method thereof
CN109773792A (zh) * 2019-02-14 2019-05-21 中科新松有限公司 串联弹性驱动器的位置控制装置及方法、存储介质、设备
CN109910005A (zh) * 2019-03-04 2019-06-21 上海电气集团股份有限公司 用于机器人的变导纳控制方法以及***

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112336461A (zh) * 2020-11-05 2021-02-09 苏州微创畅行机器人有限公司 手术机器人、控制方法、***及可读存储介质
CN112336461B (zh) * 2020-11-05 2022-08-12 苏州微创畅行机器人有限公司 手术机器人、控制方法、***及可读存储介质
CN112405531A (zh) * 2020-11-06 2021-02-26 广东电网有限责任公司电力科学研究院 位置域阻抗控制方法、装置、存储介质及作业机器人
CN112809686A (zh) * 2021-02-02 2021-05-18 杭州柳叶刀机器人有限公司 一种机器人体态随动控制方法及装置
CN113171177A (zh) * 2021-04-07 2021-07-27 上海交通大学 可捕捉腰椎穿刺组织层突破感的人机交互控制方法及***
CN113977602A (zh) * 2021-10-27 2022-01-28 华南理工大学 一种力反馈末端夹持器导纳控制方法
CN114001753A (zh) * 2021-10-29 2022-02-01 南京佗道医疗科技有限公司 一种输入信号补偿***及其方法、抖动模拟输出***及其方法
CN114052929A (zh) * 2021-11-22 2022-02-18 中国计量大学 一种基于阻抗控制模型的力反馈遥操作超声扫查装置
CN114700951A (zh) * 2022-04-25 2022-07-05 浙江工业大学 一种用于医护机器人的柔顺控制方法

Similar Documents

Publication Publication Date Title
CN111249005A (zh) 一种穿刺手术机器人柔顺控制***
Wilson et al. Relative end-effector control using cartesian position based visual servoing
CN109848983B (zh) 一种高顺应性人引导机器人协同作业的方法
CN110799309B (zh) 具有配置相关动力学的***的振动控制
CN113601509B (zh) 一种多自由度机械臂柔性控制方法和***
US8600554B2 (en) System and method for robot trajectory generation with continuous accelerations
CN113601512B (zh) 一种机械臂奇异点的通用规避方法与***
CN109968361B (zh) 一种基于实时力反馈的变阻抗遥操作控制装置及方法
CN111230873B (zh) 一种基于示教学习的协作搬运控制***及方法
Artemiadis et al. EMG-based teleoperation of a robot arm in planar catching movements using ARMAX model and trajectory monitoring techniques
CN108908347B (zh) 一种面向冗余移动机械臂容错型重复运动规划方法
Chen et al. Neural learning enhanced variable admittance control for human–robot collaboration
CN112247962A (zh) 面向上肢穿戴机器人的人机博弈控制方法及***
CN114131617B (zh) 一种工业机器人的智能柔顺控制方法和装置
Chico et al. Hand gesture recognition and tracking control for a virtual UR5 robot manipulator
Namiki et al. Vision-based predictive assist control on master-slave systems
CN111168680A (zh) 一种基于神经动力学方法的软体机器人控制方法
CN114179089A (zh) 一种机械臂的鲁棒区域跟踪控制方法
CN111358659B (zh) 一种机器人的助力控制方法、***及下肢康复机器人
CN113442118B (zh) 一种可穿戴外肢体机器人碰撞响应控制方法及***
CN112077841B (zh) 一种提升机器人手臂操纵精度的多关节联动方法及***
Zhang et al. A markerless human-manipulators interface using multi-sensors
CN114714358A (zh) 基于手势协议遥操作机械臂方法及***
Hashimoto et al. Visual servoing with linearized observer
Choi et al. Impedance matching control between a human arm and a haptic joystick for long-term

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200609