CN111246799A - 电化学传感器及其生产方法 - Google Patents

电化学传感器及其生产方法 Download PDF

Info

Publication number
CN111246799A
CN111246799A CN201880069042.7A CN201880069042A CN111246799A CN 111246799 A CN111246799 A CN 111246799A CN 201880069042 A CN201880069042 A CN 201880069042A CN 111246799 A CN111246799 A CN 111246799A
Authority
CN
China
Prior art keywords
electrode
electrochemical sensor
conductive layer
corrosive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880069042.7A
Other languages
English (en)
Other versions
CN111246799B (zh
Inventor
S.阿克曼
S-M.弗雷
S.潘卡拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN111246799A publication Critical patent/CN111246799A/zh
Application granted granted Critical
Publication of CN111246799B publication Critical patent/CN111246799B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Bipolar Transistors (AREA)
  • Hybrid Cells (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

公开了一种电化学传感器(110),特别是用于检测体液中的分析物的电化学传感器,更具体地,是一种用于***用户的身体组织的电化学传感器。电化学传感器(110)包括具有近侧部分(114)和伸长的远侧部分(118)的基板(112)。在远侧部分(118)上形成至少一个工作电极(124),至少一个参考电极(128)和至少一个对电极(134)。工作电极(124)包括导电迹线(174、198),沿着该导电迹线布置多个电极垫(142),该多个电极垫经由导电迹线(174、198)连接。电极垫(142)包括被非腐蚀性导电层(146)覆盖的腐蚀性导电层(144)。绝缘层(138)设置在基板(112)上,在电极垫(142)的区域中留下开口(164)。电化学传感器(110)包括对腐蚀性导电层(144)的至少一个保护措施,该保护措施选自由以下各项组成的组:a.绝缘层(138)在电极垫(142)中的至少一个的至少一个电极垫边缘(170)上至少部分重叠;b.电极垫(142)中的至少一个沿着伸长的远侧部分(118)的较小尺寸具有伸长的形状。

Description

电化学传感器及其生产方法
技术领域
本发明公开了一种电化学传感器以及生产该电化学传感器的方法。该电化学传感器可以特别适于检测体液中的至少一种分析物。更具体地,该电化学传感器可以是或可以包括被配置为***用户的身体组织中的电化学传感器,特别是用于长期监测身体组织中和/或身体组织内的体液中的至少一种分析物的可***或可植入的电化学传感器。该电化学传感器可以在家庭护理的领域以及专业护理(诸如在医院中)的领域二者中应用。其他应用是可行的。
背景技术
监测某些身体功能(更特别地监测体液中的至少一种代谢物的一个或多个浓度)在各种疾病的预防和治疗中扮演了重要的角色。这样的代谢物例如可以包括但不限于血糖,乳酸,胆固醇或其他类型的分析物和代谢物。在不约束进一步可能的应用的情况下,将参照血糖监测在下面的文本中描述本发明。然而,另外或备选地,还可以将本发明应用于其他类型的分析物(诸如上述分析物)。
在连续或长期监测领域,传感器的设置和制造是一项技术挑战。通常,使用经皮***到用户的身体组织中的电化学传感器。传感器通常包括伸长的柔性基板,在该柔性基板上施加了多个电极,包括一个或多个工作电极和一个或多个其他电极,例如一个或多个对电极和/或一个或多个参考电极。
US 2010/0200538 A1公开了使用基于IC或MEMs的制造技术来制造分析物传感器组件的方法和由此制备的传感器。分析物传感器组件的制造包括提供无机基板,该无机基板上沉积有释放层,在电极之间绝缘的第一柔性电介质层和第二柔性电介质层,接触垫以及连接电极和多个传感器的接触垫的迹线。在一个或多个电极上方的介电层之一中提供开口,以接收分析物感测膜以便检测感兴趣的分析物并与外部电子设备进行电连接。将多个制造的传感器组件从无机基板上提起。
EP 2348964 B1公开了一种用于在体内条件下测量分析物浓度的电极***。该电极***包括具有电导体的对电极,具有电导体的工作电极,在该工作电极上布置有包含用于分析物催化转化的固定的酶分子的酶层,以及减慢分析物从电极***周围的体液向下扩散到酶分子的扩散屏障。本发明提供了以按彼此间的一定距离布置在工作电极的导体上的多个场的形式的酶层。
WO 2014/001382 A1描述了一种用于确定体液中的至少一种分析物的浓度的传感器元件。传感器元件至少部分地可植入身体组织中。传感器元件具有基板和至少两个电极,所述至少两个电极包括至少一个工作电极和至少一个对电极。工作电极包括施加到基板上的至少一个导电垫,其中至少一种导电传感器材料被施加到导电垫。该导电传感器材料包括适于执行与分析物的电气可检测电化学检测反应的至少一种检测器物质。对电极包括施加到基板上的至少一个对电极导电垫。传感器元件还包括至少一种电绝缘材料。该电绝缘材料在所有侧面围绕对电极。电绝缘材料的高度至少等于对电极导电垫的高度。
尽管这些用于经皮***的已知的传感器具有优点,但是仍然存在许多技术挑战。因此,特别地,一个技术挑战来自以下事实:许多配置用于长期监测身体组织中一种或多种分析物的电化学传感器通常都受到机械应力。一旦被***身体组织,电化学传感器通常会受到机械弯曲,拉力和推力的应力。进一步的影响是基于化学作用,例如氧化。由于这种机械和化学应力,技术挑战特别在于避免金属电极与传感器基板的分层。
要解决的问题
因此,需要提供一种电化学传感器,特别是用于***和/或植入身体组织中的电化学传感器,更具体地说,是一种用于长期监测体液中至少一种分析物的电化学传感器,其至少部分解决了上述技术挑战。提到的技术挑战。具体地,期望一种电化学传感器,其提供改善的长期稳定性,更具体地,在诸如机械和化学应力的真实条件下,通常以***状态施加该电化学传感器。
发明内容
具有独立权利要求的特征的电化学传感器和用于生产该电化学传感器的方法解决了此问题。在从属权利要求中列出可能以孤立的方式或以任何任意组合来实现的有利实施例。
如下文所使用的,以非排他性方式使用术语“具有”,“包含”或“包括”或其任意语法变化形式。因此,这些术语可以指代其中除了由这些术语提出的特征之外在该上下文中描述的实体中不存在其他特征的情况和其中存在一个或多个其他特征的情况二者。作为一个示例,表述“A具有B”、“A包括B”和“A包含B”可以指代其中除了B之外在A中不存在其他元素的情况(即A仅仅并且排他地由B组成的情况)以及其中除了B之外在实体A中存在一个或多个其他元素(诸如元素C、元素C和D或甚至其他元素)的情况二者。
此外,应注意,当引入相应的特征或元素时,表示特征或元素可能存在一次或不止一次的术语“至少一个”,“一个或多个”或类似表达通常将仅使用一次。在下文中,在大多数情况下,当提到相应的特征或元素时,尽管相应的特征或元素可能只存在一次或不止一次,但不会重复表达“至少一个”或“一个或多个”。
进一步地,如在下面中使用的,在不约束备选可能性的情况下结合可选特征使用术语“优选地”、“更优选地”、“特别地”、“更特别地”、“具体地”、“更具体地”或类似术语。因此,由这些权利要求提出的特征是可选特征并且不意图以任何方式约束权利要求的范围。如技术人员将会认识到的,可以通过使用备选特征来执行本发明。类似地,在没有关于本发明的范围的任何约束的情况下,在没有关于本发明可替换实施例的任何约束的情况下,并且在没有关于将以这种方式提出的特征与本发明的其他可选或非可选特征相组合的可能性的任何约束的情况下意图使由“在本发明的实施例中”或类似表达提出的特征成为可选特征。
在第一方面,公开了一种电化学传感器,特别是用于检测体液中的分析物的电化学传感器,更具体地,公开了一种用于***用户的身体组织的电化学传感器。该电化学传感器包括具有近侧部分和伸长的远侧部分的基板。在远侧部分上形成至少一个工作电极,至少一个参考电极和至少一个对电极。工作电极包括导电迹线,沿着该导电迹线布置多个电极垫,该多个电极垫经由该导电迹线连接。电极垫包括被非腐蚀性导电层覆盖的腐蚀性导电层。绝缘层设置在基板上,在电极垫的区域中留下开口。
为了解决上述技术挑战,电化学传感器包括针对腐蚀性导电层的选自由以下各项组成的组的至少一个保护措施:
a. 绝缘层在电极垫中的至少一个的至少一个电极垫边缘上至少部分重叠。
b. 电极垫中的至少一个沿伸长的远侧部分的较小尺寸具有伸长的形状。
如本文中所使用的,术语“传感器”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于被配置用于检测至少一种状况或用于测量至少一个测量变量的任意元件或装置。传感器具体地可以是或可以包括用于至少部分植入用户的身体组织中的分析物传感器,更具体地,用于连续监测分析物的分析物传感器。该传感器具体可以是单片的传感器元件。
因此,术语“电化学传感器”具体地可以指如上所限定的基于电化学测量原理(例如通过使用安培或电势测量原理中的一种或多种)的传感器。具体地,如以上进一步详细概述的,电化学传感器可包括至少一种酶,其被配置用于在要检测的分析物存在的情况下进行至少一种氧化还原反应,其中该氧化还原反应可以通过电手段检测。
此外,本文所用的术语“分析物”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于可在体液中存在并且用户可能对其浓度感兴趣的任意元素、组分或化合物。优选地,分析物可以是或者可以包括可以参与用户的新陈代谢的任意化学物质或化学化合物(诸如至少一种代谢物)。作为示例,可以从由葡萄糖、胆固醇、甘油三酯、乳酸组成的组中选择该至少一种分析物。然而,另外或备选地,可以使用其他类型的分析物和/或可以确定分析物的任何组合。
如本文中所使用的,术语“用户”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于人类或动物,而与人类或动物可以相应地处于健康状况或可以患有一种或多种疾病的事实无关。作为示例,用户可以是患有糖尿病的人类或动物。然而,另外或备选地,本发明可应用于其他类型的用户。
一般来说,可以使用任意类型的体液。优选地,该体液是在用户的身体组织中(诸如在间质组织中)存在的体液。因此,作为示例,可以从由血液和间质液组成的组中选择体液。然而,另外或备选地,可以使用一个或多个其他类型的体液。体液通常可以包含在身体组织中。因此,一般来说,优选地可以在活体内确定体液中的至少一种分析物的检测。
传感器可以全部或部分地植入身体组织,特别是以经皮方式。该传感器具体可以具有不超过50mm的长度,例如2mm至30mm的长度。该传感器还可以具有不大于5mm的宽度,例如0.5mm至2mm的宽度。传感器具体地可以是在植入状态下发生的典型力作用下可变形的柔性传感器。传感器的厚度可以不超过2mm,优选地厚度为0.2至1.0mm。传感器特别地可以是带状的,具有薄的伸长的带的形状。传感器具体(例如通过具有生物相容的涂层)可以是生物相容的。
如本文中所使用的,术语“基板”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于一元件,其承载设备的一个或多个其他元件。具体地,基板可以是平坦基板,例如包括一个或多个卷(file)或层的基板。基板尤其可以是柔性的和/或可变形的。因此,作为示例,基板可以是薄的柔性基板,例如由聚酰亚胺制成的基板。作为示例,基板可以具有50μm至1mm的厚度,特别是100μm至500μm的厚度,例如200至400μm的厚度。
如本文中所使用的,术语“近侧”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于在握持或接触元件时更靠近用户的方向或侧面。因此,本文中所使用的术语“远侧”可以具体可以指代当握持或接触该元件时远离用户的相反的方向或侧面。在电化学传感器的上下文中,近侧部分特别地可以形成被电子单元(例如发射器)接触的部分,而远侧部分可以完全或部分地植入或***身体组织中。类似地,如将在下面更详细地使用的,术语“远端”具体地可以指代最远伸入身体组织的基板的端部和/或电化学传感器的端部。
如本文中所使用的,术语“伸长的”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于具有长度和宽度的元件,其中该长度超过该宽度,例如长度是宽度的至少1.5倍,至少2.0倍,至少5.0倍,至少10倍或甚至15倍或更大。在基板的远侧部分的上下文中,伸长的形状具体地可以指这样的事实,即远侧部分沿着纵轴延伸,例如具有带的形状,该带的长度l平行于纵轴并且宽度w垂直于纵轴。
如本文中所使用的,术语“工作电极”,“参考电极”和“对电极”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。术语“工作电极”具体地可以指代但不限于电化学传感器的电极,其被配置为根据在工作电极处发生的电化学检测反应的程度来测量信号(例如电压或电势),目的是检测至少一种分析物。如将在下面进一步详细概述的,工作电极具体地可以包含至少一种酶。术语“参考电极”具体地可以指代但不限于电化学传感器的电极,其被配置为提供至少广泛地独立于分析物的存在或不存在或浓度的电化学参考电势。参考电极具体可以包含Ag/AgCl。术语“对电极”具体地可以指代但不限于电化学传感器的电极,其被配置为平衡通过工作电极的电流,例如以便避免通过参考电极的大电流。对电极具体地可以包括Ag/AgCl。对于示例性实施例,作为示例,还可以参考上述现有技术,例如EP 2348964 B1。
如本文中所使用的,术语“导电迹线”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于导电条,层,线或其他类型的伸长的电导体,其至少部分地沿着伸长的远侧部分延伸并且可以被配置为将工作电极与至少一个工作电极接触垫电连接。因此,导电迹线可以被配置为电互连多个电极垫,并且进一步,以将工作电极的多个电极垫与至少一个工作电极接触垫连接,该至少一个工作电极接触垫例如可以位于基板的近侧部分内。
如本文中所使用的,术语“电极垫”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于布置在基板上的平坦的导电元件。作为示例并且如将在下面进一步详细概述的,电极垫可以包括直接或间接设置在基板上的两个或更多个导电层,该导电层具有有限的横向延伸,从而在基板上形成导电区域。作为示例,导电区域可以具有矩形,多边形,圆形,椭圆形或条形的形状。
如本文所用,术语“腐蚀性导电层”是广义的术语。该术语可以指腐蚀的导电层。该腐蚀的导电层可以能够被腐蚀剂分解。该术语具体地可以指代但不限于一导电层,其包括至少一种易于分解或反应(例如通过氧化或通过与诸如水和/或氧气的腐蚀剂反应)的腐蚀材料。具体而言,腐蚀性材料可包括至少一种材料,该材料具体地在被使用于电化学传感器中的电化学条件下被氧化。作为示例,腐蚀性材料可以是当在由腐蚀性材料制成的电极和由Ag/AgCl制成的电极之间施加350mV的电压时被氧化的材料。
类似地,术语“非腐蚀性导电层”可以指代但不限于包括至少一种非腐蚀性材料(即在上述意义上不具有腐蚀性的材料)的导电层。因此,术语“非腐蚀性导电层”可以指非腐蚀的导电层。所述非腐蚀的导电层可以至少在很大程度上抵抗分解或反应,例如抵抗氧化或与诸如水和/或氧气的腐蚀剂的反应。将在下面更详细地给出示例性实施例。例如,腐蚀性导电层和非腐蚀性导电层各自可以具有100nm至2μm的厚度。
具体地,腐蚀性导电层可以与基板直接接触。非腐蚀性导电层可以与腐蚀性导电层直接接触。因此,腐蚀性导电层可以用作粘合层,其有助于改善非腐蚀性导电层对基板或电化学传感器的粘合性。腐蚀性导电层可以通过材料结合连接而束缚于基板,并且类似地,非腐蚀性导电层可以通过材料结合连接而束缚于腐蚀性导电层。
非腐蚀性导电层具体地可以完全覆盖腐蚀性导电层,使得至少在没有机械负荷施加到电化学传感器上时,腐蚀性导电层的区域的任何部分都不暴露于环境空气。具体地,非腐蚀性导电层可以在边缘处与腐蚀性导电层重叠,使得由非腐蚀性导电层形成的局部垫略大于由腐蚀性导电层在下面形成的局部垫。然而,可替代地,非腐蚀性导电层和腐蚀性导电层关于它们的横向延伸也可以具有相同的尺寸。
如本文中所使用的,术语“绝缘层”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于由至少一种电绝缘材料制成的层。具体地,该至少一种电绝缘材料可以包括至少一种电绝缘有机材料,例如至少一种树脂或抗蚀剂,例如阻焊剂。该绝缘材料的厚度具体地可以超过电极垫的厚度,并且进一步还可以超过工作电极(其可选地包括至少一种测试化学品)的总厚度。
开口可以被至少一个绝缘层完全或部分地包围。因此,如将在下面更详细地概述的,这些开口特别地可以形成窗口,通过该窗口至少部分地可接近工作电极以便检测至少一种分析物。开口的边缘可以完全或部分地由至少一个绝缘层形成。
如本文中所使用的,术语“保护措施”是广义的术语,并且要被赋予对于本领域普通技术人员来说其普通和惯常的含义,并且不限于特定或定制的含义。该术语具体地可以指代但不限于适合于例如机械地和/或电化学地保护至少一个腐蚀性导电层的任意装置或设置。因此,特别地,该保护措施可包括至少一个装置或层设置,与不存在保护措施的情况相比,该装置或层设置适于减小到至少一个腐蚀性导电层上的机械应力。附加地或替代地,保护措施可以包括至少一个装置或层设置,其适合于防止侵蚀性物质进入到达腐蚀性导电层。总体构思尤其可以在于以下发现:通过提供保护腐蚀性导电层(例如免受诸如电化学氧化和/或机械应力之类的外部影响)的保护措施,可以解决提供抗分层和应力的改善的稳定性的上述技术挑战。
如上所概述的用于至少一个保护措施的第一选择包括将至少一个边缘与至少一个电绝缘层重叠。因此,当从顶部看向基板时,边缘可以至少部分地被绝缘层覆盖,并且因此可以至少部分地从顶部不可见。由此,边缘可以在机械和化学两方面得到保护。因此,作为示例,通过重叠绝缘层,可以保护边缘免于机械剥离和/或可以保护边缘免于氧化性液体的进入。例如,绝缘层可以与边缘重叠达至少5μm,例如5μm至200μm,例如20μm至100μm。绝缘层可以在电极垫的整个边缘上在圆周上与至少一个电极垫边缘重叠。因此,作为示例,电极垫的整个圆周边缘可以被绝缘层重叠,而不会使边缘的部分不重叠。
用于至少一个保护措施的第二选择(其可以作为第一选择的补充或替代而实施)可以包括提供电极垫中的至少一个(优选地所有电极垫),其在平行于升高的远侧部分的较小尺寸的方向上具有伸长的形状。因此,作为示例,升高的远侧部分可以沿着纵轴延伸,并且至少一个电极垫可以关于垂直于纵轴的较长轴伸长。如下面将详细示出的,在使用电化学传感器期间的机械应力的测量和模拟示出:伸长的基板在使用中通常绕垂直于纵轴的弯曲轴弯曲,而绕平行于纵轴的轴的弯曲发生的程度较小。然而,特别是在电极垫在纵向方向上延伸较大距离的情况下,绕垂直于纵轴的轴的弯曲会在电极垫上引起机械应力。因此,与在垂直于纵向的方向上的延伸相比,电极垫在纵向上的范围可以减小,从而沿着伸长的远侧部分的较小尺寸形成伸长的形状。
电化学可以进一步以各种方式体现。因此,特定实施例可以涉及腐蚀性导电层和非腐蚀性导电层。如上所述,至少一个腐蚀性导电层可以具体地插在非腐蚀性导电层和基板之间。非腐蚀性导电层具体地可以包括比银(Ag)贵的至少一种材料,具体地,比Ag贵的至少一种金属。所述至少一个非腐蚀性导电层具体可以包括标准电势大于+0.8V的至少一种材料。所述腐蚀性导电层具体可以包括与Ag一样贵的至少一种材料,特别是没有Ag贵,或者最多与Ag一样贵的至少一种金属。腐蚀性导电层具体可以包括标准电势不大于+0.8 V的至少一种材料。
所述非腐蚀性导电层具体地可以包括选自由如下各项组成的组的至少一种材料:钯(Pd),金(Au);铂(Pt);碳;石墨;有机导体,特别是导电聚合物;有机半导体,特别是半导体聚合物,例如聚-3,4-乙基二氧噻吩(PEDOT)或PEDOT:PSS。在不限制其他实施例的情况下,对于下面更详细地给出的示例,将使用Au。这主要归因于以下事实:可以例如通过使用湿化学工艺(例如化学金属化或电沉积)而容易地施加Au,并且此外,这是因为Au为电极垫提供了出色的表面质量。然而,应注意,对于非腐蚀性导电层,其他沉积技术和/或其他金属,导电材料或导电材料的组合也是可能的。
腐蚀性导电层具体地可以包括选自由以下各项组成的组的至少一种材料:铜(Cu);钛(Ti);铝(Al);银(Ag)。在不限制其他实施例的情况下,对于下面更详细地给出的示例,将使用Cu。这主要归因于以下事实:Cu对许多基板(例如聚酰亚胺基板)提供了出色的粘合性能,并且进一步为其他金属或其他导电材料的放置提供了出色的表面,例如通过使用湿化学工艺(例如化学金属化或电沉积)。Cu本身可以例如以湿化学方式(例如从沉积浴中的溶液)施加到基板上。然而,应注意,对于腐蚀性导电层,其他沉积技术和/或其他金属,导电材料或导电材料的组合也是可能的。
具体地,至少一个工作电极的电极垫,电极垫之一,更多电极垫或甚至全部电极垫可包括选自由以下各项组成的组的至少一个腐蚀性导电层-非腐蚀性导电层对:Cu-Au;Cu-Pd;Cu-Pt。如上所概述,在下文中,在不限制其他实施例的情况下,将使用组合Cu-Au。
如上所概述的,至少一个工作电极可以包括至少一种测试化学品。因此,作为示例,工作电极的电极垫可以全部或部分地被至少一种测试化学品(特别是包含用于检测至少一种分析物的至少一种酶的至少一种测试化学品)覆盖。也可以在本发明的上下文中使用的酶的示例可以源自上面列出的现有技术文件。例如,可以使用葡萄糖氧化酶(GOx)和/或葡萄糖脱氢酶(GOD)。测试化学品还可以包括其他材料,例如粘合剂材料,电极颗粒,介体等。因此,作为示例,测试化学品可以包括至少一种酶,碳颗粒,聚合物粘合剂和MnO2颗粒。此外,至少一种测试化学品可以包含在单层中,或者测试化学品可以包含多层,例如具有至少一种酶的一层和具有一种或多种附加功能的一个或多个附加层,例如一个或多个扩散屏障和/或一个或多个生物相容性层。
作为示例,绝缘层可以在电极垫上形成开口,例如窗口。开口可以全部或部分地填充有至少一种测试化学品。如上所述,可以确定开口的尺寸,使得电极垫的边缘与绝缘层完全或部分重叠。因此,开口的尺寸可以小于下面的电极垫的尺寸,使得当通过开口看向下面的电极垫时,电极垫的边缘优选是不可见的。然后可以利用至少一种测试化学品完全或部分地填充这些开口,例如,其中一个底层包含酶,该底层与非腐蚀性导电层接触,以及可选地,在该底层的上方有一层或多层,诸如一个或多个扩散屏障和/或一个或多个生物相容性层,也称为生物相容性涂层。
如上所述,在保护措施的第二选择中,电极垫可以在垂直于基板的延伸的纵轴的方向上具有伸长的形状。电极垫具体地可以具有伸长的形状,其在垂直于伸长的远侧部分的纵轴的维度上具有最大宽度w,并且在平行于纵轴的维度上具有最大长度l。其中,具体而言,比率b/l或其倒数值可以定义电极垫的形状的伸长。具体来说,可以选择以下值:1.5≤b/l≤4.0,特别是1.8≤b/l≤3.0,更特别是2.0≤b/l≤2.5,更特别是b/l = 2.21。为了提供伸长的形状,具体地,电极垫可以具有选自由以下各项组成的组的形状:矩形;椭圆形;具有圆形边缘的矩形。
电化的学传感器的上述电极(包括工作电极,参考电极和对电极)可以布置在基板的一侧或表面上,或者可以布置在基板的两侧或表面上。具体地,工作电极和参考电极的电极垫可以布置在基板的第一侧上。对电极可以布置在相同的第一侧上,或更具体地,可以布置在基板的第二侧上,该第二侧与该第一侧相对。近侧部分可包括至少一个工作电极接触垫,至少一个参考电极接触垫和至少一个对电极接触垫。在对电极位于基板的第二侧上的情况下,对电极接触垫可以通过延伸穿过基板的至少一个电通孔与对电极电连接。
可以通过以特定方式布置工作电极的电极垫来进一步支持电极垫的保护措施。因此,在使用电化学传感器植入状态期间,远侧部分可以主要围绕垂直于纵向延伸的轴弯曲,其中弯曲半径具体地可以在远侧部分的中部中较小。为了避免由于弯曲而施加到电极垫上的分层和/或机械应力,可以选择电极垫的特定布置。因此,伸长的远侧部分可以具有长度L。工作电极的电极垫可以布置在远侧部分的电极区域内,该电极区域从基板的远端朝着近侧部分延伸距离L/3。因此,特别是为了减小机械应力,电极垫尤其可以被布置成更靠近纵向部分的最前尖端。
相比于已知的电化学传感器及其生产方法,本文提出的电化学传感器和方法提供了许多优点。因此,根据本发明,可以实现降低机械应力和化学应力的几种方法。具体地,可以实现铜基电极,对于该铜基电极,绝缘层在电极垫边缘上至少部分地重叠。附加地或可替代地,特定的铜基电极可以通过将例如矩形或其他伸长的形状用于电极场来实现。由于绝缘层在电极垫上重叠或伸长的电极垫设计,可以降低机械应力,并且分层的风险变得较小,特别是在沿基板的远侧区域具有电极场的电化学传感器中。由此,可以实现带有具有多个酶场的工作电极的电化学传感器,其中例如可以将酶场设置在例如经由一个或单个导电迹线连接的基于铜金的电极垫上。绝缘层可以在电极垫边缘上至少部分重叠。附加地或可替代地,电极垫可以沿着基板的较小尺寸具有伸长的形状。
如上所概述,腐蚀性导电层具体地可以完全或部分地由铜制成。通过上述保护措施可以提高铜层的粘附的机械稳定性。具体地,至少一个非腐蚀层可以全部或部分地由金制成。如以上进一步概述的,基板具体地可以是柔性基板,诸如由例如聚酰亚胺制成的柔性基板。垫的形状,尤其是绝缘层中的开口的形状和/或电极垫的形状,具体地可以是矩形,椭圆形或具有圆形边缘的矩形。至少一个对电极特别地可以布置在背面(也称为第二侧),该背面与第一侧的至少一个工作电极相对。对电极(特别是背面对电极)具体可以由Ag/AgCl制成。可以使用酶糊剂(特别是包含GOD的酶糊剂)来填充电极垫上方的绝缘层中的开口。
总结并且不排除其他可能的实施例,可以设想以下实施例:
实施例1:一种电化学传感器,特别是用于检测体液中的分析物的电化学传感器,更具体地用于***用户的身体组织的电化学传感器,该电化学传感器包括具有近侧部分和伸长的远侧部分的基板,其中,在远侧部分上形成工作电极,参考电极和对电极,其中工作电极包括导电迹线,沿着该导电迹线布置多个电极垫,该多个电极垫经由导电迹线连接,其中,电极垫包括被非腐蚀性导电材料覆盖的腐蚀性导电层,其中绝缘层设置在基板上,在电极垫的区域中留下开口,其中电化学传感器包括针对腐蚀性导电层的选自由以下各项组成的组的至少一个保护措施:
a. 绝缘层在电极垫中的至少一个的至少一个电极垫边缘上至少部分重叠。
b. 电极垫中的至少一个沿伸长的远侧部分的较小尺寸具有伸长的形状。
实施例2:根据前述实施例所述的电化学传感器,其中所述腐蚀性导电层***在所述非腐蚀性导电层与所述基板之间。
实施例3:根据前述实施例中任一项所述的电化学传感器,其中所述非腐蚀性导电层包括比Ag贵的至少一种材料。
实施例4:根据前述实施例中任一项所述的电化学传感器,其中所述非腐蚀性导电层包括标准电势大于+ 0.8V的至少一种材料。
实施例5:根据前述实施例中任一项所述的电化学传感器,其中所述腐蚀性导电层包括最多像Ag一样贵的至少一种材料。
实施例6:根据前述实施例中任一项所述的电化学传感器,其中所述腐蚀性导电层包括标准电势不大于+ 0.8V的至少一种材料。
实施例7:根据前述实施例中任一项所述的电化学传感器,其中所述非腐蚀性导电层包括选自由以下各项组成的组的至少一种材料:Pd;Au;Pt;碳;石墨;有机导体,特别是导电聚合物;有机半导体,特别是半导体聚合物。
实施例8:根据前述实施例中任一项所述的电化学传感器,其中所述腐蚀性导电层包括选自由以下各项组成的组的至少一种材料:Cu;Ti;Al;Ag。
实施例9:根据前述实施例中任一项所述的电化学传感器,其中,所述电极垫包括选自由以下各项组成的组的至少一个腐蚀性导电层-非腐蚀性导电层对:Cu-Au;Cu-Pd;Cu-Pt,特别是Cu-Au。
实施例10:根据前述实施例中任一项所述的电化学传感器,其中,所述绝缘层在所述电极垫的整个边缘上在圆周上与所述至少一个电极垫边缘重叠。
实施例11:根据前述实施例中任一项所述的电化学传感器,其中所述基板包括聚酰亚胺。
实施例12:根据前述实施例中任一项所述的电化学传感器,其中所述工作电极的电极垫覆盖有至少一种测试化学品,特别是至少一种测试化学品包括用于检测所述至少一种分析物的至少一种酶。
实施例13:根据前述实施例所述的电化学传感器,其中所述绝缘层在所述电极垫上形成开口,其中利用所述至少一种测试化学品完全或部分填充所述开口。
实施例14:根据前述两个实施例中任一项所述的电化学传感器,其中所述测试化学品包括至少一种酶,碳颗粒,聚合物粘合剂和MnO2颗粒。
实施例15:根据前述三个实施例中任一项所述的电化学传感器,其中所述测试化学品包括层设置,其具有包含至少一种酶的至少一个测试化学品层,还具有至少一个扩散屏障和至少一个生物相容性涂层。
实施例16:根据前述实施例中任一项所述的电化学传感器,其中,所述绝缘层包括至少一个阻焊剂。
实施例17:根据前述实施例中任一项所述的电化学传感器,其中,所述电极垫具有伸长的形状,其在垂直于所述伸长的远侧部分的纵轴的维度上具有最大宽度w,并且在平行于所述纵轴的维度上具有最大长度l,其中1.5≤b/l≤4.0,特别地1.8≤b/l≤3.0,更特别地2.0≤b/l≤2.5,更特别地b/l = 2.21。
实施例18:根据前述实施例中任一项所述的电化学传感器,其中,所述电极垫具有选自由以下各项组成的组的形状:矩形;椭圆形;具有圆形边缘的矩形。
实施例19:根据前述实施例中任一项所述的电化学传感器,其中,所述工作电极和所述参考电极的电极垫布置在所述基板的第一侧上。
实施例20:根据前述实施例所述的电化学传感器,其中所述对电极布置在所述基板的第二侧上,所述第二侧与所述第一侧相对。
实施例21:根据前述实施例所述的电化学传感器,其中所述近侧部分包括至少一个工作电极接触垫,至少一个参考电极接触垫和至少一个对电极接触垫,其中所述对电极接触垫通过延伸穿过基板的至少一个电通孔电连接到所述对电极。。
实施例22:根据前述实施例中任一项所述的电化学传感器,其中所述对电极包括Ag/AgCl。
实施例23:根据前述实施例中任一项所述的电化学传感器,其中,所述伸长的远侧部分具有长度L,其中,所述工作电极的电极垫布置在所述远侧部分的电极区域内,该电极区域从基板的远端朝向近侧部分延伸距离L/3。
实施例24:一种用于生产电化学传感器的方法,该方法包括:
a) 提供具有近侧部分和伸长的远侧部分的基板;
b) 在远侧部分上形成工作电极,参考电极和对电极,其中工作电极包括导电迹线,沿着该导电迹线布置多个电极垫,该多个电极垫经由导电迹线连接,其中,电极垫包括由非腐蚀性导电层覆盖的腐蚀性导电层;和
c) 在基板上设置绝缘层,在电极垫的区域中留下开口;
其中该方法进一步包括:
d) 为选自由以下各项组成的组的腐蚀性导电层提供至少一个保护措施:
d1. 绝缘层在电极垫中的至少一个的至少一个电极垫边缘上至少部分重叠。
d2. 电极垫中的至少一个沿伸长的远侧部分的较小尺寸具有伸长的形状。
实施例25:根据前述实施例所述的方法,其中该方法包括制造根据前述实施例中的任一项所述的电化学传感器,该电化学传感器是指电化学传感器。
附图说明
将在实施例的后续描述中优选地结合从属权利要求来更详细地公开其他可选特征和实施例。其中,如本领域技术人员将会认识到的,可以以单独的方式以及以任何任意可行组合来实现相应的可选特征。本发明的范围不受优选实施例的约束。在图中示意性地描绘了实施例。其中,这些图中的完全相同的参考数字指代完全相同或功能上可比较的元件。
在附图中:
图1示出了用于检测体液中的分析物的可经皮***的电化学传感器的横截面视图;
图2示出了通过图1的电化学传感器的工作电极的电极场的横截面视图;
图3示出了如图2所示的具有不重叠绝缘层的横截面视图;
图4示出了图3的设置以及在机械应力下的分层问题;
图5示出了具有重叠的绝缘层的图3的设置;
图6示出了具有带有重叠的绝缘层的伸长的形状的工作电极场的俯视图;
图7示出了具有不重叠的绝缘层的图6的设置;
图8A至8B示出了电极场的各种测试设置;
图9示出了在机械应力下用于各种测试设置的氧化电流;以及
图10示出了具有位于传感器基板的最前远端的工作电极场的电化学传感器配置的俯视图。
具体实施方式
在图1中,示出了沿着用于检测体液中的分析物的电化学传感器110的纵轴的横截面视图。电化学传感器110可以特别适合于***用户的身体组织中。在根据图1的电化学传感器110中并且如下面进一步详细说明的那样,可以实施目前提出的保护措施。
电化学传感器110包括基板112,该基板具有带有接触部分116的近侧部分114,以及远侧部分118,其具有伸长的形状,如下面将更详细地概述的那样。
电化学传感器110具有多个电极场120。因此,在基板112的第一侧122(也可以称为上侧或前侧)上,布置工作电极124,其具有多个互连的工作电极场126以及具有参考电极场130的参考电极128。在也可以称为背面或底侧的第二侧132上,布置有具有对电极场136的对电极134。对电极134和参考电极128都可以包括Ag/AgCl。电极场120可以被部分地覆盖基板112的至少一个绝缘层138(例如阻焊剂)隔开。基板112本身可以是柔性基板,例如聚酰亚胺基板。
电化学传感器110可以进一步包括用于例如经由导电迹线电接触电极场120的电接触垫140,这将在下面例如关于下面的图6和7进一步详细地解释导电迹线,并且导电迹线在图1中不可见。
在图2中,示出了穿过工作电极124的工作电极场126的层设置的横截面视图。在该示例性实施例中,作为示例,聚酰亚胺基板112承载电极垫142。电极垫142本身包括腐蚀性导电层144,其例如可以由铜(Cu)制成。在腐蚀性导电层的顶部,设置至少一个非腐蚀性导电层146,例如金层。
在电极垫142的顶部上,布置至少一种测试化学品148。在图2所示的示例性实施例中,作为示例,至少一种测试化学品148可包括至少一个酶层150。作为示例,至少一个酶层150可以包括至少一种酶152,例如葡萄糖脱氢酶(GOD)。此外,酶层150可以包括导电的碳颗粒154。酶层150可以进一步包含MnO2颗粒156以及聚合物粘合剂158。
在酶层150的顶部,可以设置扩散屏障160,其可以防止材料从酶层150扩散到身体组织和/或体液中,而分析物可以从身体组织和/或从体液进入酶层150。例如,扩散屏障可以具有15至18μm的厚度,并且例如可以由亲水性聚合物例如热塑性聚氨酯制成。在扩散屏障160的顶部,可以设置一层或多层生物相容性涂层162,例如一层或多层水凝胶。例如,生物相容性涂层162可具有4至6μm的厚度。
在图3中,更详细地并且以较大的视野未按比例示出了工作电极124的工作电极场126。该设置基本上与图2所示的层设置相对应,其中基板112和在基板112的顶部的绝缘层138,与绝缘层138中的开口164为每个工作电极场126形成窗口166。如以上在图2的上下文中所讨论的,在窗口166内,布置电极垫142,其在顶部具有腐蚀性导电层144和非腐蚀性导电层146,诸如铜层,在铜层顶部具有金层。在电极垫142的顶部,布置测试化学品148。
为了制造图3的设置,例如可以在诸如层压工艺的大面积涂层中用铜涂覆聚酰亚胺基板112。在制造期间,然后可以使铜层图案化。可以例如通过使用电镀来将金层沉积到图案化的铜层上。在铜和聚酰亚胺之间,可以存在材料结合的连接,就像通过电沉积在金层和铜层之间的情况一样。通常,在金层和聚酰亚胺之间,没有建立连接。
在图4中,示出了技术挑战,该挑战是由图3的设置中的基板112弯曲时的机械应力引起的。在该示意图中未示出测试化学品148。
如在图4中可以看到的,当电化学传感器110弯曲时,通常将不同类型的机械应力引入各层中。因此,可以通过拉来施加应力和/或压来施加应力,这两种方式都可以导致金与聚酰亚胺的分层。如图4中的附图标记168所指示的,由于这种应力的施加,可能出现具有暴露的腐蚀性导电层144的区域。在这些区域中,诸如铜的腐蚀性导电材料被电化学暴露,并且局部不再受到诸如金的非腐蚀性导电材料的保护。由此,当操作电化学传感器时,腐蚀性导电材料被氧化并导致误差电流。因此,当例如通过弯曲基板112而施加机械应力时,电化学传感器110可能被机械破坏并且可能提供错误的测量结果,该错误的测量结果是被氧化电流篡改的。
在图5中,作为提供针对图4中所示的效果的保护措施的第一选择,示出了图3的设置,其中的修改是绝缘层138与工作电极垫142的电极垫边缘170重叠。因此,在重叠区域172中,优选在电极垫142的所有侧面上,绝缘层138与电极垫142重叠,并因此保护电极垫边缘170(甚至在应力下也)免于分层和/或暴露于电化学反应。因此,阻焊剂可以被拉到工作电极垫142的边缘170上。
为了保持印刷工作电极124的尺寸,以及特别是单个工作电极场126的尺寸,与图3中的常规设置相比,可以保持开口164的尺寸,并且因此,可以增加电极垫142的尺寸,使得边缘170被绝缘层138覆盖。即使当弯曲基板112时,可能出现具有暴露的腐蚀性导电层168的区域,这些区域168仍然被绝缘层138覆盖并且因此被密封以防止电化学反应。
在图6中,示出了电化学传感器110的远侧部分118的第一侧122的一部分的俯视图。在该俯视图中,第一次也能看到导电迹线174,其使工作电极124的工作电极场126互连。举例来说,导电迹线174可具有垂直于基板112的伸长的远侧部分118的延伸176的纵轴的宽度w1,其例如可为约0.05mm。如在图5中可见的,电极垫142可以在其边缘170处被绝缘层138覆盖。
图6的设置还示出了第二种选择,用于为腐蚀性导电层提供保护措施,这是将电极垫142提供为沿伸长的远侧部分118的较小尺寸具有伸长的形状的选项。因此,如图5中可以看到的,工作电极垫142在垂直于伸长的远侧部分118的纵轴176的维度上具有宽度w,该宽度在平行于纵轴176的方向上超过长度l。例如,比率w/l可以在2.1至2.2的范围内,诸如通过在图6的设置中将w提供为0.31mm并且通过将长度l提供在在0.15mm的范围内。然而,应注意,即使本文所示的值通常非常合适,其他尺寸也是可行的。对于w/l的范围,可以参考以上给出的描述。
如本文中进一步示出的,电极垫142的拐角178以及窗口166的拐角180可以是圆形的。例如,拐角178对于金可以具有53μm的曲率半径,以及对于铜可以具有50μm的曲率半径。其他扩展也是可能的。例如,重叠区域172可以具有45μm的宽度。其他尺寸是可行的。
在图7中,示出了替代实施例,其没有重叠区域172。首先,该设置广泛地对应于图6中所示的实施例,因此对于许多细节可以参考该图的描述。再次,提供导电迹线174以使工作电极124的工作电极场126的电极垫142互连。此外,再次在部分地覆盖基板112的绝缘层138内提供开口164,从而形成可选地具有圆形拐角180的窗口166。此外,再次将该工作电极接触垫142提供为具有伸长的形状,其较长的轴垂直于基板112的伸长的远侧部分118的纵轴176。然而,如其中所示,在该实施例中,电极垫142的边缘170未被绝缘层138覆盖,使得在窗口166内以及在绝缘层138和边缘170之间,基板112未覆盖并且可见。在该实施例中,工作电极垫142可以被定义为导电层144、146的在窗口166内可见的部分,而在窗口166和导电迹线174之间的部分可以被定义为互连部分182。作为示例,电极垫142可以具有宽度w3和长度l3,其中w3=200μm并且l3=50μm。相反,窗口166可具有310μm的宽度w2和150μm的长度l2。电极垫142在背离导电迹线174的一侧可以具有曲率184,例如,对于铜,曲率半径为22μm,对于金,曲率半径为25μm。
通过FEM仿真评估了用于为电极垫142提供保护措施,并且特别是为腐蚀性导电层144提供保护措施的各种选择。为此,模拟了三种不同的工作电极设置,如图8A至8C所示。其中,在每种情况下示出了电化学传感器110的远端186,其具有用于工作电极124的工作电极场126的三种不同的设置:在图8A中,示出了常规设置,其具有圆形工作电极场126的,其中绝缘层138形成开口164,并且窗口166具有圆形形状,电极垫142小于窗口166。在图8B中,示出了图7的设置的情况,在垂直于纵轴176的方向上具有伸长的窗口166和伸长的电极垫142。在图8C中,示出了图6的情况,具有伸长的电极垫142和窗口166,并且绝缘层138与电极垫142的边缘170重叠。
图8A至8C所示类型的电化学传感器绕垂直于纵轴176的轴弯曲,其中近侧部分114固定而远侧部分118向上弯曲。图8A的设置被认为是现状,金层和聚酰亚胺基板之间的接触张力为1。图8B的设置被证明在Au与聚酰亚胺基板之间的接触张力减小到61%,图8C的设置被证明接触张力减小到58%。
在图9中,以纳安为单位给出的针对氧化电流I的各种测量结果被示出为弯曲角度α的函数。其中,电流曲线188是如图8A所示的电极的常规设置所测量的曲线,该常规设置具有对称电极设计和具有不重叠的绝缘层138。曲线190是针对图8B的设置测得的氧化电流,即,在垂直于纵轴176的方向上具有伸长的形状但具有不重叠的绝缘层138的电极设置。曲线192展示出了针对图8C的设置所测量的电流,其中电极设计在垂直于纵轴176的方向上具有伸长的形状,并且还具有重叠的绝缘层138。最后,为了进行比较,曲线194是针对图5所示的设置而测量的曲线,该设置具有如图8A所示的对称设计,但具有重叠的电绝缘层138。如可见的,例如,当将曲线188与曲线190、192、194中的一个或多个进行比较时,所有的保护措施(无论是单独采取还是组合采取),都在弯曲基板112时导致减小的氧化电流。因此,电极垫在机械上和电化学上都得到了保护。在曲线190和192中,当弯曲基板时,与曲线188相比,电化学传感器的铜层的氧化电流随后显著上升。对于在绝缘层和电极垫之间具有重叠的变型来说,曲线192和194两者没有明显不同,并且与代表没有重叠的变型的曲线190相比,两者随后显著上升,即以较大的弯曲角度上升。
图9中的曲线都是使用具有八个工作电极场126的电化学传感器测量的,每个电极场126具有电极垫142。当将电化学传感器110弯曲45°时,FEM仿真表明,与其余电极场120相比,从参考电极128计数的这八个电极中的前三个电极承受较大的机械应力。因此,除了上述保护措施之外,还可以采取其他设计措施,以减少作用在工作电极124的电极垫142上的机械和电化学应力。因此,在图10中,示出了用于电化学传感器110的基板112的实施例,其可以与设计适当的工作电极场126的上述措施结合。再次在该实施例中,基板112包括近侧部分114和伸长的远侧部分118,其用于经皮***用户的身体组织中。如图10所示,在远侧部分118和近侧部分114之间,可以存在变窄的中间部分196。图10进一步示出了接触垫140,该图中的右接触垫140通过工作电极导电迹线198连接到工作电极垫142。接触垫140中的中间一个接触垫可以经由至少一个参考电极导电迹线202连接到参考电极电极垫200。接触垫140中的剩余的一个可以通过未在图10中示出的电通孔连接到基板112的反面上的对应对电极接触垫。
在该简化图中,可以根据上面示出的实施例中的任何一个(例如根据图6或图7)来设计电极垫142。因此,可以提供伸长的形状。此外,在该设置中未示出绝缘层138。因此,可以提供正如上文所述的重叠,作为进一步的保护措施。
如图10所示,工作电极垫142的数量从最初的八个减少到五个。此外,由于机械应力通常在伸长的远侧部分118的中间最大,因此电极垫142的位置靠近伸长的远侧部分118的远端186。因此,作为示例,从远端186到变窄的中间部分196的开始处,伸长的远侧部分118总共可具有长度L。工作电极124的电极垫142可以全部布置在距远端186的距离L/3以内。从而,当弯曲基板112时,可以进一步减小施加到敏感工作电极垫142上的机械应力。
附图标记列表
110 电化学传感器
112 基板
114 近侧
116 接触部分
118 远侧部分
120 电极场
122 第一面
124 工作电极
126 工作电极场
128 参考电极
130 参考电极场
132 第二面
134 对电极
136 对电极场
138 绝缘层
140 接触垫
142 电极垫
144 腐蚀性导电层
146 非腐蚀性导电层
148 测试化学品
150 酶层
152 酶
154 碳颗粒
156 MnO2颗粒
158 聚合物粘合剂
160 扩散屏障
162 生物相容性涂层
164 开口
166 窗口
168 具有暴露的腐蚀性导电层的区域
170 电极垫边缘
172 重叠区域
174 导电迹线
176 纵轴
178 拐角
180 拐角
182 互连部分
184 曲率
186 远端
188 图8A的设置的曲线
190 图8B的设置的曲线
192 图8C的设置的曲线
194 图5的设置的曲线
196 中间部分
198 工作电极导电迹线
200 参考电极电极垫
202 参考电极导电迹线。

Claims (15)

1.一种电化学传感器(110),包括具有近侧部分(114)和伸长的远侧部分(118)的基板(112),其中工作电极(124),参考电极(128)和对电极(134)在远侧部分(118)上形成,其中工作电极(124)包括导电迹线(174、198),沿着该导电迹线(174、198)布置多个电极垫(142),该多个电极垫经由导电迹线(174、198)连接,其中电极垫(142)包括被非腐蚀性导电层(146)覆盖的腐蚀性导电层(144),其中所述腐蚀性导电层(144)包括没有Ag贵或与Ag一样贵的至少一种金属,其中非腐蚀性导电层(146)包括比Ag贵的至少一种金属,其中绝缘层(138)设置在基板(112)上,在电极垫(142)的区域中留下开口(164),其中电化学传感器(110)包括针对腐蚀性导电层(144)的选自由以下各项组成的组的至少一个保护措施:
a. 绝缘层(138)在至少一个电极垫(142)的至少一个电极垫边缘(170)上至少部分重叠;
b. 电极垫(142)中的至少一个沿着伸长的远侧部分(118)的较小尺寸具有伸长的形状。
2.根据前述权利要求所述的电化学传感器(110),其中,所述腐蚀性导电层(144)***在所述非腐蚀性导电层(146)与所述基板(112)之间。
3.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述非腐蚀性导电层(146)包括选自由以下各项组成的组的至少一种材料:Pd;Au;Pt;碳;石墨;有机导体;有机半导体。
4.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述腐蚀性导电层(144)包括选自由以下各项组成的组的至少一种材料:Cu;Ti;Al;Ag。
5.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述电极垫包括选自由以下各项组成的组的至少一个腐蚀性导电层(144)-非腐蚀性导电层(146)对:Cu-Au;Cu-Pd;Cu-Pt。
6.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述绝缘层(138)在所述电极垫(142)的整个边缘上在圆周上与所述至少一个电极垫边缘(170)重叠。
7.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述基板(112)包括聚酰亚胺。
8.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述工作电极(124)的电极垫(142)覆盖有至少一种测试化学品(148)。
9.根据前述权利要求所述的电化学传感器(110),其中,所述测试化学品(148)包括用于检测所述至少一种分析物的至少一种酶(152)。
10.根据前述两项权利要求中的任一项所述的电化学传感器(110),其中,所述测试化学品(148)包括至少一种酶(152),碳颗粒(154),聚合物粘合剂(158)和MnO2颗粒(152)。
11.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述绝缘层(138)包括至少一个阻焊剂。
12.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述电极垫(142)具有伸长的形状,其在垂直于所述伸长的远侧部分(118)的纵轴(176)的维度上具有最大宽度w并且在平行于纵轴(176)的维度上的最大长度l,其中1.5≤b/l≤4.0。
13.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述电极垫(142)具有选自由以下各项组成的组的形状:矩形;椭圆形;具有圆形边缘的矩形。
14.根据前述权利要求中的任一项所述的电化学传感器(110),其中,所述伸长的远侧部分(118)具有长度L,其中,所述工作电极(124)的电极垫(142)布置在所述远侧部分(118)的电极区域内,该电极区域从基板(112)的远端(186)朝近侧部分(114)延伸距离L/3。
15.根据前述权利要求中的任一项所述的用于生产电化学传感器(110)的方法,所述方法包括:
a) 提供具有近侧部分(114)和伸长的远侧部分(118)的基板(112);
b) 在远侧部分(118)上形成工作电极(124),参考电极(128)和对电极(134),其中工作电极(124)包括导电迹线(174、198),沿该导电迹线(142)布置多个电极垫(142),该多个电极垫经由导电迹线(174、198)连接,其中电极垫(142)包括被非腐蚀性导电层(146)覆盖的腐蚀性导电层(144);以及
c) 在基板(112)上设置绝缘层(138),在电极垫(142)的区域中留下开口(164);
其中该方法进一步包括:
d) 为选自由以下各项组成的组的腐蚀性导电层(144)提供选自以下各项组成的组的至少一个保护措施:
d1. 绝缘层(138)在电极垫(142)中至少一个的至少一个电极垫边缘(170)上至少部分重叠;
d2. 电极垫(142)中的至少一个沿着伸长的远侧部分(118)的较小尺寸具有伸长的形状。
CN201880069042.7A 2017-10-24 2018-10-23 电化学传感器及其生产方法 Active CN111246799B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17198040 2017-10-24
EP17198040.2 2017-10-24
PCT/EP2018/078960 WO2019081462A1 (en) 2017-10-24 2018-10-23 ELECTROCHEMICAL SENSOR AND METHOD FOR PRODUCING SAME

Publications (2)

Publication Number Publication Date
CN111246799A true CN111246799A (zh) 2020-06-05
CN111246799B CN111246799B (zh) 2022-12-06

Family

ID=60191124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880069042.7A Active CN111246799B (zh) 2017-10-24 2018-10-23 电化学传感器及其生产方法

Country Status (7)

Country Link
US (1) US11399753B2 (zh)
EP (1) EP3700422B1 (zh)
CN (1) CN111246799B (zh)
ES (1) ES2942457T3 (zh)
FI (1) FI3700422T3 (zh)
HU (1) HUE061545T2 (zh)
WO (1) WO2019081462A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4111968A4 (en) * 2020-02-27 2024-03-20 PHC Holdings Corporation SENSOR AND ITS MANUFACTURING METHOD
EP4000514A1 (en) 2020-11-12 2022-05-25 Roche Diabetes Care GmbH Method for producing an analyte sensor, an analyte sensor, and a use thereof
EP4137046A1 (en) * 2021-08-18 2023-02-22 Roche Diabetes Care GmbH Analyte sensor and a method for its producing

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US20040133164A1 (en) * 2002-11-05 2004-07-08 Funderburk Jeffery V. Sensor inserter device and methods of use
US20080021436A1 (en) * 1998-04-30 2008-01-24 Abbott Diabetes Care, Inc. Analyte Monitoring Device and Methods of Use
US20100230285A1 (en) * 2009-02-26 2010-09-16 Abbott Diabetes Care Inc. Analyte Sensors and Methods of Making and Using the Same
US20110028815A1 (en) * 2009-07-02 2011-02-03 Dexcom, Inc. Analyte sensors and methods of manufacturing same
US20120016220A1 (en) * 2010-07-14 2012-01-19 Dyconex Ag Self-Cleaning Sensor Surfaces for Implantable Sensor Systems
CN102387746A (zh) * 2009-02-09 2012-03-21 爱德华兹生命科学公司 分析物传感器和制作方法
CN103519827A (zh) * 2012-06-28 2014-01-22 霍夫曼-拉罗奇有限公司 用于监测用户的至少一项身体机能的装置及制造其的方法
US20150099954A1 (en) * 2012-06-29 2015-04-09 Roche Diagnostics Operations, Inc. Sensor elements for detecting an analyte in a body fluid sample as well as methods of making the same
US20160235346A1 (en) * 2015-02-16 2016-08-18 Verily Life Sciences Llc Electrochemical Sensor for a Bandage Type of Continuous Glucose Monitoring System

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050972A1 (en) * 2004-11-12 2006-05-18 Diagnoswiss S.A. Microfluidic device with minimised ohmic resistance
AU2006297572B2 (en) * 2005-09-30 2012-11-15 Ascensia Diabetes Care Holdings Ag Gated Voltammetry
EP2163190A1 (de) 2008-09-11 2010-03-17 Roche Diagnostics GmbH Elektrodensystem für Messung einer Analytkonzentration in-vivo

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6134461A (en) * 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US20080021436A1 (en) * 1998-04-30 2008-01-24 Abbott Diabetes Care, Inc. Analyte Monitoring Device and Methods of Use
US20040133164A1 (en) * 2002-11-05 2004-07-08 Funderburk Jeffery V. Sensor inserter device and methods of use
CN102387746A (zh) * 2009-02-09 2012-03-21 爱德华兹生命科学公司 分析物传感器和制作方法
US20100230285A1 (en) * 2009-02-26 2010-09-16 Abbott Diabetes Care Inc. Analyte Sensors and Methods of Making and Using the Same
US20110028815A1 (en) * 2009-07-02 2011-02-03 Dexcom, Inc. Analyte sensors and methods of manufacturing same
US20120016220A1 (en) * 2010-07-14 2012-01-19 Dyconex Ag Self-Cleaning Sensor Surfaces for Implantable Sensor Systems
CN103519827A (zh) * 2012-06-28 2014-01-22 霍夫曼-拉罗奇有限公司 用于监测用户的至少一项身体机能的装置及制造其的方法
US20150099954A1 (en) * 2012-06-29 2015-04-09 Roche Diagnostics Operations, Inc. Sensor elements for detecting an analyte in a body fluid sample as well as methods of making the same
US20160235346A1 (en) * 2015-02-16 2016-08-18 Verily Life Sciences Llc Electrochemical Sensor for a Bandage Type of Continuous Glucose Monitoring System

Also Published As

Publication number Publication date
EP3700422B1 (en) 2023-02-22
ES2942457T3 (es) 2023-06-01
EP3700422A1 (en) 2020-09-02
HUE061545T2 (hu) 2023-07-28
US11399753B2 (en) 2022-08-02
FI3700422T3 (fi) 2023-04-27
US20200245908A1 (en) 2020-08-06
CN111246799B (zh) 2022-12-06
WO2019081462A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
US11399753B2 (en) Electrochemical sensor and method for producing thereof
EP3838147B1 (en) Sensor element for detecting an analyte in a body fluid
KR20060131765A (ko) 전기화학 테스트 스트립에서 직접 간섭 전류의 영향을감소시키는 방법
CN110430814B (zh) 医疗设备和用于制造医疗设备的方法
CN114767105B (zh) 植入式电化学生物传感器、测试方法及植入式医疗器械
EP4111968A1 (en) Sensor and method for manufacturing same
US20210106260A1 (en) Mediator-free biochemical sensing device and method for noninvasively and electrochemically sensing in vivo biochemicals
US11774394B2 (en) Electrochemical sensor and sensor system for detecting at least one analyte
US20200261006A1 (en) Sensor for detecting an analyte in a body fluid and method of manufacturing
US20240060927A1 (en) Analyte sensor and a method for its producing
TWI844059B (zh) 微型生物感測器及其感測結構
CN113820371A (zh) 一种植入式三电极微型传感器及其制备工艺
KR20070022195A (ko) 직접적인 간섭 전류의 영향을 감소시키기 위한 전기화학테스트 스트립
EP1909096A1 (en) Biosensor
TW202321686A (zh) 具有變化的剛性之感測器
CA3113799A1 (en) Methods for making and operating physiological characteristic sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant