CN111244207B - 一种宽波段自供电锑薄膜光电探测器 - Google Patents

一种宽波段自供电锑薄膜光电探测器 Download PDF

Info

Publication number
CN111244207B
CN111244207B CN202010059503.1A CN202010059503A CN111244207B CN 111244207 B CN111244207 B CN 111244207B CN 202010059503 A CN202010059503 A CN 202010059503A CN 111244207 B CN111244207 B CN 111244207B
Authority
CN
China
Prior art keywords
antimony
substrate
film
thin film
photoelectric detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010059503.1A
Other languages
English (en)
Other versions
CN111244207A (zh
Inventor
唐涵
陆冬林
罗斯玮
钟建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202010059503.1A priority Critical patent/CN111244207B/zh
Publication of CN111244207A publication Critical patent/CN111244207A/zh
Application granted granted Critical
Publication of CN111244207B publication Critical patent/CN111244207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种宽波段自供电锑薄膜光电探测器,由锑薄膜和银电极复合而成,所述锑薄膜是通过Sb粉气相沉积于衬底制得。本发明由通过Sb粉气相沉积于衬底制得的锑薄膜和银电极复合而成,锑薄膜质量高,连续性好,且制作工艺简单,省略了锑薄膜与基底材料的再复合工序,得到的光电探测器具备自供能特性和宽波段工作特性,且当所用衬底为柔性衬底时,得到的柔性光电探测器还具备优异的机械柔韧性。

Description

一种宽波段自供电锑薄膜光电探测器
技术领域
本发明属于光电材料技术领域,涉及一种宽波段自供电锑薄膜光电探测器。
背景技术
光电探测器是一种能把光信号转换成电信号的装置。随着技术文明的发展,新型光电探测器在光电显示、成像、环境监测、光通信、军事、安全等诸多领域发挥着重要作用。而伴随着由石墨烯为代表的二维材料的出现,应用二维材料所制成的一系列性能优越的光电探测器将成为新型光电器件不可或缺的一部分。而研究人员对于这一类光电探测器的研究主要极中于以下几个方面:一方面,研究人员倾向于开发自驱动自供电的光电探测器,该探测器可在零偏置电压下工作,不消耗外部电力。与传统的需要消耗能源和电力的设备相比,它们具有极高的成本效益,可以直接应用于光电子***。另一方面,建立在轻质和可弯曲的基底上的柔性器件,由于其在大面积可折叠显示器、曲面数字电话等柔性电子***中的巨大应用潜力,近年来受到越来越多的关注。此外,具备宽波段响应的光电探测器也具有很大的实际意义。然而,尽管应用二维材料制成的光电探测器的优势是巨大的,但同时所面临的挑战也是巨大的。首先,通过转移等方法制备出的探测器件由于材料与衬底之间的接触的限制,使得所制备的光电探测器在稳定性以及性能上都受到了很大的制约。此外,由于衬底与生长材料之间的晶格匹配问题,使得在柔性衬底上制备出大面积高质量的薄膜材料面临很大的困难。最后,多功能光电探测器的制备往往伴随着繁琐而复杂的工艺,这无疑也为其大规模应用带来了巨大的阻碍。
发明内容
为了解决现有技术中存在的问题,本发明的目的是在于提供了一种宽波段自供电锑薄膜光电探测器,由通过Sb粉气相沉积于衬底制得的锑薄膜和银电极复合而成,具备自供能特性和宽波段工作特性,且当所用衬底为柔性衬底时,得到的柔性光电探测器还具备优异的机械柔韧性。
为了实现上述技术目的,本发明采用如下技术方案:
一种宽波段自供电光电探测器,由锑薄膜和银电极复合而成,所述锑薄膜是通过Sb粉气相沉积于衬底制得。
优选的方案,所述锑薄膜的具体制备过程为:将Sb粉置于加热区,将石英管内气压抽至10pa,并使用氩氢混合气体洗气15min~20min,保持气体流速为80~100sccm,让所述加热区温度以20~25℃/min由室温上升至440℃,将SiO2/Si衬底PI衬底放置于距离加热区中心14~15cm处,使得气化后的Sb粉沉积于衬底上得到所述锑薄膜。
优选的方案,所述锑薄膜的厚度为10~20nm。
优选的方案,所述Sb粉的纯度不低于99.99%。
优选的方案,所述衬底为SiO2/Si刚性衬底或PI柔性衬底。
更优选的方案,所述SiO2/Si刚性衬底先采用食人鱼溶液进行浸泡并且超声5h,之后使用超纯水清洁,高温干燥后使用;所述PI柔性衬底先使用无水乙醇浸泡并超声2h,之后经超纯水清洗后干燥使用。
与现有技术相比,本发明的优势在于:
1、本发明通过气相沉积制得的锑薄膜,由扫描电子显微镜SEM图和光学显微镜OM图可知,其具有良好的连续性、极大的表面积、良好的晶体构结,且分布致密均匀,具有微米级别的横向尺寸;由X射线衍射(XRD)图谱和拉曼光谱可知,其具有单晶结构的存在,具有高纯度以及高连续性特性;同时制备成的薄膜可以直接沉积在衬底上,省略了薄膜与基底材料的再复合工序,以方便下一步的器件合成,简化了制作工艺,具有很好的应用前景。
2、本发明先通过气相沉积方法直接在SiO2/Si衬底上制备锑薄膜,然后再将薄膜与银电极复合形成光电探测器,在0偏置电压的情况下,制备的光电探测器仍能够十分稳定的工作,具有不错的响应,且在405nm、450nm、660nm和1060nm的激光激发下,所制备的锑薄膜光电探测器都具备良好且稳定的响应,是一种具备自供能特性和宽波段工作特性的光电探测器。
3、本发明先通过气相沉积方法直接在PI柔性衬底上制备锑薄膜,然后再将薄膜与银电极复合形成柔性光电探测器,在受到不同程度的弯曲应力时,仍能够稳定的工作,具有良好的稳定性,且锑薄膜柔性光电探测器在经过200次弯折之后,I-t特性曲线几乎没有受到影响,预示了锑薄膜和柔性光电探测器具备优异的机械柔韧性。
附图说明
图1为气相沉积法制备Sb薄膜的***结构示意简图;
图2为锑薄膜原子结构简图(a)、SEM图(b)、SiO2/Si衬底上的锑薄膜的光学显微镜图(c)和PI衬底上的锑薄膜的光学显微镜图(d);
图3为锑薄膜的XRD图谱(a)以及Raman测试图谱(b);
图4为实施例3制得的光电探测器的结构简图(a)及实施例4制得的柔性光电探测器的结构简图(b);
图5为实施例3制得的光电探测器的I-V(a)特性曲线和I-t特性曲线图(b);
图6为不同波长激光激发下的实施例3制得的光电探测器的工作特性曲线图;
图7为不同波长激光激发下的实施例4制得的柔性光电探测器的工作特性曲线图;
图8为不同曲率半径曲面下实施例4制得的柔性光电探测器的I-t特性曲线图;
图9为抗弯折测试后的实施例4制得的柔性光电探测器的I-t特性曲线图;
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件制造商建议的条件进行,其光电探测器和柔性光电探测器通过常规的方法制得。所用试剂仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明中柔性光电探测器固定在不同曲率半径的平面上,再通过Keithly2600***表征其工作性能特性。
本发明中柔性光电探测器件经过不同次数的弯折之后,通过keithly2600***表征其工作性能特性。
实施例1
首先将尺寸为1×1cm SiO2/Si(300nm)衬底置于食人鱼溶液中,浸泡超声处理五小时以清除其表面杂质,然后将所处理后的SiO2/Si衬底浸泡至无水乙醇溶液中继续超声处理30分钟以去除其表面食人鱼溶液及杂质残留物,最后将处理后的衬底使用超纯水进一步超声清洁,最后将步骤2-3重复三次后处理后的衬底高温干燥后获得干净的300nm SiO2/Si衬底。
将0.0765g Sb粉末置于加热区,使用真空泵将石英管内气压抽至10pa左右状态,并使用氩氢混合气体洗气15min~20min,保持气体流速为100sccm,让所述加热区温度以20℃/min由室温上升至440℃,保持15min,使所述锑粉气化;将SiO2/Si衬底放置于距离加热中心14~16cm处,使得气化后所述锑粉粉末沉积于SiO2/Si衬底上得到所述锑薄膜,其厚度为12~15nm。
实施例2
首先将尺寸为1.5×2cm PI衬底置于无水乙醇溶液中,浸泡超声处理2小时以清除其表面杂质,然后将所处理后的SiO2/Si衬底浸泡至超纯水中继续超声处理30分钟以上以进一步去除其表面杂质,最后将步骤1-2重复三次后将处理后的衬底干燥而得到干净的PI衬底;
将0.0782g Sb粉末置于加热区,使用真空泵将石英管内气压抽至10pa左右状态,并使用氩氢混合气体洗气15min~20min,保持气体流速为100sccm,让所述加热区温度以20℃/min由室温上升至440℃,保持15min,使所述锑粉气化;将PI衬底放置于距离加热中心14~16cm处,使得气化后所述锑粉粉末沉积于PI衬底上得到所述锑薄膜,其厚度为16~18nm。
实施例3
将实施例1中所制备的沉积于Sb-SiO2衬底上的锑薄膜置于操作平台,然后使用银胶作为电极并按照如图4(a)所示结构点制电极,构成一个锑薄膜光电探测器,最后将导线与银电极复合后接入测试平台进行测试。
实施例4
将实施例2中所制备的沉积于PI衬底上的锑薄膜置于操作平台,然后使用银胶作为电极并按照如图4(b)所示结构点制电极,构成一个锑薄膜柔性光电探测器,最后将导线与银电极复合后接入测试平台进行测试。
如图2所示,(a)表示Sb的原子结构图像;(b)表示Sb的扫描电子显微镜SEM图像;(c)表示Sb于SiO2/Si衬底上的光学显微镜OM图像;(d)表示Sb于PI柔性衬底上的光学显微镜OM图像;由(b)证实所获得的锑薄膜具有良好的晶体构结,且分布致密均匀,具有微米级别的横向尺寸,(c)和(d)中的光学显微镜图像进一步确认了这一结论,而由光学图像可知,在两种衬底上所沉积的锑薄膜都具有良好的连续性以及极大的表面积。
综上所述,我们成功地获得了少层的锑薄膜。并且具有良好的晶体结构和微米级别的横向尺寸。
如图3所示,(a)为锑薄膜的X射线衍射(XRD)图谱,锑薄膜分别在003与006处出现了衍射峰,以上结构确认了锑薄膜中单晶结构的存在,以及薄膜成分的高纯度特性,XRD的测试结果说明了我们所制备的薄膜的高质量以及高连续性特性;
(b)为锑薄膜与的拉曼光谱(由633nm激光激发),通过使用来自SiO2/Si衬底的主要散射峰在520cm-1处固定拉曼的校准标准。在大约115.7cm-1和152.31cm-1处的两个峰分别归因于Sb晶体的Eg和Alg振动模式,表明通过气相沉积法成功制备了锑薄膜。
如图5所示,(a)显示出了在不同偏压下锑薄膜光电探测器的I-V特性曲线,其中光源功率强度保持在100mW,激光波长为450nm。相较于无光照时的暗电流曲线,光电流增益明显且光电流大小随着偏压的升高而增加,整体I-V曲线呈现一个典型的非线性关系,说明在电极与锑薄膜之间形成了良好的肖特基接触。值得注意的一点是,对于加正偏压与负偏压时的I-V特性曲线而言,其对应的曲线是不对称的,这是由于在电极与电极之间存在一个不对称的肖特基势垒,使得探测器在加正向偏置与反向偏置的时候的工作特性曲线出现了不同。(b)显示出了锑薄膜光电探测器的I-t特性曲线,在0偏置电压的情况下,制备的锑薄膜光电探测器仍能够十分稳定的工作,且具有不错的响应,探测器在零偏置电压工作时光电流增益可达0.535μA,上升时间为6.12s,下降时间为26.4ms,该结果预示了本发明得锑薄膜光电探测器是一种具备自供能特性的光电探测器;
如图6所示,为锑薄膜光电探测器在不同波长激光激发下的特性曲线,表示在405nm;450nm;1060nm的激光激发下,所制备的锑薄膜光电探测器都具备良好且稳定的响应。以上结果验证了所制备的锑薄膜光电探测器的宽波段工作特性。
如图7所示,为锑薄膜柔性光电探测器在不同波长激光激发下的特性曲线,表示在405nm;450nm;660nm;1060nm的激光激发下,所制备的锑薄膜柔性光电探测器都具备良好且稳定的响应。以上结果验证了所制备的锑薄膜柔性光电探测器的宽波段工作特性。
如图8所示,为锑薄膜柔性光电探测器在不同弯曲程度下的特性曲线,通过使用具有不同曲率半径的曲面材料,我们在各种弯曲状态下测试了锑薄膜柔性光电探测器,锑薄膜柔性光电探测器在不同曲率半径下的I-t特性曲线表明,在受到不同程度的弯曲应力时,我们的锑薄膜柔性探测器仍能够稳定的工作,但由于在受到弯曲时,光照区域相应的也发生了变化,所以对光电流增益而言,不同的曲率半径对其具有一定的影响。这是由于对于完全程度越大的表面而言,受到激光照射的区域相应的减小,使得器件受到光照的有效面积减小,从而减小了所产生的光生电子空穴对,降低了光电流增益。
如图9所示,为了验证我们的锑薄膜柔性光电探测器的机械柔韧性,展示了锑薄膜柔性光电探测器在不同次数的弯折测试之后的工作特性曲线,由图中的特性曲线可知,锑薄膜柔性光电探测器在经过200次弯折之后,I-t特性曲线几乎没有受到影响,该结果预示了锑薄膜柔性光电探测器具备优异的机械柔韧性。

Claims (3)

1.一种宽波段自供电锑薄膜光电探测器,其特征在于:由锑薄膜和银电极复合而成,所述锑薄膜是通过Sb粉气相沉积于衬底制得;
所述锑薄膜的具体制备过程为:将Sb粉置于加热区,将石英管内气压抽至10pa,并使用氩氢混合气体洗气15min~20min,保持气体流速为100sccm,让所述加热区温度以20℃/min由室温上升至440℃,保持15min,将衬底放置于距离加热区中心14~15cm处,使得气化后的Sb粉沉积于衬底上得到所述锑薄膜;
所述锑薄膜的厚度为16~18nm;
所述衬底为PI柔性衬底。
2.根据权利要求1所述的宽波段自供电锑薄膜光电探测器,其特征在于:所述Sb粉的纯度不低于99.99%。
3.根据权利要求1所述的宽波段自供电锑薄膜光电探测器,其特征在于:所述PI柔性衬底先使用无水乙醇浸泡并超声2h,之后经超纯水清洗后干燥使用。
CN202010059503.1A 2020-01-19 2020-01-19 一种宽波段自供电锑薄膜光电探测器 Active CN111244207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010059503.1A CN111244207B (zh) 2020-01-19 2020-01-19 一种宽波段自供电锑薄膜光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010059503.1A CN111244207B (zh) 2020-01-19 2020-01-19 一种宽波段自供电锑薄膜光电探测器

Publications (2)

Publication Number Publication Date
CN111244207A CN111244207A (zh) 2020-06-05
CN111244207B true CN111244207B (zh) 2024-02-02

Family

ID=70872804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010059503.1A Active CN111244207B (zh) 2020-01-19 2020-01-19 一种宽波段自供电锑薄膜光电探测器

Country Status (1)

Country Link
CN (1) CN111244207B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153262A (en) * 1998-02-19 2000-11-28 The Texas A&M University System Method for forming SbSI thin films
CN105420815A (zh) * 2016-01-07 2016-03-23 中国科学院理化技术研究所 一种可控制备正交相硫化亚锡二维单晶纳米片的方法
CN106206249A (zh) * 2015-06-01 2016-12-07 中国科学院金属研究所 一种具有光伏特性的拓扑绝缘体薄膜及其制备方法
CN106601837A (zh) * 2016-11-23 2017-04-26 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
CN107557757A (zh) * 2017-07-12 2018-01-09 华东师范大学 一种在柔性透明衬底上化学气相沉积生长二硒化钼的方法
US10008620B1 (en) * 2017-03-16 2018-06-26 United Arab Emirates University Method of making gallium antimonide near infrared photodetector
CN108315815A (zh) * 2018-05-15 2018-07-24 华南师范大学 一种锑烯的制备方法
CN110676339A (zh) * 2019-09-19 2020-01-10 西安工业大学 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN110707176A (zh) * 2019-09-10 2020-01-17 中国石油大学(华东) 一种超宽频带的薄膜光电探测器件及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153262A (en) * 1998-02-19 2000-11-28 The Texas A&M University System Method for forming SbSI thin films
CN106206249A (zh) * 2015-06-01 2016-12-07 中国科学院金属研究所 一种具有光伏特性的拓扑绝缘体薄膜及其制备方法
CN105420815A (zh) * 2016-01-07 2016-03-23 中国科学院理化技术研究所 一种可控制备正交相硫化亚锡二维单晶纳米片的方法
CN106601837A (zh) * 2016-11-23 2017-04-26 中山大学 一种超宽光谱光敏材料和应用该光敏材料的光电探测器
US10008620B1 (en) * 2017-03-16 2018-06-26 United Arab Emirates University Method of making gallium antimonide near infrared photodetector
CN107557757A (zh) * 2017-07-12 2018-01-09 华东师范大学 一种在柔性透明衬底上化学气相沉积生长二硒化钼的方法
CN108315815A (zh) * 2018-05-15 2018-07-24 华南师范大学 一种锑烯的制备方法
CN110707176A (zh) * 2019-09-10 2020-01-17 中国石油大学(华东) 一种超宽频带的薄膜光电探测器件及其制备方法
CN110676339A (zh) * 2019-09-19 2020-01-10 西安工业大学 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN111244207A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN108023017B (zh) 一种有机无机复合钙钛矿材料的单晶薄膜及其制备方法和应用
Kanda et al. Effect of silicon surface for perovskite/silicon tandem solar cells: flat or textured?
Gan et al. Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells
CN110085688A (zh) 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
Jassim et al. Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell
Young et al. ZnO nanorod humidity sensor and dye-sensitized solar cells as a self-powered device
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
Jadhavar et al. Growth of hydrogenated nano-crystalline silicon (nc-Si: H) films by plasma enhanced chemical vapor deposition (PE-CVD)
Prayogi et al. Effect of active layer thickness on the performance of amorphous hydrogenated silicon solar cells.
Wang et al. High-sensitivity silicon: PbS quantum dot heterojunction near-infrared photodetector
CN111244207B (zh) 一种宽波段自供电锑薄膜光电探测器
WO2008147486A2 (en) Methods of fabricating nanostructured zno electrodes for efficient dye sensitized solar cells
CN108735826B (zh) 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
EP2889921B1 (en) Solar cell with flexible substrate of adjustable bandgap quantum well structure and preparation method therefor
CN110828589B (zh) 一种柔性日盲紫外光电探测器及其制备方法
Rahmani et al. Impact of the meso-PSi substrate on ZnO thin films deposited by spray pyrolysis technique for UV photodetectors
CN111139449A (zh) 氧化锌基透明电极光电探测器及其制备方法
Catano et al. Electrodeposition of ZnO nanorod arrays for application in perovskite based solar cells
JP5103145B2 (ja) 光電変換装置用基板およびそれを用いた光電変換装置
Hussain Comparative study of mixed metal cation lead-free perovskites for visible light photodetection
CN111354806A (zh) 一种TiO2薄膜/SiO2/p-Si异质结光敏材料及其制备方法与应用
Mahapatra et al. Self-powered high responsivity ultraviolet radiation sensor by coupling ZnO based piezoelectric nanogenerator and photodetector
CN113437164B (zh) 光导型全硅基日盲紫外探测器及其制作方法
Akter et al. Fabrication of Oxide Passivated and Antireflective Thin Film Coated Emitter Layer in Two Steps for the Application in Photovoltaic

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant