CN111235538B - 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法 - Google Patents

形状记忆合金诱导可调控挠曲电效应的复合材料制备方法 Download PDF

Info

Publication number
CN111235538B
CN111235538B CN202010131263.1A CN202010131263A CN111235538B CN 111235538 B CN111235538 B CN 111235538B CN 202010131263 A CN202010131263 A CN 202010131263A CN 111235538 B CN111235538 B CN 111235538B
Authority
CN
China
Prior art keywords
shape memory
memory alloy
substrate
flexoelectric
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010131263.1A
Other languages
English (en)
Other versions
CN111235538A (zh
Inventor
王飞
郑志强
黄平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202010131263.1A priority Critical patent/CN111235538B/zh
Publication of CN111235538A publication Critical patent/CN111235538A/zh
Application granted granted Critical
Publication of CN111235538B publication Critical patent/CN111235538B/zh
Priority to PCT/CN2021/087308 priority patent/WO2021170150A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/04Stamping using rigid devices or tools for dimpling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种形状记忆合金诱导可调控挠曲电效应的复合材料制备方法。该复合材料的特点是以形状记忆合金作为基底,在其表面制备挠曲电薄膜,利用形状记忆合金的温控变形特性使挠曲电薄膜产生变形(高应变梯度),进而发生极化,产生电势。实现方式为:先采用压头对形状记忆合金进行压痕变形处理,随后将压痕层打磨、抛光,采用磁控溅射的方法在该基底表面制备挠曲电薄膜。对形状记忆合金基底加热,可观察到基底表面出现大量的凸起(高应变梯度区域),挠曲电薄膜材料中同样产生与之对应的大量高应变梯度的区域,挠曲电薄膜发生极化进而产生电势。该复合结构制备简单,挠曲电效应强,可规模化生产,并应用于能量俘获、传感等领域。

Description

形状记忆合金诱导可调控挠曲电效应的复合材料制备方法
技术领域
本发明涉及功能材料领域,主要涉及一种基于形状记忆合金诱导可调控挠曲电效应的复合材料制备方法。
背景技术
力电耦合是指机械能与电能之间的相互转化,在微机电***等领域中受到高度重视。挠曲电效应作为典型的力电耦合效应,自1964年以来就已被Kogan报导,近年来引起广泛的研究兴趣。挠曲电效应是指应变梯度或非均匀应变场能够局部地破坏反演对称,从而导致晶体,甚至中心对称晶体产生电极化。它描述的是应变梯度诱导的电极化现象(正挠曲电效应)与电场梯度诱导的机械变形(逆挠曲电效应),并在能量收集、传感器、驱动器等领域中有着广泛应用。如Hu等人就通过挠曲电效应制备了第一个由纳米发电机驱动的自动供电***,该***可以实现无线连接且用于长距离数据传输。
大量研究表明应变梯度是挠曲电效应的重要因素,当应变相同时,微小尺寸(微纳米级别)的材料将具有更大的应变梯度,从而挠曲电效应也更显著。然而目前关于挠曲电效应的研究均集中在小尺寸材料上,这是因为在较大尺寸材料中产生高应变梯度非常困难,故挠曲电效应所能产生的电极化十分有限。如Zhu等人制备得到类似金字塔结构的复合材料,其尺寸在毫米级别。研究表明虽然由于大尺寸限制了高应变梯度的产生,但该材料仍实现了较强的挠曲电性能。因此,倘若能在大尺寸材料中实现高应变梯度,挠曲电效应将更加明显,其应用范围也更加广阔。
发明内容
为了解决上述存在的问题,本发明在于提供一种基于形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,该复合材料可在大尺寸挠曲电薄膜中产生高应变梯度,进而产生强挠曲电效应。达到上述目的,本发明采用如下技术方案:
一种基于形状记忆合金诱导挠曲电效应的复合材料制备方法,其特征在于:以形状记忆合金作为基底,经预变形处理后,在其表面制备挠曲电薄膜,制备得到具有双层结构的复合材料。
所述形状记忆合金基底采用镍钛合金。
所述挠曲电薄膜采用氧化锌薄膜。
所述氧化锌薄膜的厚度为0.5μm-2μm,镍钛形状记忆合金基底的厚度为0.1mm-1mm。
所述对镍钛形状记忆合金进行预变形处理,即先使用压头对形状记忆合金基底变形处理,载荷1000-3000N,保载30-90s。随后依次用400#、800#、1200#、1500#、2000#的砂纸打磨,再采用粒径为0.5μm、0.25μm的抛光剂将基底表面抛光至镜面效果。
所述的氧化锌挠曲电薄膜制备方法,采用磁控溅射方法在抛光后的基底表面制备氧化锌挠曲电薄膜,以氧化锌作为靶材,氩气与氧气作为溅射气体。
所述压头形状为1cm×1cm×2cm的长方形钢块,在其一端面有加工出大量半圆柱型凸起。
所述半圆柱型凸起的长度为1cm,半径为0.1mm-1mm。
本发明具有以下优点:
1、实现在大尺寸挠曲电薄膜中产生高的应变梯度,以产生强的挠曲电效应。
2、挠曲电性能具有可调控性,可以通过氧化锌薄膜的尺寸及压头凸起的尺寸等参数进行调节。
3、该复合材料制备工艺简单。
4、利用本发明制备的基于形状记忆合金诱导挠曲电效应的复合材料可以应用于能量收集、传感器等领域。
附图说明
图1:形状记忆合金诱导挠曲电效应复合材料的结构示意图;
图2:压头结构设计示意图;
图3:复合材料温控变形测试;
图4:形状记忆合金诱导挠曲电效应的性能测试结果。
具体实施方式
下面将结合附图及具体实例来详细说明本发明,但并不作为对本发明的限定。
参照图1所示,其中1为氧化锌挠曲电薄膜,2为镍钛形状记忆合金基底;从图2中可以看出压头端面有大量平行的半圆柱型的凸起;图3中可以看出经过预变形处理后的形状记忆合金基底在加热后,其表面产生大量凸起,因此氧化锌薄膜亦产生大量凸起变形;图4为复合材料的挠曲电性能测试结果。横坐标为时间,纵坐标为电流。从图中可以看出该复合材料存在明显的挠曲电效应,当样品面积增大时,电流也随之增高,这表明通过控制样品尺寸可以调节挠曲电效应。
本发明涉及一种形状记忆合金诱导可调控挠曲电性能的复合材料制备方法,包含由镍钛形状记忆合金基底层2与氧化锌挠曲电薄膜1组合而成的双层结构,如图1所示。
首先使用压头对形状记忆合金基底(10mm×10mm×0.1mm)进行预变形处理,压头形貌设计如图2所示,表面由大量半圆柱形凸起构成,凸起长度为10mm,单个凸起的半径为0.5mm。通过压头对形状记忆合金基底加载2000N,保载60s,使其表面发生变形。
将形状记忆合金基底表面的压痕层依次用400#、800#、1200#、1500#、2000#的砂纸打磨平整,随后采用粒径为0.5μm、0.25μm的抛光剂将基底表面抛光至镜面效果。
采用磁控溅射方法在形状记忆合金表面制备氧化锌挠曲电薄膜,溅射室真空预抽至 3×10-4Pa,采用氧化锌靶材,氩气与氧气作为溅射气体,其中氩气流量为3sccm,氧气流量为6sccm,溅射室气压为0.5Pa,选用射频电源,制备功率为50W,同时加偏压80V,制备时间分别为1小时与4小时,以制备得到厚度不同的氧化锌薄膜。
将制备得到的样品上下表面贴上电极,对其进行加热,在加热过程中同时采用台式高精度万用表测量电流信号。加热后可以看到形状记忆合金基底表面产生大量凸起,制备的氧化锌薄膜也产生与之相对应的大量凸起,如图3所示。
在加热过程中由于镍钛形状记忆合金基底发生变形,使氧化锌薄膜同样产生大量具有高应变梯度的变形区域,氧化锌薄膜发生极化进而产生电势,故产生明显的电流,如图4所示。图4中(a)和(b)分别为制备面积为0.5cm2与1cm2的氧化锌薄膜样品,可以看出当薄膜面积更大时,挠曲电效应产生的电流也更高。这表明该形状记忆合金诱导产生的挠曲电效应可由挠曲电薄膜尺寸与压头尺寸等参数进行调控。

Claims (4)

1.形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于:以镍钛形状记忆合金作为基底(2),经预变形处理后,在其表面制备氧化锌薄膜(1),制备得到具有双层结构的复合材料:
首先对镍钛形状记忆合金进行预变形处理,即先使用压头对形状记忆合金基底变形处理,载荷1000-3000N,保载30-90s,随后依次用400#、800#、1200#、1500#、2000#的砂纸打磨,再采用粒径为0.5μm、0.25μm的抛光剂将基底表面抛光至镜面效果;
采用磁控溅射方法在抛光后的基底表面制备氧化锌薄膜,以氧化锌作为靶材,电源使用射频电源,氩气与氧气作为溅射气体。
2.根据权利要求1所述的形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于,氧化锌薄膜的厚度为0.5μm-2μm,镍钛形状记忆合金基底的厚度为0.1mm-1mm。
3.根据权利要求1所述的形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于,压头形状为1cm×1cm×2cm的长方形钢块,在其一端面有加工出大量半圆柱型凸起。
4.根据权利要求3所述的形状记忆合金诱导可调控挠曲电效应的复合材料制备方法,其特征在于,所述半圆柱型凸起的长度为1cm,半径为0.1mm-1mm。
CN202010131263.1A 2020-02-28 2020-02-28 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法 Active CN111235538B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010131263.1A CN111235538B (zh) 2020-02-28 2020-02-28 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法
PCT/CN2021/087308 WO2021170150A1 (zh) 2020-02-28 2021-04-14 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010131263.1A CN111235538B (zh) 2020-02-28 2020-02-28 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法

Publications (2)

Publication Number Publication Date
CN111235538A CN111235538A (zh) 2020-06-05
CN111235538B true CN111235538B (zh) 2021-03-16

Family

ID=70876678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010131263.1A Active CN111235538B (zh) 2020-02-28 2020-02-28 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法

Country Status (2)

Country Link
CN (1) CN111235538B (zh)
WO (1) WO2021170150A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111235538B (zh) * 2020-02-28 2021-03-16 西安交通大学 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法
CN113083638A (zh) * 2021-03-16 2021-07-09 西安交通大学 基于预变形处理调控形状记忆合金疏水性的方法
CN113930734A (zh) * 2021-09-17 2022-01-14 中国地质大学(武汉) 一种基于4d打印技术的热电复合材料的制备方法
CN115463965B (zh) * 2022-08-29 2024-06-07 武汉大学 一种梯度微纳结构Ti-TiZnX层状复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008005820A2 (en) * 2006-06-30 2008-01-10 The Penn State Research Foundation Piezoelectric composite based on flexoelectric charge separation
CN104570498A (zh) * 2014-11-24 2015-04-29 深圳市华星光电技术有限公司 可挠曲液晶面板及其制作方法
EP3154099A1 (en) * 2015-10-09 2017-04-12 Institut Català de Nanociència i Nanotecnologia Flexoelectric device
CN109950045A (zh) * 2019-03-19 2019-06-28 西安交通大学 一种具有可调控类挠曲电效应的挠曲电驻极体及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229902A (ja) * 1986-03-31 1987-10-08 富士電機株式会社 異常検知機能をもつギヤツプレスアレスタ
CN103046018B (zh) * 2013-01-04 2014-08-20 中国石油大学(北京) 一种应用形状记忆合金赋予薄膜大弹性应变的方法
CN103045828B (zh) * 2013-01-04 2014-05-14 中国石油大学(北京) 利用形状记忆合金表面浮凸实现薄膜拉伸弹性应变的方法
CN111235538B (zh) * 2020-02-28 2021-03-16 西安交通大学 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008005820A2 (en) * 2006-06-30 2008-01-10 The Penn State Research Foundation Piezoelectric composite based on flexoelectric charge separation
CN104570498A (zh) * 2014-11-24 2015-04-29 深圳市华星光电技术有限公司 可挠曲液晶面板及其制作方法
EP3154099A1 (en) * 2015-10-09 2017-04-12 Institut Català de Nanociència i Nanotecnologia Flexoelectric device
CN109950045A (zh) * 2019-03-19 2019-06-28 西安交通大学 一种具有可调控类挠曲电效应的挠曲电驻极体及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Flexoelectric materials and their related applications:A focused review";Longlong Shu et al.;《Advanced Ceramics》;20190615;第153-173页 *
"Nnaoscale mechanical energy harvesting using piezoelectricity and flexoelectricity";Xu Liang et al.;《Smart Materials and Structures》;20170221;第1-17页 *
"Out-of-plane polarization in bent graphene-like Zinc Oxide and nanogenerator applications";Dan Tan et al.;《Advanced Functional Materials》;20191231;第1-8页 *
"镍钛合金表面锆膜磁控溅射制备与组织结构研究";吉宏林等;《稀有金属材料与工程》;20090215;第38卷(第2期);第295-298页 *

Also Published As

Publication number Publication date
CN111235538A (zh) 2020-06-05
WO2021170150A1 (zh) 2021-09-02

Similar Documents

Publication Publication Date Title
CN111235538B (zh) 形状记忆合金诱导可调控挠曲电效应的复合材料制备方法
Bruno et al. Properties of piezoceramic materials in high electric field actuator applications
CN104529532B (zh) 挠曲电压电材料
Lin et al. Fabrication and electromechanical characterization of a piezoelectric structural fiber for multifunctional composites
Li et al. ZnO thin film piezoelectric micromachined microphone with symmetric composite vibrating diaphragm
Kim et al. Electro-mechanical behavior and direct piezoelectricity of cellulose electro-active paper
JP6049895B2 (ja) 磁電センサ及び該センサの製造方法
CN101456733B (zh) 铌酸钾钠基无铅压电陶瓷薄片的制备方法
Bi et al. Tunable resonance frequency of magnetoelectric layered composites
Schäffner et al. Microstructured single-layer electrodes embedded in P (VDF-TrFE) for flexible and self-powered direction-sensitive strain sensors
CN101306948B (zh) 一种铁电-铁磁厚膜及其制备方法
Yanaseko et al. Characterization of a metal-core piezoelectric ceramics fiber/aluminum composite
Kang et al. Investigation of mechanical energy harvesting cycles using ferroelectric/ferroelastic switching
Su et al. Routes to net shape electroceramic devices and thick films
Tang et al. Piezoelectric MEMS generator based on the bulk PZT/silicon wafer bonding technique
Sasikala et al. The electro-mechanical performance of electro-active polymer based actuators fabricated using ultra thin metal electrode
Zawawi et al. Nanoindentation of cubic silicon carbide on silicon film
Chen et al. A functional gradient ceramic monomorph actuator fabricated using electrophoretic deposition
Shen et al. Displacement and resonance behaviors of a piezoelectric diaphragm driven by a double-sided spiral electrode
Kuts et al.  Magnetoelectric effect in three-layered gradient LiNbO3/Ni/Metglas composites
Poddubnaya et al. Dependence of magnetoelectric effect in layered lead zirconate-titanate/nickel heterostructures on the interface type
Sato et al. Fabrication and vibration suppression behavior of metal core-piezoelectric fibers in CFRP composite
KR20210007857A (ko) 압전 복합체, 그 제조방법, 및 이를 포함하는 자기전기 적층형 구조체
Jungk et al. Length-scale-based hardening model for ultra-small volumes
Levy et al. PZN-PT single-crystal thin film monomorph actuator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant