CN111227835B - 一种膝关节动态成像装置及其使用方法 - Google Patents

一种膝关节动态成像装置及其使用方法 Download PDF

Info

Publication number
CN111227835B
CN111227835B CN202010056005.1A CN202010056005A CN111227835B CN 111227835 B CN111227835 B CN 111227835B CN 202010056005 A CN202010056005 A CN 202010056005A CN 111227835 B CN111227835 B CN 111227835B
Authority
CN
China
Prior art keywords
magnetic resonance
air cylinder
forming apparatus
image forming
knee joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010056005.1A
Other languages
English (en)
Other versions
CN111227835A (zh
Inventor
聂涌
帅桃
沈彬
周宗科
裴福兴
李康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West China Hospital of Sichuan University
Original Assignee
West China Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West China Hospital of Sichuan University filed Critical West China Hospital of Sichuan University
Priority to CN202010056005.1A priority Critical patent/CN111227835B/zh
Publication of CN111227835A publication Critical patent/CN111227835A/zh
Application granted granted Critical
Publication of CN111227835B publication Critical patent/CN111227835B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开一种膝关节动态成像装置及其使用方法,包括循环加载组件、磁共振扫描仪、数据终端;循环加载组件包括气缸、病床,气缸传动连接推杆,推杆连接足套,病床顶面设有大腿绑带、小腿绑带、固定夹具,推杆与足套之间设有压力传感器,气缸与足套之间设有位移传感器;数据终端信号连接压力传感器、位移传感器、气缸、磁共振扫描仪,数据终端包括I/O装置、电子时钟、处理中心、计数器。本发明能够对载荷状态下的关节进行成像操作,有效降低其他相位对图像的影响,结构简单,成本较低。

Description

一种膝关节动态成像装置及其使用方法
技术领域
本发明涉及医疗成像装置领域,尤其涉及一种膝关节动态成像装置及其使用方法。
背景技术
在骨关节的临床诊断中,有一项非常重要的检查内容,即在负荷状态下对关节形态和关节内结构进行检测,以分析骨关节病变发展状况和病理状态。众所周知,人体大关节负荷和非负荷状态下关节半月板、韧带形态均存在差异,非负荷状态下关节影像学检查和体检无法显示人在行走或直立状态下的关节内结构变化情况和相对位置改变。因此在骨科学和影像学检查中,负重位X线关节摄片成为常用的检查手段,也是骨关节炎等疾病的标准成像技术之一。
现有的MRI成像装置均是对无负载状态下的关节进行扫描成像,而当人体关节在载荷状态下,会发生变形,如何消除相位对图像的影响也是尚待解决的问题。
发明内容
本发明旨在提供一种膝关节动态成像装置及其使用方法,能够对载荷状态下的关节进行成像操作,有效降低其他相位对图像的影响,结构简单,成本较低。
为达到上述目的,本发明是采用以下技术方案实现的:
本发明公开一种膝关节动态成像装置,包括循环加载组件、磁共振扫描仪、数据终端;
循环加载组件包括气缸、病床,气缸传动连接推杆,推杆连接足套,病床顶面设有大腿绑带、小腿绑带、固定夹具,推杆与足套之间设有压力传感器,气缸与足套之间设有位移传感器;
数据终端信号连接压力传感器、位移传感器、气缸、磁共振扫描仪,数据终端包括I/O装置、电子时钟、处理中心、计数器。
优选的,病床顶面为强摩擦结构。
优选的,足套为硬质塑料。
优选的,位移传感器为激光位移传感器。
优选的,固定夹具为硬质塑料,在对需要扫描的人体或尸体进行3D扫描成像后,采用高强度塑料进行3D打印定制,卡在大腿上段或股骨近端处。
优选的,位移传感器设于气缸外壁。
本发明还公开上述成像装置的使用方法,其包括以下步骤:
S100、使用大腿绑带固定人体大腿,使用小腿绑带固定人体小腿,使用固定夹具固定人体股骨,患者穿戴足套;
S200、驱动气缸对膝关节进行循环加载,载荷大小为F,单词载荷循环时间为T,循环次数为C,磁共振扫描仪选择位于膝关节内侧间室且股骨及胫骨侧软骨充分接触的矢状面进行,
其中磁共振扫描仪为采用3.0T磁共振扫描仪以及带有位移编码影像处理的磁共振测试序列,在序列中
Figure BDA0002370632530000021
其中,
Figure BDA0002370632530000022
为相位数据,Δx为位移变化,γH为旋磁比,tenc为编码梯度持续时间,Gde为平面上x或y方向位移编码的梯度大小,G′de为参考图像的梯度大小。
优选的,步骤S200中,F为50%或100%患者的体重,T为5s或10s,C为50次、100次或200次。
优选的,步骤S200中,位移编码MRI的编码梯度在平面上的2个方向均为0.33π/mm,并设定600ms的TM缓冲时间以确保MRI图像在载荷平台期获取。
优选的,步骤S200中,Single-shot fast spin echo序列TE时间为62/72/82ms,TR时间为5000ms,扫描FOV为180×180mm,矩阵大小为256×256/384×384/512×512pixels,层厚1mm,激励次数为16次。
本发明的有益效果:
1、本发明能够对载荷状态下的关节进行成像操作。
2、本发明有效降低其他相位对图像的影响。
3、本发明结构简单,成本较低。
附图说明
图1为气缸的示意图;
图2为本发明的示意图。
图中:1-气缸、2-推杆、3-压力传感器、4-足套、5-病床、6-大腿绑带、7-小腿绑带、8-固定夹具。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
图2中A部位即为MRI成像窗口。
如图1、图2所示,本发明包括循环加载组件、磁共振扫描仪、数据终端;
循环加载组件包括气缸1、病床5,气缸1传动连接推杆2,推杆2连接足套4,病床5顶面设有大腿绑带6、小腿绑带7、固定夹具8,推杆2与足套4之间设有压力传感器3,气缸1与足套4之间设有位移传感器,足套4和气缸1、推杆2均为硬质塑料;
数据终端信号连接压力传感器3、位移传感器、气缸1、磁共振扫描仪,数据终端包括I/O装置、电子时钟、处理中心、计数器。
位移传感器为二维激光位移传感器,用于测量足套4在加载方向上的位移量。
上述装置的使用方法,其包括以下步骤:
S100、将膝关节平放在测试台上,足部由同加载装置固定连接的硬塑料足套4固定,膝关节保持伸直位,用木制夹具固定股骨以避免膝关节负载时身体在加载方向上的运动,使用大腿绑带6固定人体大腿,使用小腿绑带7固定人体小腿,在加载装置末端安装二维激光位移传感器以检测足套4在加载方向上的位移量;
S200、驱动气缸1对膝关节进行循环加载,载荷大小为F,单词载荷循环时间为T,循环次数为C,磁共振扫描仪选择位于膝关节内侧间室且股骨及胫骨侧软骨充分接触的矢状面进行,
其中磁共振扫描仪为采用3.0T磁共振扫描仪以及带有位移编码影像处理的磁共振测试序列,采用电子触发装置同步MRI成像和膝关节循环加载装置,在序列中
Figure BDA0002370632530000041
其中,
Figure BDA0002370632530000042
为相位数据,Δx为位移变化,γH为旋磁比,tenc为编码梯度持续时间,Gde为平面上x或y方向位移编码的梯度大小,G′de为参考图像的梯度大小。
步骤S200中,F为50%或100%患者的体重,T为5s或10s,C为50次、100次或200次。
步骤S200中,位移编码MRI的编码梯度在平面上的2个方向均为0.33π/mm,并设定600ms的TM缓冲时间以确保MRI图像在载荷平台期获取。
步骤S200中,Single-shot fast spin echo序列TE时间为62/72/82ms,TR时间为5000ms,扫描FOV为180×180mm,矩阵大小为256×256/384×384/512×512pixels,层厚1mm,激励次数为16次。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (9)

1.一种膝关节动态成像装置,其特征在于:包括循环加载组件、磁共振扫描仪、数据终端;
循环加载组件包括气缸、病床,气缸传动连接推杆,推杆连接足套,病床顶面设有大腿绑带、小腿绑带、固定夹具,推杆与足套之间设有压力传感器,气缸与足套之间设有位移传感器;
数据终端信号连接压力传感器、位移传感器、气缸、磁共振扫描仪,数据终端包括I/O装置、电子时钟、处理中心、计数器;
所述成像装置的使用方法包括以下步骤:
S100、使用大腿绑带固定人体大腿,使用小腿绑带固定人体小腿,使用固定夹具固定人体股骨,患者穿戴足套;
S200、驱动气缸对膝关节进行循环加载,载荷大小为F,单次载荷循环时间为T,循环次数为C,磁共振扫描仪选择位于膝关节内侧间室且股骨及胫骨侧软骨充分接触的矢状面进行,
其中磁共振扫描仪为采用3.0T磁共振扫描仪以及带有位移编码影像处理的磁共振测试序列:
Figure QLYQS_1
其中,
Figure QLYQS_2
为相位数据,Δx为位移变化,γH为旋磁比,tenc为编码梯度持续时间,Gde为平面上x或y方向位移编码的梯度大小,G′de为参考图像的梯度大小。
2.根据权利要求1所述的成像装置,其特征在于:病床顶面为强摩擦结构。
3.根据权利要求1所述的成像装置,其特征在于:足套为硬质塑料。
4.根据权利要求1所述的成像装置,其特征在于:位移传感器为激光位移传感器。
5.根据权利要求1所述的成像装置,其特征在于:固定夹具为硬质塑料。
6.根据权利要求1所述的成像装置,其特征在于:位移传感器设于气缸外壁。
7.根据权利要求1所述的成像装置,其特征在于:步骤S200中,F为50%或100%患者的体重,T为5s或10s,C为50次、100次或200次。
8.根据权利要求1所述的成像装置,其特征在于:步骤S200中,位移编码MRI的编码梯度在平面上的2个方向均为0.33π/mm,并设定600ms的TM缓冲时间以确保MRI图像在载荷平台期获取。
9.根据权利要求1所述的成像装置,其特征在于:步骤S200中,Single-shot fast spinecho序列TE时间为62/72/82ms,TR时间为5000ms,扫描FOV为180×180mm,矩阵大小为256×256/384×384/512×512pixels,层厚1mm,激励次数为16次。
CN202010056005.1A 2020-01-16 2020-01-16 一种膝关节动态成像装置及其使用方法 Active CN111227835B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010056005.1A CN111227835B (zh) 2020-01-16 2020-01-16 一种膝关节动态成像装置及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010056005.1A CN111227835B (zh) 2020-01-16 2020-01-16 一种膝关节动态成像装置及其使用方法

Publications (2)

Publication Number Publication Date
CN111227835A CN111227835A (zh) 2020-06-05
CN111227835B true CN111227835B (zh) 2023-05-30

Family

ID=70862760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010056005.1A Active CN111227835B (zh) 2020-01-16 2020-01-16 一种膝关节动态成像装置及其使用方法

Country Status (1)

Country Link
CN (1) CN111227835B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105796101A (zh) * 2014-12-29 2016-07-27 中国科学院深圳先进技术研究院 基于磁共振声辐射力成像的组织位移测量方法和***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016100966A1 (en) * 2014-12-19 2016-06-23 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery System and apparatus for securing knee joint with a load for magnetic resonance imaging
CN108209920A (zh) * 2018-03-06 2018-06-29 吉林大学 用于人体平卧位时膝关节核磁共振成像的力学加压设备
CN109480844B (zh) * 2018-12-27 2021-04-02 深圳先进技术研究院 组织位移和温度的同步监测方法、装置、设备及存储介质

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105796101A (zh) * 2014-12-29 2016-07-27 中国科学院深圳先进技术研究院 基于磁共振声辐射力成像的组织位移测量方法和***

Also Published As

Publication number Publication date
CN111227835A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
Pamuk et al. Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers
Shin et al. In vivo intramuscular fascicle-aponeuroses dynamics of the human medial gastrocnemius during plantarflexion and dorsiflexion of the foot
Finni et al. Nonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo
Lansdown et al. Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle
Pappas et al. Nonuniform shortening in the biceps brachii during elbow flexion
Sinha et al. Age‐related differences in strain rate tensor of the medial gastrocnemius muscle during passive plantarflexion and active isometric contraction using velocity encoded MR imaging: potential index of lateral force transmission
Bilston et al. Measurement of passive skeletal muscle mechanical properties in vivo: recent progress, clinical applications, and remaining challenges
Freutel et al. Medial meniscal displacement and strain in three dimensions under compressive loads: MR assessment
EP1219240A2 (en) Ligament loading device
Sinha et al. Computer‐controlled, MR‐compatible foot‐pedal device to study dynamics of the muscle tendon complex under isometric, concentric, and eccentric contractions
Kinugasa et al. Phase-contrast MRI reveals mechanical behavior of superficial and deep aponeuroses in human medial gastrocnemius during isometric contraction
Karampinos et al. Myofiber ellipticity as an explanation for transverse asymmetry of skeletal muscle diffusion MRI in vivo signal
Lee et al. Soleus aponeurosis strain distribution following chronic unloading in humans: an in vivo MR phase-contrast study
Lin et al. A slice‐to‐volume registration method based on real‐time magnetic resonance imaging for measuring three‐dimensional kinematics of the knee
US20080004522A1 (en) Method in Mri-Imaging and Mri Apparatus with a Triggering Device
CN108042135A (zh) 一种磁共振成像用多功能负荷实验运动装置和***及其应用
Tan et al. Measurement of large strain properties in calf muscles in vivo using magnetic resonance elastography and spatial modulation of magnetization
CN111227835B (zh) 一种膝关节动态成像装置及其使用方法
Loeuille et al. The biochemical content of articular cartilage: an original MRI approach
Sinha et al. Magnetic resonance imaging based muscle strain rate mapping during eccentric contraction to study effects of unloading induced by unilateral limb suspension
US5662121A (en) Medical diagnostic device for applying controlled stress to joints
Karampinos et al. In vivo study of cross-sectional skeletal muscle fiber asymmetry with diffusion-weighted MRI
Brisson et al. A novel multipurpose device for guided knee motion and loading during dynamic magnetic resonance imaging
Hooijmans et al. Muscle fiber strain rates in the lower leg during ankle dorsi‐/plantarflexion exercise
CN219021236U (zh) 一种ct、mri检查辅助机构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant