CN111213016A - 含熔融氯化物盐的太阳能塔*** - Google Patents

含熔融氯化物盐的太阳能塔*** Download PDF

Info

Publication number
CN111213016A
CN111213016A CN201880066538.9A CN201880066538A CN111213016A CN 111213016 A CN111213016 A CN 111213016A CN 201880066538 A CN201880066538 A CN 201880066538A CN 111213016 A CN111213016 A CN 111213016A
Authority
CN
China
Prior art keywords
alloy
tower system
solar tower
improved solar
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880066538.9A
Other languages
English (en)
Inventor
V·德奥德什穆克
R·埃芬贝格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icl Ip
Haynes International Inc
ICL IP America Inc
Original Assignee
Haynes International Inc
ICL IP America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haynes International Inc, ICL IP America Inc filed Critical Haynes International Inc
Publication of CN111213016A publication Critical patent/CN111213016A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/10Arrangements for storing heat collected by solar heat collectors using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • F24S70/12Details of absorbing elements characterised by the absorbing material made of metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/10Materials for heat-exchange conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/01Selection of particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Secondary Cells (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

公开了一种太阳能塔***,其中传热介质是温度高于650℃的熔融盐。承载或容纳熔融盐的部件由海恩斯国际制造并且以名称
Figure DDA0002447523910000011
合金、
Figure DDA0002447523910000012
合金和233TM合金销售的市售合金制成。所述熔融盐优选为MgCl2‑KCl。

Description

含熔融氯化物盐的太阳能塔***
相关申请的交叉引用
本申请要求2017年10月13日提交的美国临时专利申请序列号62/572,059的优先权,通过引用将其内容并入本文。
发明背景
1.发明领域
本发明涉及太阳能电池塔,该太阳能电池塔从阳光吸收热量并将该热量传输用于发电,利用熔融盐作为传热流体。
2.相关技术的描述
当暴露在阳光下持续一段时间时,许多材料的表面将会被加热。本领域已经开发出捕获这种热量用于发电或用于加热建筑物和其它环境的***。被称为太阳能塔***的一种***具有一系列吸热管或接受器,这些吸热管或接受器暴露于阳光并被该阳光加热。吸热管包含传热介质,该传热介质从吸热管导向热交换器。***中存在储罐,该储罐容纳有传热介质。在这种太阳能塔***中,熔融的钠-钾硝酸盐被用作传热介质。在那些***中,钠-钾硝酸盐被加热到约565℃。
美国专利US 5,862,800公开了一种太阳能塔***,该***包含温度为约565℃的钠-钾硝酸盐。该专利教导在该***中应使用625合金,因为该合金在605℃的温度下具有:对于来自钠-钾硝酸盐的腐蚀的优异耐受性,对于因熔融盐中的杂质或者来自气氛或热绝缘体的外来氯化物所致的氯化物应力腐蚀开裂的高耐受性,低的热膨胀系数,良好的导热性,优异的蠕变强度和屈服强度,以及出色的机械和热疲劳抵抗性。
304和316奥氏体不锈钢以及
Figure BDA0002447523890000011
800镍-铁-铬合金也已用于钠-钾硝酸盐太阳能塔***中的接受器。这些合金具有高的热膨胀系数,低的屈服强度和蠕变强度,低的热导率,低的热疲劳性能,但是易受氯化物应力腐蚀开裂的影响。
用于太阳能塔***的合金应当耐受熔融盐的强腐蚀性,耐受氯化物应力腐蚀开裂,制造经济,可焊接,符合ASME锅炉和压力容器规范,并能够承受由贯穿壁和跨直径的温度梯度引起的严重热应变。这些应变与材料的热膨胀系数成正比,其通过将吸收的阳光通量限制为如下值来设定接受器的尺寸:对于在接受器寿命内每天的太阳和云覆盖循环的作用次数,通过材料的容许疲劳应变水平所确定的值。
当前需要能够在650℃到高达1000℃的较高温度下工作的太阳能塔***。这种***必须具有在这些高温下处于熔融状态的盐介质。在这样的***中,吸收管、热交换器和储罐必须由如下材料(优选为金属合金)制成,该材料对650℃到1000℃温度下的熔融盐具有耐腐蚀性。在这些高温下,所述合金还必须具有高的热膨胀系数,低的屈服强度和蠕变强度,低的热导率和低的热疲劳。
尽管钠-钾硝酸盐已用于工作在约565℃温度下的太阳能塔***中,但这些盐不适合在更高的温度下使用,特别是高达800℃到1000℃的温度。对于这些应用,需要凝固温度比钠-钾硝酸盐高得多的盐。
尽管存在出售用于高温应用的若干已知合金,但是当这些合金暴露于650℃到高达1000℃的较高温度下的熔融盐时,其耐腐蚀性却鲜为人知。尽管本领域的技术人员可能预期已经用于约565℃的其它高温应用中的任何合金可以用于工作在650℃到高达1000℃温度下的熔融盐太阳能塔***中,但我们发现情况并非如此。它们中的许多不具备工作在650℃到高达1000℃温度下的熔融盐太阳能塔***所需的耐腐蚀性和力学性能。仅有本文公开的某些合金组成适用于此类***。
发明概述
我们提供了一种太阳能塔***,其中传热介质是温度高于650℃的熔融盐,并且承载或容纳该熔融盐的部件由海恩斯国际(Haynes International)制造并以名称
Figure BDA0002447523890000021
合金、
Figure BDA0002447523890000022
合金和233TM合金销售的市售合金制成。下面提供这些Haynes合金的技术规范内的名义合金组成。这些合金具有期望的耐腐蚀性和力学性能,并且可用于这些吸收管、热交换器和储罐中的一些或全部。优选地,所述熔融盐是MgCl2-KCl熔融盐。
在熔融盐被加热到高于800℃的温度的替代实施方案中,
Figure BDA0002447523890000031
合金仅用于储罐,而
Figure BDA0002447523890000032
合金或233TM合金用于接受器和承载熔融盐的其它部件。
Figure BDA0002447523890000033
合金或233TM合金制成的部件可以涂覆以锆或镁,以改善耐腐蚀性。
我们可向熔融盐中添加镁,因为镁将充当腐蚀抑制剂。优选使用1.15摩尔%的镁。
从附图中所示的某些当前优选实施方案的描述,该太阳能电池***的其它目的和优点将变得明显。
附图简述
图1是现有技术中已知的太阳能塔***的透视图,可以根据本发明对该***进行修改,以便将在650℃到高达800℃到1000℃温度下的熔融盐用作传热介质。
图2是典型的熔融盐、太阳能吸收板的等轴视图。
图3是其中可以使用太阳能塔***的加热***的框图。
图4是在NaCl-KCl-MgCl2盐组合物中在850℃测试100小时的
Figure BDA0002447523890000034
合金和233TM合金的腐蚀速率的坐标图。
图5是在NaCl-KCl-MgCl2盐组合物中在850℃测试100小时的
Figure BDA0002447523890000035
合金、
Figure BDA0002447523890000036
合金、
Figure BDA0002447523890000037
合金和
Figure BDA0002447523890000038
合金的腐蚀速率的与图4相似的坐标图。
图6是在NaCl-KCl-MgCl2盐组合物中在850℃测试100小时的
Figure BDA0002447523890000039
合金、233TM合金和
Figure BDA00024475238900000310
合金的腐蚀速率的与图4相似的坐标图。
优选实施方案的描述
参照图1和图3,在美国专利US 5,862,800中公开的类型的太阳能电池***具有太阳能中心柱状接受器1,其被定日镜2的场域包围。接受器1安装在塔架3上以提供最有效的焦点高度。接受器1由熔融盐太阳吸收板10构成。太阳50提供照射定日镜2的太阳光线51。太阳光线51被定日镜2反射到太阳中心柱状接受器1。熔融盐日光吸收板10被太阳光线加热。面板管4内部的热熔融盐将热量传输到热交换器,该热交换器可以使用热能来处理热量或发电。
图2所示的典型熔融盐太阳能吸收板10具有吸收管4,其可以是无缝的、焊接的或焊接并拉拔的结构和集管5。熔融盐流从导管9穿过其集管5进入太阳能吸收板10或者离开太阳能吸收板10穿过集管5进入导管9。在图1所示的实施方案中,接受器1由布置在两个回路中的多个板10构成,每个回路具有八个板,所述板具有蜿蜒的流动路径并且形成多面的柱形表面。
在我们的太阳能塔***中,熔融盐传热介质被加热到高于650℃到高达1000℃的温度。参照图3,加热的熔融盐从接受器10中的吸收管4传输到热交换器12,然后通过导管9返回到接受器19。在***中提供用于熔融盐的储罐14。
我们已发现,熔融氯化物盐是适用于在从650℃到高达1000℃温度下工作的熔融盐太阳能塔***中的更好备选物。特别地,我们优选提供MgCl2-KCl熔融盐。其它合适的盐可包括由LiCl、NaCl、KCl、MgCl2或CaCl2构成的卤化物,作为单独实体,或作为二元、三元、四元或五元混合物,它们在300℃-1000℃的温度范围内至少部分熔融。也可以使用由LiBr、NaBr、KBr、MgBr2或CaBr2构成的熔融卤化物,作为单独实体,或作为二元、三元、四元或五元混合物,它们在300℃-1000℃的温度范围内至少部分熔融。另一种合适的盐可以是由LiX、NaX、KX、MgX2或CaX2(其中X可以是Cl或Br)构成的熔融卤化物,作为单独实体或作为混合物,它们在300℃-1000℃的温度范围内至少部分熔融。也可以使用由LiF、NaF、KF或BeF2构成的熔融卤化物,作为单独实体,或作为二元、三元、四元或五元混合物,它们在300℃-1000℃的温度范围内至少部分熔融。
在低于600℃的温度下工作的太阳能电池中使用的合金不具有包含从650℃到高达1000℃的熔融氯化物盐的吸收管、热交换器和储罐所需的耐腐蚀性和力学性能。然而,我们发现
Figure BDA0002447523890000051
合金、
Figure BDA0002447523890000052
合金和233TM合金具有期望的耐腐蚀性和力学性能。它们可用于这些吸收管、热交换器、导管和储罐中的一些或全部。
Figure BDA0002447523890000053
合金、
Figure BDA0002447523890000054
合金、233TM合金、
Figure BDA0002447523890000055
合金和
Figure BDA0002447523890000056
合金进行腐蚀测试,以确定它们是否适用于我们的太阳能塔***。测试了每种合金的三个试样在熔融NaCl-KCl-MgCl2中或在与1.5摩尔%的镁(其充当腐蚀抑制剂)结合的NaCl-KCl-MgCl2中的耐腐蚀性。在850℃下测试
Figure BDA0002447523890000057
合金、233TM合金、
Figure BDA0002447523890000058
合金和
Figure BDA0002447523890000059
合金。在750℃下测试
Figure BDA00024475238900000510
合金。用锆涂覆
Figure BDA00024475238900000511
合金的六个试样,用镁涂覆
Figure BDA00024475238900000512
合金的另外六个试样。在熔融NaCl-KCl-MgCl2中测试每种涂覆试样中的三个,在与1.5mol%镁结合的NaCl-KCl-MgCl2中测试三个。表1列出了每个测试。对
Figure BDA00024475238900000513
合金和
Figure BDA00024475238900000514
合金重复所述测试。
表1
Figure BDA0002447523890000061
*ICL脱水光卤石(300278-8-3),1-6wt%H2O
**71at%Mg-29at%Zn(m.p.347℃)
腐蚀测试的结果记录在图4、5和6中。在第一测试期间测试的三个试样的每组平均值显示为正方形。在第二测试期间测试的三个试样的每组的平均值显示为菱形。从每个点延伸出的须状物显示了每个测试的标准偏差。该数据显示233TM合金、
Figure BDA0002447523890000062
合金(当与镁抑制剂一起使用或涂有锆和/或镁时)和
Figure BDA0002447523890000063
在850℃下表现出低的腐蚀速率(50-100微米/年)。在镁的存在下,233TM合金的耐腐蚀性和
Figure BDA0002447523890000064
合金的耐腐蚀性降低到<15微米/年。可使用其它还原性金属代替镁。
当涂有镁或熔融盐包含镁时,可以使用Haynes
Figure BDA0002447523890000071
合金。仅当存在活性还原金属(如镁)时,腐蚀速率才降低到低于15微米/年。
由于熔融氯化物太阳能塔***的工作温度高于熔融硝酸盐太阳能塔***的工作温度,因此合金的氧化性能以及接受器管和储罐的腐蚀性能和力学性能同等重要。由于接受器管和储罐在管外部和储罐外侧都暴露于空气,因此需要氧化性能。如下所示,这些合金的氧化性能显著优于目前使用的不锈钢罐材料。
下表2给出了
Figure BDA0002447523890000072
合金、
Figure BDA0002447523890000073
合金、233TM合金、Inconel
Figure BDA0002447523890000074
304不锈钢和316不锈钢在1800℉于流动空气中持续1008小时(每星期循环)的氧化数据。根据制造商,合金800、800H和800HT具有相同的镍、铬和铁含量,并且通常显示出相似的耐腐蚀性。
表2
抗氧化性
Figure BDA0002447523890000075
金属损失=(A-B)/2
平均内部渗透=C
最大内部渗透=D
平均受影响金属=金属损失+平均内部渗透
最大受影响金属=金属损失+最大内部渗透
Figure BDA0002447523890000076
合金、233TM合金和
Figure BDA0002447523890000077
合金也具有用于吸收管、热交换器和储罐的期望的力学性能,所述吸收管、热交换器和储罐含有温度从650℃到高达1000℃的熔融氯化物盐。这些性能是:
蠕变断裂强度(1700℉/10ksi)–横向
233TM合金=523小时
Figure BDA0002447523890000081
合金=121小时
Figure BDA0002447523890000082
合金=25小时
蠕变断裂强度@1400℉/15ksi(板/条)
Figure BDA0002447523890000083
合金=8200小时
Figure BDA0002447523890000084
合金=200小时
304不锈钢=10小时
316不锈钢=100小时
(RT%)合金的热稳定性1000小时/1400℉
Figure BDA0002447523890000085
合金=33%
Figure BDA0002447523890000086
合金=24%
233TM合金=16.5%
合金的LCF性能(循环至失效)
760℃/应变范围=1%;R=-1.0
Figure BDA0002447523890000087
合金=2220
Figure BDA0002447523890000088
合金=1097
870℃/应变范围=1%;R=-1.0
Figure BDA0002447523890000089
合金=1284
Figure BDA00024475238900000810
合金=228
当与熔融氯化物接触时,
Figure BDA00024475238900000811
合金和233TM合金在350-1000℃的工作范围内保它们的力学性能,而
Figure BDA00024475238900000812
合金在350-800℃的工作温度范围内保持力学性能。所有这三种合金都可以用作储罐材料。由于储罐的工作温度低于接受器管,因此使用低成本
Figure BDA00024475238900000813
合金作为具有足够强度的储罐的构建材料优化了设备的投资成本。对于在至多800℃下工作的集中式太阳能设备,
Figure BDA00024475238900000814
和233TM合金也可用于所有的承载或容纳熔融盐的部件。
Figure BDA0002447523890000091
合金应当仅用作在800℃以上工作的集中式太阳能发电设备中的储热罐的构建材料。通过使用自动焊接和珠压加工的管子使接受器的成本最小化,以及在成本较低的不锈钢材料上使用
Figure BDA0002447523890000092
合金***包覆层使储罐成本最小化。
因此令人惊讶的是,与上述商业合金的组成差别不大的233TM合金和
Figure BDA0002447523890000093
合金在熔融KCl-NaCl-MgCl2中的腐蚀速率比不以镁作为涂层或者在熔融盐中没有镁的
Figure BDA0002447523890000094
低约10倍,并且比对于Haynes
Figure BDA0002447523890000095
合金和
Figure BDA0002447523890000096
800H合金所观察到的腐蚀速率低约30-40倍。具体而言,233TM合金和
Figure BDA0002447523890000097
合金显示出的腐蚀为50-60微米/年,而
Figure BDA0002447523890000098
合金为500-700微米/年,以及
Figure BDA0002447523890000099
合金和
Figure BDA00024475238900000910
800H合金为2000-3000微米/年(所有测试均在850℃、静态条件下持续100小时)。在存在镁时,233TM合金和
Figure BDA00024475238900000911
合金两者也表现出非常低的腐蚀(NMT 10微米/年)。
Haynes
Figure BDA00024475238900000912
合金的名义组成为22%铬,14%钨,2%钼,5%或更少的钴,3%或更少的铁,0.5%锰,0.4%的硅,0.5%或更少的铌,0.3%的铝,0.1%的钛,0.1%的碳,0.015%或更少的硼,0.02%的镧,余量57%是镍加杂质。测试的
Figure BDA00024475238900000913
合金试样具有这种组成。包含以下重量百分比范围内的元素的合金组合物预计将具有与本文关于
Figure BDA00024475238900000914
合金所述的相同的性能:20%到24%铬,13%到15%钨,1%到3%钼,至多3%铁,至多5%钴,0.3%到1.0%锰,0.25到0.75%硅,0.2到0.5%铝,0.5%到0.15%碳,0.005%到0.05%镧,至多0.1%钛,至多0.5%铌,至多0.015%硼,至多0.03%磷,至多0.015%硫,余量为镍加杂质。
欧洲专利EP 2 971 205 B1涵盖并包含有关Haynes 233TM合金的技术信息。该合金的名义组成为19%铬,19%钴,7.5%钼,0.5%钛,3.3%铝,1.5%或更少的铁,0.4%或更少的锰,0.20%或更少的硅,0.10%碳,0.004%硼,0.5%镧,0.3%或更少的钨,0.025%或更少的钒,0.3%锆,余量48%为镍加杂质。所测试的233TM合金试样具有这种组成。该专利教导已发现具有233TM合金性能的该合金组成可包含:15到20重量%铬(Cr),9.5到20重量%钴(Co),7.25到10重量%钼(Mo),2.72到3.89重量%铝(Al),以至多0.6重量%存在的硅(Si),和以至多0.15重量%存在的碳(C)。钛以0.02重量%的最小水平存在,但优选大于0.2%的水平。也可以存在铌(Nb)来提供强化,但不一定实现期望的性能。Ti和/或Nb的过量可能会增加合金的应变时效开裂倾向。钛应被限制为不超过0.75重量%,并且铌应被限制为不超过1重量%。表3列出了具有233TM合金性能的合金的主要元素的最宽范围、中间范围和窄范围。
表3
233TM合金的主要元素范围(以重量%计)
元素 宽范围 中间范围 窄范围
Ni 余量 余量 余量
Cr 15到20 16到20 18到20
Co 9.5到20 15到20 18到20
Mo 7.25到10 7.25到9.75 7.25到8.25
Al 2.72到3.89 2.9到3.7 >3直至3.5
Haynes
Figure BDA0002447523890000101
合金是美国专利US 4,981,647中公开的合金组成的商业型式。这是一种铁-镍-铬合金,以重量百分比计其名义组成为:33%铁,37%镍,25%铬,3%或更少的钴,1%或更少的钼,0.5%或更少的钨,0.7%锰,0.6%硅,0.7%的铌,0.1%铝,0.05%碳,0.02%氮,0.004%硼,0.5%或更少的铜和0.2%或更少的钛。对于该合金,该专利教导,落入这些重量百分比范围内的组合物将具有期望的性能:25%到45%镍,12%到32%铬,0.1%到2.0%铌,至多4.0%钽,至多1.0%钒,至多2.0%锰,至多1.0%铝,至多5%钼,至多5%钨,至多0.2%钛,至多2%锆,至多5%钴,至多0.1%钇,至多0.1%镧,至多0.1%铯,至多0.1%的其它稀土金属,至多约0.20%碳,至多3%硅,约0.05%到0.50%氮,至多0.02%硼,并且余量为铁加杂质。
尽管我们已经显示并描述了我们的太阳能塔***的当前优选实施方案,但是应当清楚地理解,我们的发明不限于此,而是可以在所附权利要求书的范围内以各种方式体现。

Claims (21)

1.一种改进的太阳能塔***,其为具有吸收管、储罐和热交换器的类型,所述吸收管、储罐和热交换器全部包含温度高于650℃的熔融盐传热介质,其中改进包括:所述吸收管、储罐和热交换器中的至少一种由按重量百分比包含如下成分的合金制成:25%到45%镍,12%到32%铬,0.1%到2.0%铌,至多4.0%钽,至多1.0%钒,至多2.0%锰,至多1.0%铝,至多5%钼,至多5%钨,至多0.2%钛,至多2%锆,至多5%钴,至多0.1%钇,至多0.1%镧,至多0.1%铯,至多0.1%的其它稀土金属,至多约0.20%碳,至多3%硅,约0.05%到0.50%氮,至多0.02%硼,并且余量为铁加杂质。
2.根据权利要求1所述的改进的太阳能塔***,其中所述吸收管、储罐和热交换器中的至少一种由按重量百分比包含如下成分的合金制成:30%到42%镍,20%到32%铬,0.2%到1.0%铌、0.2%到4.0%钽和0.05%到1.0%钒中的至少一种,至多0.2%碳,约0.05%到0.50%氮,0.001%到0.02%硼,至多0.2%钛,并且余量为铁加杂质。
3.根据权利要求1所述的改进的太阳能塔***,其中所述吸收管、储罐和热交换器中的至少一种由按重量百分比包含如下成分的合金制成:约37%镍,约25%铬,约3%钴,约1%钼,约0.5%钨,约0.7%铌、约0.7%锰,约0.6%硅,约0.2%氮,约0.1%铝,约0.05%碳,约0.004%硼,并且余量为铁加杂质。
4.根据权利要求1所述的改进的太阳能塔***,其中所述熔融盐传热介质的温度高于650℃。
5.根据权利要求1所述的改进的太阳能塔***,其中所述吸收管、储罐和热交换器包含温度高于650℃的熔融盐传热介质,其中改进包括所述吸收管、储罐和热交换器中的至少一种在没有抑制剂的熔融氯化物盐中于850℃下的腐蚀速率<60μm。
6.根据权利要求5所述的改进的太阳能塔***,其中在具有Mg作为抑制剂的熔融氯化物盐中于850℃下所述合金具有<60μm的腐蚀速率。
7.根据权利要求5所述的改进的太阳能塔***,其中在具有Zr作为抑制剂的熔融氯化物盐中于850℃下所述合金具有<60μm的腐蚀速率。
8.一种改进的太阳能塔***,其为具有吸收管、储罐和热交换器的类型,所述吸收管、储罐和热交换器全部包含温度高于650℃的熔融盐传热介质,其中改进包括:所述吸收管、储罐和热交换器中的至少一种由按重量百分比包含如下成分的合金制成:20%到24%铬,13%到15%钨,1%到3%钼,至多3%铁,至多5%钴,0.3%到1.0%锰,0.25%到0.75%硅,0.2%到0.5%铝,0.5%到0.15%碳,0.005%到0.05%镧,至多0.1%钛,至多0.5%铌,至多0.015%硼,至多0.03%磷,至多0.015%硫,并且余量为镍加杂质。
9.根据权利要求8所述的改进的太阳能塔***,其中所述吸收管、储罐和热交换器中的至少一种由按重量百分比包含如下成分的合金制成:约22%铬,约14%钨,约2%钼,至多3%铁,至多5%钴,约0.5%锰,约0.4%硅,至多0.5%铌,约0.3%铝,至多0.1%钛,约0.1%碳,约0.02%镧,至多约0.015%的硼,并且余量为镍加杂质。
10.根据权利要求9所述的改进的太阳能塔***,其中所述熔融盐传热介质具有大于800℃的温度。
11.一种改进的太阳能中心体,其为具有吸收管、储罐和热交换器的类型,所述吸收管、储罐和热交换器全部包含温度高于650℃的熔融盐传热介质,其中改进包括:所述吸收管、储罐和热交换器中的至少一种由按重量百分比包含如下成分的合金制成:18%到20%铬,18%到20%钴,3.0%到3.5%铝,7%到8%钼,0.4%到0.8%钽,0.4%到0.6%钛,0.1%到0.4%锰,至多0.3%钨,至多1.5%铁,0.04到0.2%硅,0.08%到0.12%碳,至多0.015%磷,至多0.015%硫,0.002%到0.006%硼,0.001%到0.025%钇,0.01%到0.05%锆,并且余量为镍加杂质。
12.根据权利要求11所述的改进的太阳能电池,其中所述合金按重量百分比包含:约19%铬,约19%钴,约3.25%铝,约7.5%钼,约0.5%钽,约0.56%钛,约0.2%锰,约0.05%钨,约1.0%铁,约0.14%硅,约0.10%碳,小于0.002%磷,小于0.002%硫,约0.002%硼,约0.007%钇,约0.02%锆,并且余量为镍加杂质。
13.根据权利要求11所述的改进的太阳能塔***,其中所述熔融盐传热介质的温度高于800℃。
14.一种改进的塔***,其为具有吸收管、储罐和热交换器的类型,所述吸收管、储罐和热交换器全部包含温度高于650℃的熔融盐传热介质,其中改进包括:所述吸收管、储罐和热交换器中的至少一种是由合金制成,在具有Mg或Zr添加物作为抑制剂的熔融氯化物盐中在850℃下该合金具有<60μm的腐蚀速率。
15.一种改进的太阳能塔***,其为具有吸收管、储罐和热交换器的类型,所述吸收管、储罐和热交换器全部包含温度高于650℃的熔融盐传热介质,其中改进包括:所述吸收管、储罐和热交换器中的至少一种是由合金制成,该合金在1700℉和10ksi下的蠕变断裂强度大于25小时,在1400℉和10ksi下的蠕变断裂强度大于2000小时,在1400℉下持续1000小时的拉伸伸长率为至少16%,并且在760℃下经受1%的应变范围并且R=-1.0时在少于1000个循环内不会失效。
16.根据权利要求15所述的改进的太阳能塔***,其中所述合金在1700℉和10ksi下的蠕变断裂强度大于500小时。
17.根据权利要求15所述的改进的太阳能塔***,其中所述合金在1400℉和15ksi下的蠕变断裂强度大于8000小时。
18.根据权利要求15所述的改进的太阳能塔***,其中在1400℉并且持续1000小时的拉伸伸长率为至少33%。
19.根据权利要求15所述的改进的太阳能塔***,其中当在760℃下经受1%的应变范围并且R=-1.0时,所述合金在少于2000个循环内不会失效。
20.根据权利要求15所述的改进的太阳能塔***,其中所述熔融盐传热介质的温度高于800℃。
21.根据权利要求15所述的改进的太阳能塔***,其中所述合金在1700℉和10ksi下的蠕变断裂强度大于120小时。
CN201880066538.9A 2017-10-13 2018-10-11 含熔融氯化物盐的太阳能塔*** Pending CN111213016A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762572059P 2017-10-13 2017-10-13
US62/572,059 2017-10-13
PCT/US2018/055368 WO2019075177A1 (en) 2017-10-13 2018-10-11 SOLAR TOWER SYSTEM CONTAINING FINE CHLORIDE SALTS

Publications (1)

Publication Number Publication Date
CN111213016A true CN111213016A (zh) 2020-05-29

Family

ID=64051766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880066538.9A Pending CN111213016A (zh) 2017-10-13 2018-10-11 含熔融氯化物盐的太阳能塔***

Country Status (10)

Country Link
US (1) US11976346B2 (zh)
EP (1) EP3707443A1 (zh)
JP (1) JP7348903B2 (zh)
KR (1) KR102528064B1 (zh)
CN (1) CN111213016A (zh)
AU (3) AU2018347410B2 (zh)
CL (2) CL2020000960A1 (zh)
IL (1) IL273718B1 (zh)
WO (1) WO2019075177A1 (zh)
ZA (1) ZA202001712B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926266A (zh) * 2020-08-14 2020-11-13 苏州利昇达电子科技有限公司 一种抗干扰性能强的合金电阻及其制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292948B2 (en) * 2019-05-14 2022-04-05 Purdue Research Foundation Heat transfer/storage fluids and systems that utilize such fluids
DE102020132219A1 (de) 2019-12-06 2021-06-10 Vdm Metals International Gmbh Verwendung einer Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE102020132193A1 (de) * 2019-12-06 2021-06-10 Vdm Metals International Gmbh Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
FR3136484A1 (fr) 2022-06-14 2023-12-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif a sels fondus resistant a la corrosion

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981647A (en) * 1988-02-10 1991-01-01 Haynes International, Inc. Nitrogen strengthened FE-NI-CR alloy
WO2011154534A1 (fr) * 2010-06-11 2011-12-15 Commissariat à l'énergie atomique et aux énergies alternatives Absorbeur pour recepteur solaire et recepteur solaire comportant au moins un tel absorbeur
WO2012037532A2 (en) * 2010-09-16 2012-03-22 Wilson Solarpower Corporation Concentrated solar power generation using solar receivers
CN103776180A (zh) * 2014-01-24 2014-05-07 西安科技大学 一种降低太阳能发电储热熔盐腐蚀性能的方法
GB201517835D0 (en) * 2015-10-08 2015-11-25 Scott Ian R Control of corrosion by molten salts
CN105143481A (zh) * 2013-03-15 2015-12-09 海恩斯国际公司 可制作的高强度抗氧化Ni-Cr-Co-Mo-Al合金
US20170038096A1 (en) * 2010-01-11 2017-02-09 Donald B. Hilliard Solar receiver and energy conversion apparatus
US20170067667A1 (en) * 2015-09-08 2017-03-09 Peter B. Choi Sensible Thermal Energy Storage (STES) Systems

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218140A (ja) * 1995-02-10 1996-08-27 Sumitomo Metal Ind Ltd 高温強度と耐高温腐食性に優れた高クロムオーステナイト耐熱合金
US5862800A (en) * 1996-09-27 1999-01-26 Boeing North American, Inc. Molten nitrate salt solar central receiver of low cycle fatigue 625 alloy
KR20010034712A (ko) * 1998-03-27 2001-04-25 칼 하인쯔 호르닝어 열교환기 관, 열교환기 관의 제조 방법 및 복수기
US6582629B1 (en) * 1999-12-20 2003-06-24 Saint-Gobain Ceramics And Plastics, Inc. Compositions for ceramic igniters
US8365529B2 (en) * 2006-06-30 2013-02-05 United Technologies Corporation High temperature molten salt receiver
US9097437B2 (en) 2010-01-11 2015-08-04 Donald Bennett Hilliard Solar receiver and associated energy conversion apparatus
ES2363288B1 (es) 2010-01-15 2012-02-27 Abengoa Solar New Technologies S.A. Receptor solar de sales fundidas y procedimiento para reducir el gradiente térmico en dicho receptor.
JP2013130372A (ja) * 2011-12-22 2013-07-04 Mitsubishi Heavy Ind Ltd 太陽熱受熱器、その組立方法、および太陽熱受熱器を備えた太陽熱発電システム
ITMI20121791A1 (it) * 2012-10-22 2014-04-23 Gioacchino Nardin Apparato e metodo per il trasferimento di energia termica mediante materiali a cambiamento di fase
WO2014193224A2 (en) * 2013-05-27 2014-12-04 Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center Solar thermal energy storage system
EP2869377A1 (en) * 2013-10-29 2015-05-06 Total Marketing Services Power generation system
US9499699B1 (en) * 2014-02-27 2016-11-22 Sandia Corporation High durability solar absorptive coating and methods for making same
JP2016050328A (ja) * 2014-08-29 2016-04-11 株式会社豊田自動織機 太陽熱集熱管用管部材
WO2016057404A1 (en) * 2014-10-06 2016-04-14 The Babcock & Wilcox Company Modular molten salt solar towers with thermal storage for process or power generation or cogeneration
US20160290231A1 (en) * 2015-04-02 2016-10-06 General Electric Company Heat pipe intercooling system for a turbomachine
US9797310B2 (en) * 2015-04-02 2017-10-24 General Electric Company Heat pipe temperature management system for a turbomachine
US9528731B2 (en) * 2015-04-23 2016-12-27 King Fahd University Of Petroleum And Minerals Solar powered cooling system
WO2016179199A1 (en) * 2015-05-04 2016-11-10 Gossamer Space Frames Solar power plant
US10619890B2 (en) * 2016-07-06 2020-04-14 Oregon State University High flux thermal receiver and method of use
TW201839259A (zh) 2017-02-01 2018-11-01 義大利商馬加帝電力公司 使用源自太陽之熱能之高能效率裝置、系統及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981647A (en) * 1988-02-10 1991-01-01 Haynes International, Inc. Nitrogen strengthened FE-NI-CR alloy
US20170038096A1 (en) * 2010-01-11 2017-02-09 Donald B. Hilliard Solar receiver and energy conversion apparatus
WO2011154534A1 (fr) * 2010-06-11 2011-12-15 Commissariat à l'énergie atomique et aux énergies alternatives Absorbeur pour recepteur solaire et recepteur solaire comportant au moins un tel absorbeur
WO2012037532A2 (en) * 2010-09-16 2012-03-22 Wilson Solarpower Corporation Concentrated solar power generation using solar receivers
CN105143481A (zh) * 2013-03-15 2015-12-09 海恩斯国际公司 可制作的高强度抗氧化Ni-Cr-Co-Mo-Al合金
CN103776180A (zh) * 2014-01-24 2014-05-07 西安科技大学 一种降低太阳能发电储热熔盐腐蚀性能的方法
US20170067667A1 (en) * 2015-09-08 2017-03-09 Peter B. Choi Sensible Thermal Energy Storage (STES) Systems
GB201517835D0 (en) * 2015-10-08 2015-11-25 Scott Ian R Control of corrosion by molten salts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926266A (zh) * 2020-08-14 2020-11-13 苏州利昇达电子科技有限公司 一种抗干扰性能强的合金电阻及其制作方法

Also Published As

Publication number Publication date
ZA202001712B (en) 2021-08-25
KR102528064B1 (ko) 2023-05-02
CL2021003147A1 (es) 2022-07-22
JP7348903B2 (ja) 2023-09-21
CL2020000960A1 (es) 2020-10-02
AU2024203299A1 (en) 2024-06-06
US20200291505A1 (en) 2020-09-17
IL273718B1 (en) 2024-03-01
EP3707443A1 (en) 2020-09-16
AU2024203298A1 (en) 2024-06-06
JP2020537112A (ja) 2020-12-17
WO2019075177A1 (en) 2019-04-18
US11976346B2 (en) 2024-05-07
AU2018347410B2 (en) 2024-06-13
AU2018347410A1 (en) 2020-04-09
IL273718A (en) 2020-05-31
KR20200100612A (ko) 2020-08-26

Similar Documents

Publication Publication Date Title
CN111213016A (zh) 含熔融氯化物盐的太阳能塔***
US5862800A (en) Molten nitrate salt solar central receiver of low cycle fatigue 625 alloy
Pacio et al. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems
US8187725B2 (en) Welding alloy and articles for use in welding, weldments and method for producing weldments
Olson et al. Intergranular corrosion of high temperature alloys in molten fluoride salts
US20140271338A1 (en) High Strength Alloys for High Temperature Service in Liquid-Salt Cooled Energy Systems
Sabharwall Feasibility study of secondary heat exchanger concepts for the advanced high temperature reactor
JP2008545889A5 (zh)
CN114787402B (zh) 具有良好加工性、蠕变强度和耐腐蚀性的镍铬铝合金及其用途
EP0368487A1 (en) Welded corrosion-resistant ferritic stainless steel tubing and a cathodically protected heat exchanger containing the same
CN105431558A (zh) 由奥氏体钢组成的管元件以及太阳能接收器
Pint et al. Characterization of Fe and Cr Dissolution and Reaction Product Formation in Molten Chloride Salts With and Without Impurities
Kruizenga et al. Materials corrosion concerns for supercritical carbon dioxide heat exchangers
JP2023504842A (ja) 加工性、クリープ強度および耐食性に優れたニッケル-クロム-鉄-アルミニウム合金およびその使用
Webster Zirconium for nuclear primary steam systems
ASTM International Zirconium in nuclear applications
Oxley et al. Encapsulation of high temperature molten salts
US10017842B2 (en) Creep-resistant, cobalt-containing alloys for high temperature, liquid-salt heat exchanger systems
JP2022546098A (ja) 高温荷重下での耐食性が向上したオーステナイト鋼合金およびそれから管状体を製造する方法
Kiosidou et al. Corrosion Testing Trade Study on Testing Methods in Molten Salts
US9435011B2 (en) Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems
US9683279B2 (en) Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems
Rogers Solubility of corrosive salts in dry steam. Final report
Kiesi Comparison of Steam Generator Tube Materials Using CES-software
EP1409756A1 (en) Steel parts made of austenitic or semi-austenitic steel in a plant for producing sulfuric acid and method for the protection against corrosion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination