CN111142389A - 一种定制式谐波重复控制器及控制方法 - Google Patents

一种定制式谐波重复控制器及控制方法 Download PDF

Info

Publication number
CN111142389A
CN111142389A CN202010057203.XA CN202010057203A CN111142389A CN 111142389 A CN111142389 A CN 111142389A CN 202010057203 A CN202010057203 A CN 202010057203A CN 111142389 A CN111142389 A CN 111142389A
Authority
CN
China
Prior art keywords
controller
repetitive
repetitive controller
output
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010057203.XA
Other languages
English (en)
Inventor
卢闻州
王尉
陈海英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202010057203.XA priority Critical patent/CN111142389A/zh
Publication of CN111142389A publication Critical patent/CN111142389A/zh
Priority to PCT/CN2020/127928 priority patent/WO2021143319A1/zh
Priority to US17/308,110 priority patent/US11199820B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • G05B13/045Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance using a perturbation signal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种定制式谐波重复控制器及控制方法,属于工业控制的重复控制器领域。所述重复控制器将三个时间延迟模块和正前馈增益模块构成的周期信号发生器作为一个整体构成前向通路,并以输出正反馈形式来构造周期信号的内模,使得其结构符合标准的内模构造方法,具备扩阶的能力,大大提升了控制器的灵活性,使控制器消除扰动的速度得到了提高,同时结构简单便于设计。进一步拓展而成的h阶(nk±m)次谐波重复控制器(h≥2)涵盖了现有的多种高阶重复控制器,给出了一种统一形式,使其具有通用性。

Description

一种定制式谐波重复控制器及控制方法
技术领域
本发明涉及一种定制式谐波重复控制器及控制方法,属于工业控制的重复控制器领域。
背景技术
重复控制是为了实现对周期信号的高精度跟踪而提出的,在很多工业应用场景中都需要实现对周期信号的高精度跟踪,比如一些生产场合不再直接使用电网提供的交流电作为供电来源,而是通过各种形式的电能变换得到满足各自生产场合所需的电能,在这一电能变换过程中所用到的逆变器设备因为会受到外界信号的扰动,所以需要采用先进的控制方法来实现高精度的控制,而重复控制即可实现这一目的。
重复控制,简单说就是加到被控对象的输入信号除偏差信号外,还叠加了一个“过去的控制偏差”,该偏差是上一个周期该时刻的控制偏差。把上一次运行时的偏差反映到现在,和“现在的偏差”一起加到被控对象进行控制,这种控制方式,偏差重复被使用,称为重复控制。经过几个周期的重复控制之后可以大大提高***的跟踪精度,改善***品质。这种控制方法不仅适用于跟踪周期性输入信号,也可以抑制周期性干扰。而重复控制器一般由三部分组成:重复信号发生器内模、周期延迟环节和补偿器。
传统的重复控制器采用延迟时间τ为T0的延迟环节(即周期信号发生器)的正反馈形式来构造基波周期为T0的周期信号的内模,并将之嵌入控制回路中,从而能够对该种周期性信号(包括正弦基波及其各次谐波)实施静态无差跟踪控制或扰动消除,但是由于该类重复控制器由输入到输出的延迟时间为基波周期T0,其响应速度相对较慢,并且实际当中重复控制器多以数字方式z-N/(l-z-N)(其中N=T0/Ts为整数,Ts为采样时间)实现该周期性信号的内模,其所占用的内存单元数目至少为N0,因此传统重复控制器的动态响应较慢。
为了提升重复控制器的动态性能,目前存在一种将重复控制器与其他控制方法相结合的复合控制策略,此种方法虽然有效但是却大大增加了控制器设计难度与复杂度,并且在一些实际应用中,需要跟踪或消除的谐波只局限于特定的某些频率,例如三相整流负载给电源***所造成的谐波污染绝大部分集中于6k±l(k=1,2,...)次谐波频率处,而单相整流负载给电源***所造成的谐波污染绝大部分集中于4k±1(k=1,2,...)次谐波频率(即奇次谐波频率)处,在工业场合中,上述两类谐波占据主导地位。若采用一般的重复控制器来消除这类(nk±m)次谐波,会出现周期性扰动消除非常缓慢的现象,因而无法满足实际***对控制性能的要求。
针对需要消除特定(nk±m)次谐波的问题,有学者提出了(nk±m)次谐波重复控制器,即Wenzhou Lu等在“A Generic Digital nk±m-Order Harmonic Repetitive ControlScheme for PWM Converters”,IEEE Transactions on Industrial Electronics,2013一文中提出的(nk±m)次谐波重复控制器使上述问题得到了解决,但是在实际应用中,如参考电压频率/电网电压频率/数字控制***采样频率等发生变化时会导致控制器内模与周期信号发生失配,此时若采用Wenzhou Lu等提出的(nk±m)次谐波重复控制器,由于其无法实现扩阶,所以无法应对内模失配的问题,从而导致谐波抑制性能降低,稳态误差增大,畸变率升高,其控制性能大打折扣。
根据现有的高阶重复控制理论,高阶重复控制器具备应对频率变化的能力,即具备应对控制器内模与周期信号失配的能力,因此扩展控制器的阶数是一种解决内模失配问题的有效途径,然而上述Wenzhou Lu等提出的(nk±m)次谐波重复控制器由于其结构上具有一条在加法环前方引出的前向通路,并不符合高阶重复控制器的标准构造结构,因此无法进行扩阶以提升控制器性能,限制了高阶(nk±m)次谐波重复控制器的使用。
针对于此,有必要发明一种新的(nk±m)次谐波重复控制器,使其在具备传统(nk±m)次谐波重复控制器的功能的同时,在结构上更加规范,并且可以进行扩阶,以应对在实际应用中出现的内模失配问题,进而提高控制器的鲁棒性与灵活性。
发明内容
为了解决现有的(nk±m)次谐波重复控制器在面对内模失配问题时无法构造高阶重复控制器进而提升控制器性能的问题,本发明提供了一种定制式谐波重复控制器及控制方法。
本发明的第一个目的在于提供一种重复控制器,所述重复控制器包括:重复控制增益模块、正前馈增益模块、一个减法环、二个加法环和三个相同的时间延迟模块;
其中,重复控制增益模块的输入端作为所述重复控制器的输入端,重复控制增益模块的输出端作为第一加法环的第一输入端,第一加法环的输出端作为第二加法环的第一输入端,第二加法环的输出端分别串接正前馈增益模块和第一时间延迟模块后接减法环的正输入端和负输入端,减法环的输出端串接第二时间延迟模块后接第一加法环的第二输入端,同时也是重复控制器的输出端,正前馈增益模块的输出端串接第三时间延迟模块后接第二加法环的第二输入端。
可选的,所述重复控制器还包括:低通滤波器和相位超前补偿模块;
所述三个相同的时间延迟模块后分别串联一个低通滤波器,所述减法环的输出端串接第二时间延迟模块后接相位超前补偿模块。
可选的,包含有低通滤波器和相位超前补偿模块的重复控制器的传递函数为:
Figure BDA0002373217080000031
Figure BDA0002373217080000032
其中,Q(z)为低通滤波器,A(z)为相位超前补偿模块;c()为重复控制器的输出量,e()为重复控制器的输入量即控制***的控制误差量,krc为重复控制增益参数,s为连续时间***的拉普拉斯变量,z为离散时间***的z变换的变量;N=T0/Ts为整数,T0为基波周期,T0=2π/ω0=l/f0,f0为基波频率,ω0为基波角频率,Ts为采样周期,n、k和m为不小于零的整数且n≠0,n>m。
所述重复控制器分别采用模拟或数字时间延迟模块时,c()对应的表达式分别为c(s)和c(z),e()对应的表达式分别为e(s)和e(z);Q()对应的表达式分别为Q(s)和Q(z),A()对应的表达式分别为A(s)和A(z)。
可选的,所述低通滤波器为零相位低通滤波器。
可选的,所述重复控制增益模块为一比例常数,用于实现对重复控制器跟踪或消除特定次谐波的速度的调节,也即所述重复控制器的输出信号与参考信号之间误差的收敛速度。
本发明的第二个目的在于提供一种多模重复控制器,所述多模重复控制器由至少两个上述重复控制器并联相加构成。
本发明的第三个目的在于提供一种h阶重复控制器,h≥2,所述h阶重复控制器由上述重复控制器扩展得到,扩展方法为:将∑whMh()进行从1到h的累和作为控制器前向通路,并以输出正反馈形式来构造周期信号的内模,其中wh为常系数,M()为三个时间延迟模块和正前馈增益模块构成的周期信号发生器。
可选的,所述h阶重复控制器的周期信号发生器M()的传递函数为:
Figure BDA0002373217080000033
Figure BDA0002373217080000041
其中,M(s)为所述重复控制器采用模拟时间延迟模块时h阶重复控制器的周期信号发生器M()的传递函数;M(z)为所述重复控制器采用数字时间延迟模块时h阶重复控制器的周期信号发生器M()的传递函数。
本发明的第四个目的在于提供一种变换器,所述变换器采用上述重复控制器,或上述多模重复控制器,或上述h阶重复控制器进行控制,所述变换器包括逆变器和整流器。
本发明的第五个目的在于提供一种重复控制器的控制方法,所述方法用于利用上述重复控制器或上述多模重复控制器或上述h阶重复控制器进行消除(nk±m)次谐波,n、k和m为不小于零的整数且n≠0,n>m,所述方法包括:
重复控制增益模块:将重复控制器的输入量经过重复控制增益后得到重复控制增益模块的输出量;
正前馈增益模块:将第二加法环的输出量经过正前馈增益模块后得到正前馈增益模块输出量;
第一加法环:将重复控制增益模块输出量与第二时间延迟模块延迟输出的减法环输出量相加得到第一加法环输出量;
第二加法环:将第一加法环的输出量与第三时间延迟模块延迟输出的正前馈增益模块输出量相加得到第二加法环输出量;
减法环:将正前馈增益模块的输出量与第一时间延迟模块延迟输出的第二加法环输出量相减得到减法环的输出量;
第一时间延迟模块:将第二加法环输出量延迟输出;
第二时间延迟模块:将减法环输出量延迟输出;
第三时间延迟模块:将正前馈增益模块输出量延迟输出。
可选的,所述方法还包括:
通过调节重复控制增益实现调节所述重复控制器跟踪或消除特定次谐波的速度,也即所述重复控制器的输出信号与参考信号之间误差的收敛速度。
可选的,所述方法还包括:
根据所需要跟踪或消除的谐波次数确定正前馈增益模块的参数。
可选的,所述时间延迟模块为模拟或数字时间延迟模块,所述重复控制器的传递函数如下:
Figure BDA0002373217080000051
Figure BDA0002373217080000052
其中,c()为重复控制器的输出量,e()为重复控制器的输入量即控制***的控制误差量,krc为重复控制增益参数,s为连续时间***的拉普拉斯变量,z为离散时间***的z变换的变量;N=T0/Ts为整数,T0为基波周期,T0=2π/ω0=l/f0,f0为基波频率,ω0为基波角频率,Ts为采样周期,n、k和m为不小于零的整数且n≠0,n>m。
所述重复控制器分别采用模拟或数字时间延迟模块时,c()对应的表达式分别为c(s)和c(z),e()对应的表达式分别为e(s)和e(z)。
可选的,所述方法还包括:将上述重复控制器以***方式加入到反馈控制***中用于消除控制误差当中的(nk±m)次谐波分量,当以***方式加入到反馈控制***时,重复控制器的传递函数为:
Figure BDA0002373217080000053
其中,Q(z)为低通滤波器,A(z)为相位超前补偿模块;
所述反馈控制***在满足下述两个条件时是稳定的:
①未***重复控制器前的闭环***传递函数的极点位于单位圆内;
②所述***的控制器中重复控制增益参数krc满足0<krc<2。
本发明有益效果是:
1、本发明提供的重复控制器的结构符合标准的内模构造方法,即将三个时间延迟模块和正前馈增益模块构成的周期信号发生器作为一个整体构成前向通路,并以输出正反馈形式来构造周期信号的内模,根据现有的高阶重复控制理论,即只有当周期信号发生器整体作为唯一的前向通路,并且以输出正反馈的形式构造内模时,可以构成高阶重复控制器,而本申请所提供的重复控制器则是将周期信号发生器整体作为唯一的前向通路,并以输出正反馈的形式构造内模,因此具备扩阶的能力,大大提升了控制器的灵活性。
2、本发明提供的重复控制器进一步拓展而成的h阶(nk±m)次谐波重复控制器(h≥2)涵盖了现有的多种高阶重复控制器,给出了一种统一形式,如Dapeng Li等所著的“Second-order RC:analysis,augmentation,and anti-frequency-variation forsingle-phase grid-tied inverter”,IET Power Electronics,2018一文中所应用的高阶基本重复控制器即为本发明h阶(nk±m)次谐波重复控制器当h=2、n=1、m=0时的特例;又如Ramos G A等人所著的“Power factor correction and harmonic compensation usingsecond-order odd-harmonic repetitive control”,IET control theory&applications一文中所应用到的高阶奇次谐波重复控制器即为本发明h阶(nk±m)次谐波重复控制器当h=2、n=4、m=1时的特例,因此,本申请所给出的h阶(nk±m)次谐波重复控制器具有通用性。
3、本发明提供的重复控制器进一步拓展而成的h阶(nk±m)次谐波重复控制器(h≥2)具有更快的误差收敛速度,并且当内模与周期信号在谐振频率点附近发生失配时,对其具有一定的抑制作用,进而使控制器的性能得到提升。
4、本发明提供的重复控制器专门针对(nk±m)次谐波信号进行无误差跟踪或扰动消除,可以根据消除谐波扰动信号或跟踪参考信号的实际需求,定制不同的n和m的数值。如针对三相逆变中消除(6k±l)次谐波及跟踪基波参考信号的需要,只需令n=6和m=1即可;对单相逆变中消除奇次谐波及跟踪基波参考信号的需要,只需令n=4和m=1即可。并且,本发明提供的重复控制器中三个延迟环节完全相同,其延迟时间τ都等于基波周期T0的1/n倍,最长延迟时间路径由两个上述延迟环节组成,因此其总延迟时间为(2T0/n)<T0,因此在重复控制增益krc相同的情况下,本发明提供的重复控制器的响应速度要比一般的重复控制器快得多,其消除扰动的速度大大提高。
5、本发明提供的多模重复控制器可以用来消除所有次谐波或任意次谐波,并可独立调节各次谐波控制器的控制增益。
6、本发明提供的重复控制器除三个时间延迟模块及重复控制增益模块外,仅需要一个正前馈系数模块,控制器结构简单,便于设计。
7、本发明提供的重复控制器用来消除nk+m和nk-m这两种频率之比不为整数倍关系的扰动时只需要一种时间延迟环节来构造扰动信号内模,因此简化了重复控制器中时间延迟环节的设计。
8、本发明提供的重复控制器中三个延迟环节完全相同,占用的内存单元数目都为N/n,因此其总内存单元数目为(3N/n),(nk±m)次谐波数字重复控制器占用的存储单元的数目也大大低于一般的数字重复控制器。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提出的(nk±m)次谐波重复控制器的结构框图。
图2是图1的数字实现形式,为(nk±m)次谐波数字重复控制器的结构框图。
图3是本发明提出的(nk±m)次谐波重复控制器的数字形式中位于前向通路的周期信号发生器的结构框图。
图4是在图1基础上加入低通滤波环节和相位超前补偿环节的改进的(nk±m)次谐波重复控制器的结构框图。
图5是图4的数字实现形式,为改进的(nk±m)次谐波数字重复控制器的结构框图。
图6是在图2的基础上扩展为h阶的(nk±m)次谐波数字重复控制器(h≥2)的结构框图。
图7为改进的h阶的(nk±m)次谐波数字重复控制器(h≥2)的结构框图。
图8是以h取2时为例的改进的h阶(nk±m)次谐波数字重复控制器的结构框图。
图9是将本发明所提出的(nk±m)次谐波重复控制器并联相加而成的并联结构所有次谐波重复控制器的结构框图,该结构重复控制器可对所有次谐波进行消除。
图10是将本发明所提出的(nk±m)次谐波重复控制器并联相加而成的并联结构任意次谐波重复控制器的结构框图,该结构重复控制器可对任意次谐波进行消除。
图11是图9的数字实现形式,为并联结构所有次谐波数字重复控制器的结构框图。
图12是图10的数字实现形式,为并联结构任意次谐波数字重复控制器的结构框图。
图13是在图9的基础上加入低通滤波环节和相位超前补偿环节的改进的并联结构所有次谐波重复控制器的结构框图。
图14是在图10的基础上加入低通滤波环节和相位超前补偿环节的改进的并联结构任意次谐波重复控制器的结构框图。
图15是图13的数字实现形式,为改进的并联结构所有次谐波数字重复控制器的结构框图。
图16是图14的数字实现形式,为改进的并联结构任意次谐波数字重复控制器的结构框图。
图17是改进的(nk±m)次谐波数字重复控制器叠加一般反馈控制器的控制***结构框图。
图18是改进的h阶(nk±m)次谐波数字重复控制器(h≥2)叠加一般反馈控制器的控制***结构框图。
图19是将本发明所提出的(nk±m)次谐波重复控制器令n=1和m=0和令n=4和m=1时的控制器结合一般反馈控制器应用时的两种复合控制下的稳态输出波形和误差收敛变化图。
图20是将本发明所提出的(nk±m)次谐波重复控制器令n=1和m=0和令n=6和m=1时的控制器结合一般反馈控制器应用时的两种复合控制下的稳态输出波形和误差收敛变化图。
图21是以6k±1RC与二阶6k±1RC为例,当参考电压频率从50Hz变为49.8Hz时,即控制器内模与所需要跟踪或消除的周期信号发生失配时,两种控制器的控制效果对比图。
图22是本发明所提出的(nk±m)次谐波数字重复控制器或多模数字重复控制器或h阶(nk±m)次谐波数字重复控制器以级联方式加入到控制***中的控制框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一:
本实施例提供一种重复控制器,所述重复控制器包括:重复控制增益模块、正前馈增益模块、一个减法环、二个加法环和三个相同的时间延迟模块;
其中,重复控制增益模块的输入端作为所述重复控制器的输入端,重复控制增益模块的输出端作为第一加法环的第一输入端,第一加法环的输出端作为第二加法环的第一输入端,第二加法环的输出端分别串接正前馈增益模块和第一时间延迟模块后接减法环的正输入端和负输入端,减法环的输出端串接第二时间延迟模块后接第一加法环的第二输入端,同时也是重复控制器的输出端,正前馈增益模块的输出端串接第三时间延迟模块后接第二加法环的第二输入端。
如图1所示,为本申请提供的定制式谐波重复控制器的结构框图,c(s)为重复控制器的输出量,e(s)为重复控制器的输入量亦即控制***的控制误差量,krc为重复控制增益模块。
该定制式谐波重复控制器传递函数为:
Figure BDA0002373217080000081
式(1)中,krc为重复控制增益系数,T0为基波周期,T0=2π/ω0=l/f0,f0为基波频率,ω0为基波角频率,n、k和m为不小于零的整数且n≠0,n>m;e为自然常数。
通过调节增益系数krc的数值,可以改变***的误差收敛速度,krc越大,***稳态误差收敛的速度越快,但krc过大会导致***超出稳定范围,所以krc只能在一定范围内提高***的收敛速度。
图1中的三个延迟环节完全相同,其延迟时间τ都等于基波周期T0的1/n倍,最长延迟时间路径由两个上述延迟环节组成,因此其总延迟时间为(2T0/n)<T0,因此在重复控制增益krc相同的情况下,本申请提出的定制式谐波重复控制器的响应速度要比一般的重复控制器快得多,这是(nk±m)次谐波重复控制器的一大优点,并且控制器除三个相同的时间延迟环节及重复控制增益模块外,仅存在一个正前馈增益模块,使得控制器的结构简单,设计更加便捷。
式(1)变形如下:
Figure BDA0002373217080000091
上式要求m≠0;
当m=0时,消除(nk±m)次谐波的重复控制器传递函数可以化成如下形式:
Figure BDA0002373217080000092
综合上述两式,因此可得图1所示的重复控制器的极点在频率为(nk±m)ω0处,即极点频率为mω0,(n±m)ω0,(2n±m)ω0,(in±m)ω0,...,(其中i=1,2,3...)。
由于该重复控制器在频率为(nk±m)ω0处的增益为无穷大,因此能够彻底消除控制误差e(s)中的频率为(nk±m)ω0的谐波分量,从而实现对(nk±m)次谐波扰动的完全消除或无误差跟踪,故将该重复控制器,即本发明所提出的定制式谐波重复控制器,称为(nk±m)次谐波重复控制器。
实际应用当中,可针对不同场合的需求,赋予m和n以不同的数值,即可实现对特定(nk±m)次谐波的无误差跟踪或扰动抑制。例如对于三相逆变器带三相整流负载的情况,由于其谐波主要集中在(6k±l)次(即5、7、11、13等次)谐波频率分量处,且常需要对基波参考信号进行跟踪,所以只需令n=6和m=1,就可实现对基波参考信号的无误差跟踪和对(6k±l)次谐波的完全消除;对于单相逆变器带单相整流负载的情况,由于其谐波主要集中在(4k±l)次(即3、5、7、9等奇次)频率分量处,且常需要对基波参考信号进行跟踪,所以只需令n=4和m=1,就可实现对基波参考信号的无误差跟踪和对奇次谐波的完全消除。
实际当中重复控制器多以数字方式加以实现并得以应用。图1所示的重复控制器所对应的数字实现如图2所示,其传递函数为:
Figure BDA0002373217080000101
其中c(z)为重复控制器的输出量,e(z)为重复控制器的输入量亦即控制***的控制误差量,krc为重复控制增益,N=T0/Ts为整数,T0为基波周期,T0=2π/ω0=l/f0,f0为基波频率,ω0为基波角频率,Ts为采样周期,n、k和m为不小于零的整数且n≠0,n>m。
图2中的三个时间延迟环节完全相同,占用的内存单元数目都为N/n,因此其总内存单元数目为(3N/n),因此(nk±m)次谐波数字重复控制器占用的存储空间比一般的数字重复控制器要少得多。
图3所示为本发明提出的(nk±m)次谐波重复控制器中位于前向通路的周期信号发生器的数字形式,由三个完全相同的时间延迟模块和一个正前馈增益模块构成,其传递函数M(z)可表示为:
Figure BDA0002373217080000102
在实际应用中,为提高控制***的稳定性和抗干扰能力,通常需要对图1或图2中的(nk±m)次谐波重复控制器加以改进,改进的方法是在重复控制器中加入低通滤波器环节Q(s)或Q(z)和相位超前补偿环节A(s)或A(z),如图4和图5所示,其中图5是图4的数字实现形式。
图4所示的改进的(nk±m)次谐波重复控制器的传递函数可以写成如下形式:
Figure BDA0002373217080000111
图5所示的改进的(nk±m)次谐波数字重复控制器的传递函数可以写成如下形式:
Figure BDA0002373217080000112
图6所示为h阶(nk±m)次谐波数字重复控制器(h≥2)的通用结构框图,在实际应用中,h阶(nk±m)次谐波重复控制器同样是以数字方式实现的,其传递函数可以写成如下形式:
Figure BDA0002373217080000113
其中
Figure BDA0002373217080000114
图7所示为改进的h阶(nk±m)次谐波数字重复控制器(h≥2),与一阶(nk±m)次谐波数字重复控制器所不同的是,由于阶数的增加,如果依然在三个相同的时间延迟模块的输出端分别串接低通滤波器Q(z)进行滤波,那么必然会造成控制器的复杂程度大大增加,设计难度也会大大增加,因此本发明所提出的h阶(nk±m)次谐波数字重复控制器当h≥2时,统一将低通滤波器Q(z)串接在
Figure BDA0002373217080000115
后即可,并依然在重复控制器的输出端串接相位超前补偿模块A(z),改进的h阶(nk±m)次谐波数字重复控制器(h≥2)传递函数可以写成如下形式:
Figure BDA0002373217080000121
其中
Figure BDA0002373217080000122
图8所示为h取2时的h阶(nk±m)次谐波数字重复控制器的例子,为避免因阶数增加导致控制器的复杂程度与设计难度增加,通常来讲二阶就足够了,即二阶(nk±m)次谐波数字重复控制器,其传递函数如下:
Figure BDA0002373217080000123
其中
Figure BDA0002373217080000124
图9所示为由本发明所提的(nk±m)次谐波重复控制器并联相加而成的并联结构所有次谐波重复控制器,对于n、m、k的不同取值,该结构重复控制器可以对所有次谐波进行消除,并且可以独立调节各次谐波的控制增益,其传递函数如下:
Figure BDA0002373217080000125
其中,n和m都为正整数,且当n为偶数时,m=0,1…n/2;当n为奇数时,m=0,1…[n/2]。
图10所示为由本发明所提的(nk±m)次谐波重复控制器并联相加而成的并联结构任意次谐波重复控制器,对于n、m、k的不同取值,该结构重复控制器可以对任意次谐波进行消除,并且可以独立调节各次谐波的控制增益,其传递函数如下:
Figure BDA0002373217080000131
其中,ni、mi为任意正整数。
图11所示为由本发明所提的(nk±m)次谐波重复控制器并联相加而成的并联结构所有次谐波重复控制器的数字形式,其传递函数为:
Figure BDA0002373217080000132
其中,n和m都为正整数,且n为偶数时,m=0,1…n/2;当n为奇数时,m=0,1…[n/2]。
图12所示为由本发明所提的(nk±m)次谐波重复控制器并联相加而成的并联结构任意次谐波重复控制器的数字形式,其传递函数为:
Figure BDA0002373217080000133
其中,ni、mi为任意正整数。
图13所示为加入低通滤波环节Q(s)和相位超前补偿环节A(s)的改进的并联结构所有次谐波重复控制器的结构框图,其传递函数为:
Figure BDA0002373217080000134
其中,n和m都为正整数,且n为偶数时,m=0,1…n/2;当n为奇数时,m=0,1…[n/2]。
图14所示为加入低通滤波环节Q(s)和相位超前补偿环节A(s)的改进的并联结构任意次谐波重复控制器的结构框图,其传递函数为:
Figure BDA0002373217080000135
其中,ni、mi为任意正整数。
图15所示为改进的并联结构所有次谐波数字重复控制器的结构框图,其传递函数为:
Figure BDA0002373217080000141
其中,n和m都为正整数,且n为偶数时,m=0,1…n/2;当n为奇数时,m=0,1…[n/2]。
图16所示为改进的并联结构任意次谐波数字重复控制器的结构框图,其传递函数为:
Figure BDA0002373217080000142
其中,ni、mi为任意正整数。
实施例二:
上述实施例一所给出的(nk±m)次谐波重复控制器以及进一步扩展得到的h阶(nk±m)次谐波数字重复控制器,可以以***或级联方式加入到一般的反馈控制***中用于消除控制误差当中的(nk±m)次谐波分量。以下分别对(nk±m)次谐波重复控制器以及进一步扩展得到的h阶(nk±m)次谐波数字重复控制器以***方式加入到一般反馈***中进行介绍:
(一)对于(nk±m)次谐波重复控制器
本实施例以将(nk±m)次谐波数字重复控制器以***方式加入到一般反馈***中为例,介绍本发明所提出的(nk±m)次谐波重复控制器的具体实施方式:
图17所示是将改进的(nk±m)次谐波数字重复控制器加入到一般反馈控制***中的结构框图,其中,Grc(z)为改进的(nk±m)次谐波数字重复控制器,Gc(z)为常规反馈控制器,Gp(z)为控制对象,yd(z)为***的参考输入且一般为基波参考信号y(z)为***实际输出,e(z)为参考与实际信号的误差同时也是重复控制器Grc(z)的输入信号,c(z)为重复控制器Grc(z)的输出信号同时也与误差信号e(z)相加后一起作为常规反馈控制器Gc(z)的输入,u(z)为常规反馈控制器Gc(z)的输出信号同时也是控制对象Gp(z)的输入信号,d(z)为***的扰动输入信号,它与控制对象Gp(z)的输出信号相加形成实际输出信号y(z)。
图18所示是将改进的h阶(nk±m)次谐波数字重复控制器(h≥2)加入到一般反馈控制***中的结构框图,高阶(nk±m)次谐波数字重复控制器同样是以***式的方式加入到一般反馈控制***中。
为验证本发明所提出的(nk±m)次谐波重复控制器的有效性与实用性,进行了基于Matlab/Simulink的仿真实验如下:
对于单相逆变器带单相整流负载的情况,由于其谐波主要集中在(4k±l)次(即3、5、7、9等奇次)频率分量处,且常需要对基波参考信号进行跟踪,所以只需令n=4和m=1,就可实现对基波参考信号的无误差跟踪和对奇次谐波的完全消除,控制目标为使输出电压精确跟踪参考电压,其中参考电压Vref=156sin100πt,如图19所示为在FC(状态反馈控制器)的基础上,t=0.1s时,重复控制增益krc相同的情况下,分别加入传统重复控制器(Zhou K,Wang D,“Digital repetitive learning controller for three-phase CVCF PWMinverter[J]”,IEEE Transactions on Industrial Electronics,2001)即CRC控制器和本申请所提出的4k±1RC控制器的两种复合控制下的稳态输出波形和误差收敛变化图,其中图19(a)对应于CRC控制器,图19(b)对应于本申请提出的4k±1RC控制器。
根据图19(a)和(b)可知,分别采用CRC和4k±1RC后,其总谐波畸变率(TotalHarmonic Distortion,THD)分别为0.57%和1.1%,都可以达到非常小的数值,但是在具有与CRC几乎同样的谐波抑制效果的同时,CRC需要约0.7s达到稳态;而本申请对应的4k±1RC则仅需要约0.35s达到稳态,因此4k±1RC的误差收敛速度约为CRC的2倍,即本申请对应的4k±1RC的误差收敛速度明显较快。
而对于三相逆变器带三相整流负载的情况,由于其谐波主要集中在(6k±l)次(即5、7、11、13等次)谐波频率分量处,且常需要对基波参考信号进行跟踪,所以只需令n=6和m=1,就可实现对基波参考信号的无误差跟踪和对(6k±l)次谐波的完全消除,控制目标为使输出电压精确跟踪参考电压,其中参考电压Vabref=220sin100πt、Vbcref=220sin(100πt-2/3π)、Vcaref=220sin(100πt+2/3π),如图20所示为在FC(状态反馈控制器)的基础上,t=0.1s时,重复控制增益krc相同的情况下,分别加入CRC控制器和本申请所提出的6k±1RC控制器的两种复合控制下的稳态输出波形和误差收敛变化图,其中图20(a)对应于CRC控制器,图20(b)对应于本申请提出的6k±l RC控制器。
根据图20(a)和(b)可知,分别采用CRC和6k±1RC后其总谐波畸变率(TotalHarmonic Distortion,THD)分别为0.38%和1.05%,都可以达到非常小的数值,但是在具有与CRC几乎同样的谐波抑制效果的同时,CRC需要约0.75s达到稳态;而本申请对应的6k±1RC则仅需要约0.25s达到稳态,因此6k±1RC的误差收敛速度约为CRC的3倍,即本申请对应的6k±1RC的误差收敛速度明显较快。
(二)对于h阶(nk±m)次谐波重复控制器
本发明所提(nk±m)次谐波重复控制器可进一步扩展为h阶(nk±m)次谐波数字重复控制器(h≥2),此处以6k±1RC与二阶6k±1RC为例,通过具体仿真实例验证了高阶(nk±m)次谐波数字重复控制器相较于一阶(nk±m)次谐波数字重复控制器,性能有所提升,可以一定程度抑制控制器内模与所需要跟踪或消除的周期信号在谐振频率点附近发生的失配,并且具有更快的误差收敛速度。
如图21所示为频率从50Hz变为49.8Hz时,在FC(状态反馈控制器)的基础上,t=0.1s时,重复控制增益krc相同的情况下,分别加入6k±1RC控制器和所提出的二阶6k±1RC控制器的两种复合控制下的误差收敛变化图和谐波频谱图,其中图21(a)对应于6k±1RC控制器,图21(b)对应于二阶6k±1RC控制器。
根据图21(a)和(b)可知,采用6k±1RC控制器的误差收敛时间与总谐波畸变率(Total Harmonic Distortion,THD)分别为0.3s和1.59%,而采用二阶6k±1RC控制器的误差收敛时间与总谐波畸变率(Total Harmonic Distortion,THD)分别为0.2s和1.42%,因此,二阶6k±1RC控制器在控制器内模与所需要跟踪或消除的周期信号在谐振频率点附近发生失配时,具有更快的误差收敛速度和更低的总谐波畸变率。
实施例三:
上述实施例一所给出的(nk±m)次谐波数字重复控制器以及进一步扩展得到的h阶(nk±m)次谐波数字重复控制器、并联结构所有次/任意次谐波数字重复控制器可以以***或级联方式加入到一般的反馈控制***中用于消除控制误差当中的(nk±m)次谐波分量,实施例二给出了(nk±m)次谐波重复控制器及h阶(nk±m)次谐波数字重复控制器以***方式加入到一般的反馈控制***的具体实施方式及仿真实验,本实施例介绍以级联方式加入到一般的反馈控制***的具体实施方式。
图22所示是将改进的(nk±m)次谐波数字重复控制器或并联结构重复控制器或h阶(nk±m)次谐波数字重复控制器以级联方式加入到一般反馈控制***中的结构框图,其中,Grc(z)为改进的(nk±m)次谐波数字重复控制器,Gc(z)为常规反馈控制器,Gp(z)为控制对象,yd(z)为***的参考输入且一般为基波参考信号y(z)为***实际输出,e(z)为参考与实际信号的误差同时也是重复控制器Grc(z)的输入信号,c(z)为重复控制器Grc(z)的输出信号同时也与误差信号e(z)相加后一起作为常规反馈控制器Gc(z)的输入,u(z)为常规反馈控制器Gc(z)的输出信号同时也是控制对象Gp(z)的输入信号,d(z)为***的扰动输入信号,它与控制对象Gp(z)的输出信号相加形成实际输出信号y(z)。
本发明实施例中的部分步骤,可以利用软件实现,相应的软件程序可以存储在可读取的存储介质中,如光盘或硬盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种重复控制器,其特征在于,所述重复控制器包括:重复控制增益模块、正前馈增益模块、一个减法环、二个加法环和三个相同的时间延迟模块;
其中,重复控制增益模块的输入端作为所述重复控制器的输入端,重复控制增益模块的输出端作为第一加法环的第一输入端,第一加法环的输出端作为第二加法环的第一输入端,第二加法环的输出端分别串接正前馈增益模块和第一时间延迟模块后接减法环的正输入端和负输入端,减法环的输出端串接第二时间延迟模块后接第一加法环的第二输入端,同时也是重复控制器的输出端,正前馈增益模块的输出端串接第三时间延迟模块后接第二加法环的第二输入端。
2.根据权利要求1所述的重复控制器,其特征在于,所述重复控制器还包括:低通滤波器和相位超前补偿模块;
所述三个相同的时间延迟模块后分别串联一个低通滤波器,所述减法环的输出端串接第二时间延迟模块后接相位超前补偿模块。
3.一种多模重复控制器,其特征在于,所述多模重复控制器由至少两个权利要求1或2所述的重复控制器并联相加构成。
4.一种h阶重复控制器,h≥2,其特征在于,所述h阶重复控制器由权利要求1所述的重复控制器扩展得到,扩展方法为:将∑whMh()进行从1到h的累和作为控制器前向通路,并以输出正反馈形式来构造周期信号的内模,其中wh为常系数,M()为三个时间延迟模块和正前馈增益模块构成的周期信号发生器。
5.一种变换器,其特征在于,所述变换器采用权利要求1或2所述的重复控制器,或权利要求3所述的多模重复控制器,或权利要求4所述的h阶重复控制器进行控制,其中变换器包括逆变器和整流器。
6.一种重复控制器的控制方法,其特征在于,所述方法用于利用权利要求1或2所述的重复控制器或权利要求3所述的多模重复控制器或权利要求4所述的h阶重复控制器进行消除(nk±m)次谐波,n、k和m为不小于零的整数且n≠0,n>m,所述方法包括:
重复控制增益模块:将重复控制器的输入量经过重复控制增益后得到重复控制增益模块的输出量;
正前馈增益模块:将第二加法环的输出量经过正前馈增益模块后得到正前馈增益模块输出量;
第一加法环:将重复控制增益模块输出量与第二时间延迟模块延迟输出的减法环输出量相加得到第一加法环输出量;
第二加法环:将第一加法环的输出量与第三时间延迟模块延迟输出的正前馈增益模块输出量相加得到第二加法环输出量;
减法环:将正前馈增益模块的输出量与第一时间延迟模块延迟输出的第二加法环输出量相减得到减法环的输出量;
第一时间延迟模块:将第二加法环输出量延迟输出;
第二时间延迟模块:将减法环输出量延迟输出;
第三时间延迟模块:将正前馈增益模块输出量延迟输出。
7.根据权利要求6所述的方法,其特征在于,所述方法还包括:
通过调节重复控制增益实现调节所述重复控制器跟踪或消除特定次谐波的速度,也即所述重复控制器的输出信号与参考信号之间误差的收敛速度。
8.根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
根据所需要跟踪或消除的谐波次数确定正前馈增益模块的参数。
9.根据权利要求6-8任一所述的方法,其特征在于,所述时间延迟模块为模拟或数字时间延迟模块,所述重复控制器的传递函数如下:
Figure FDA0002373217070000021
Figure FDA0002373217070000022
其中,c()为重复控制器的输出量,e()为重复控制器的输入量即控制***的控制误差量,krc为重复控制增益参数,s为连续时间***的拉普拉斯变量,z为离散时间***的z变换的变量;N=T0/Ts为整数,T0为基波周期,T0=2π/ω0=l/f0,f0为基波频率,ω0为基波角频率,Ts为采样周期,n、k和m为不小于零的整数且n≠0,n>m。
10.根据权利要求6-9任一所述的方法,其特征在于,所述方法还包括:将权利要求1或2所述的重复控制器以***方式加入到反馈控制***中用于消除控制误差当中的(nk±m)次谐波分量,当以***方式加入到反馈控制***时,重复控制器的传递函数为:
Figure FDA0002373217070000023
其中,Q(z)为低通滤波器,A(z)为相位超前补偿模块;
所述反馈控制***在满足下述两个条件时是稳定的:
①未***重复控制器前的闭环***传递函数的极点位于单位圆内;
②所述***的控制器中的重复控制增益参数krc满足0<krc<2。
CN202010057203.XA 2020-01-19 2020-01-19 一种定制式谐波重复控制器及控制方法 Pending CN111142389A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010057203.XA CN111142389A (zh) 2020-01-19 2020-01-19 一种定制式谐波重复控制器及控制方法
PCT/CN2020/127928 WO2021143319A1 (zh) 2020-01-19 2020-11-11 一种定制式谐波重复控制器及控制方法
US17/308,110 US11199820B2 (en) 2020-01-19 2021-05-05 Customized harmonic repetitive controller and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010057203.XA CN111142389A (zh) 2020-01-19 2020-01-19 一种定制式谐波重复控制器及控制方法

Publications (1)

Publication Number Publication Date
CN111142389A true CN111142389A (zh) 2020-05-12

Family

ID=70525942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010057203.XA Pending CN111142389A (zh) 2020-01-19 2020-01-19 一种定制式谐波重复控制器及控制方法

Country Status (3)

Country Link
US (1) US11199820B2 (zh)
CN (1) CN111142389A (zh)
WO (1) WO2021143319A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111752153A (zh) * 2020-06-24 2020-10-09 北京航空航天大学 一种基于1.5阶混合重复控制器的谐波电流抑制方法
WO2021143319A1 (zh) * 2020-01-19 2021-07-22 江南大学 一种定制式谐波重复控制器及控制方法
CN114442485A (zh) * 2022-01-12 2022-05-06 武汉理工大学 一种通用的分数阶多周期特征谐波重复控制器设计方法及控制器
CN114509970A (zh) * 2022-01-12 2022-05-17 武汉理工大学 一种通用的多周期多谐振控制器设计方法及控制器
CN114675532A (zh) * 2022-01-12 2022-06-28 武汉理工大学 一种分数阶多周期6k±1次谐波重复控制器设计方法及控制器
CN114779633A (zh) * 2022-04-06 2022-07-22 武汉理工大学 通用的分数阶多周期重复控制器设计方法及控制器
CN115800721A (zh) * 2023-02-07 2023-03-14 武汉理工大学 一种三相并网变换电路消除并网电流谐波畸变的方法
CN117452822A (zh) * 2023-11-13 2024-01-26 中原工学院 一种基于c语言的重复控制技术编程实现方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115016267B (zh) * 2022-05-30 2024-04-30 北京航空航天大学 一种磁悬浮转子奇次谐波振动力抑制方法
CN116149399A (zh) * 2023-02-10 2023-05-23 华中科技大学 一种制冷***的温度控制装置及其温度控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070067051A1 (en) * 2005-09-22 2007-03-22 Ramos Jesus L Repetitive controller to compensate for odd harmonics
US20080167735A1 (en) * 2007-01-08 2008-07-10 Gerardo Escobar Valderrama Repetitive controller to compensate for (61±1) harmonics
CN101887238A (zh) * 2010-06-25 2010-11-17 东南大学 一种特定次重复控制器及控制方法
CN105159063A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种分数相位超前补偿重复控制器及控制方法
CN211653427U (zh) * 2020-01-19 2020-10-09 江南大学 一种重复控制器、高阶重复控制器、多模重复控制器及变换器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792684B2 (ja) * 1986-10-31 1995-10-09 三菱重工業株式会社 リミツタ付繰返し制御装置
JPH08263105A (ja) * 1995-03-24 1996-10-11 Nippon Seiko Kk 反復制御装置
CN101937193A (zh) * 2010-07-30 2011-01-05 东南大学 一种多内模并联型重复控制器及控制方法
CN102176115B (zh) * 2011-01-25 2012-11-28 东南大学 一种特定类谐波重复控制器及控制方法
CN102200758A (zh) * 2011-04-19 2011-09-28 东南大学 一种多模结构重复控制器及控制方法
CN102135758B (zh) * 2011-04-22 2015-08-12 力博特公司 一种重复控制器及其控制方法以及反馈控制***
CN105159062A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种基于***式快速重复控制器的复合控制方法及***
CN105159064A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种***式快速重复控制器及控制方法
CN111142389A (zh) * 2020-01-19 2020-05-12 江南大学 一种定制式谐波重复控制器及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070067051A1 (en) * 2005-09-22 2007-03-22 Ramos Jesus L Repetitive controller to compensate for odd harmonics
US20080167735A1 (en) * 2007-01-08 2008-07-10 Gerardo Escobar Valderrama Repetitive controller to compensate for (61±1) harmonics
CN101887238A (zh) * 2010-06-25 2010-11-17 东南大学 一种特定次重复控制器及控制方法
CN105159063A (zh) * 2015-08-31 2015-12-16 南京航空航天大学 一种分数相位超前补偿重复控制器及控制方法
CN211653427U (zh) * 2020-01-19 2020-10-09 江南大学 一种重复控制器、高阶重复控制器、多模重复控制器及变换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEIYAN XIN等: "State Feedback Repetitive Control for Single-Phase Inverters", 《2019 IEEE 15TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA)》, 19 July 2019 (2019-07-19) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021143319A1 (zh) * 2020-01-19 2021-07-22 江南大学 一种定制式谐波重复控制器及控制方法
US11199820B2 (en) 2020-01-19 2021-12-14 Jiangnan University Customized harmonic repetitive controller and control method
CN111752153A (zh) * 2020-06-24 2020-10-09 北京航空航天大学 一种基于1.5阶混合重复控制器的谐波电流抑制方法
CN114442485A (zh) * 2022-01-12 2022-05-06 武汉理工大学 一种通用的分数阶多周期特征谐波重复控制器设计方法及控制器
CN114509970A (zh) * 2022-01-12 2022-05-17 武汉理工大学 一种通用的多周期多谐振控制器设计方法及控制器
CN114675532A (zh) * 2022-01-12 2022-06-28 武汉理工大学 一种分数阶多周期6k±1次谐波重复控制器设计方法及控制器
CN114509970B (zh) * 2022-01-12 2023-02-28 武汉理工大学 一种通用的多周期多谐振控制器设计方法及控制器
CN114675532B (zh) * 2022-01-12 2024-05-28 武汉理工大学 一种分数阶多周期6k±1次谐波重复控制器设计方法及控制器
CN114779633A (zh) * 2022-04-06 2022-07-22 武汉理工大学 通用的分数阶多周期重复控制器设计方法及控制器
CN115800721A (zh) * 2023-02-07 2023-03-14 武汉理工大学 一种三相并网变换电路消除并网电流谐波畸变的方法
CN117452822A (zh) * 2023-11-13 2024-01-26 中原工学院 一种基于c语言的重复控制技术编程实现方法

Also Published As

Publication number Publication date
WO2021143319A1 (zh) 2021-07-22
US20210255592A1 (en) 2021-08-19
US11199820B2 (en) 2021-12-14

Similar Documents

Publication Publication Date Title
CN111142389A (zh) 一种定制式谐波重复控制器及控制方法
CN101887238B (zh) 一种特定次重复控制器及控制方法
Liu et al. A simple approach to reject DC offset for single-phase synchronous reference frame PLL in grid-tied converters
Parvez et al. Performance analysis of PR current controller for single-phase inverters
CN110429603B (zh) 六开关七电平有源电力滤波器及补偿方法
CN111740635A (zh) 一种单相lc型逆变器的双环控制方法
Zhao et al. Novel fractional-order repetitive controller based on Thiran IIR filter for grid-connected inverters
CN211653427U (zh) 一种重复控制器、高阶重复控制器、多模重复控制器及变换器
CN111142390B (zh) 一种通道加权结构重复控制器及控制方法
Jamil et al. Robust repetitive current control of two-level utility-connected converter using LCL filter
CN115800328A (zh) 三相四桥臂全桥逆变器不平衡的控制方法、装置及介质
CN114583995A (zh) 用于逆变器双环控制的方法、装置、逆变器及存储介质
Sun et al. Robust Repetitive Controller Design Based on S/SK Problem for Single-phase Grid-connected Inverters
Zhao et al. A new control scheme for LCL-type grid-connected inverter with a Notch filter
Zhou et al. Odd-harmonic repetitive controlled CVCF PWM inverter with phase lead compensation
Zhao et al. Fractional repetitive control based on IIR filter for grid-connected inverters
Zhao et al. Improved cascade-type repetitive control of grid-tied inverter with LCL filter
CN115657460B (zh) 一种定制式谐波重复控制器
Zhong et al. Coordinated control of active disturbance rejection and grid voltage feedforward for grid‐connected inverters
CN111446717B (zh) 一种改进型重复控制器谐波抑制方法
Jamil et al. Design and analysis of odd-harmonic repetitive control for three-phase grid connected voltage source inverter
Elghonimy et al. Proportional resonant controller with resonant harmonic compensators for three-phase static frequency converter feeding nonlinear loads
CN113659624B (zh) 一种并网变流器无偏差预测控制方法及***
Ren et al. A PR-RC Controller for LCL-Type SVG to Suppress the Harmonic Distortion
Sikander et al. Analysis of repetitive control of grid connected inverter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination