CN111087571A - Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof - Google Patents

Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof Download PDF

Info

Publication number
CN111087571A
CN111087571A CN201911379893.4A CN201911379893A CN111087571A CN 111087571 A CN111087571 A CN 111087571A CN 201911379893 A CN201911379893 A CN 201911379893A CN 111087571 A CN111087571 A CN 111087571A
Authority
CN
China
Prior art keywords
polyurethane
solvent
cross
crosslinking
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911379893.4A
Other languages
Chinese (zh)
Inventor
孙理
赵勇进
曹雪芬
胡观林
汪泽宇
汪琛雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huangshan Zhongze New Material Co ltd
Original Assignee
Huangshan Zhongze New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huangshan Zhongze New Material Co ltd filed Critical Huangshan Zhongze New Material Co ltd
Priority to CN201911379893.4A priority Critical patent/CN111087571A/en
Publication of CN111087571A publication Critical patent/CN111087571A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6648Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6651Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3225 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4216Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from mixtures or combinations of aromatic dicarboxylic acids and aliphatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4219Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from aromatic dicarboxylic acids and dialcohols in combination with polycarboxylic acids and/or polyhydroxy compounds which are at least trifunctional
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • C08G18/4241Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols from dicarboxylic acids and dialcohols in combination with polycarboxylic acids and/or polyhydroxy compounds which are at least trifunctional
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/425Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids the polyols containing one or two ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6644Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

The invention belongs to the technical field of gravure ink printing, particularly relates to a solvent-resistant diluted polyurethane ink binder, and particularly relates to a polyurethane binder for flexible package gravure printing composite ink with excellent solvent dilution resistance, boiling resistance and blocking resistance, and further discloses a preparation method of the polyurethane binder. According to the polyurethane binder for the gravure printing composite ink, the cross-linked polyol and the isocyanate react, then the cross-linking agent is used for carrying out cross-linking reaction on the polyurethane resin again, and a double cross-linked network-shaped three-dimensional structure is introduced in the polyurethane synthesis, so that the movement of molecular chains is limited, solvent molecules are difficult to permeate, the solvent dilution resistance of the polyurethane resin is enhanced along with the improvement of the cross-linking degree, the heat resistance, the solvent solubility resistance and the solvent dilution resistance of the polyurethane are effectively improved, and the polyurethane binder is suitable for the performance requirements of the flexible package gravure printing composite ink.

Description

Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof
Technical Field
The invention belongs to the technical field of gravure ink printing, particularly relates to a solvent-resistant diluted polyurethane ink binder, and particularly relates to a polyurethane binder for flexible package gravure printing composite ink with excellent solvent dilution resistance, boiling resistance and blocking resistance, and further discloses a preparation method of the polyurethane binder.
Background
Along with the improvement of living standard, people have higher and higher requirements on food flexible packages, the attention on printing quality is improved, the attention on environmental pollution, printing workshop safety and the like in the production process is also paid, alcohol and ester soluble ink is gradually used for replacing benzene and ketone system ink in the market, and an environment-friendly ink system is gradually developed and formed so as to meet the market demand. The domestic flexible package gravure printing composite ink is mainly used by taking polyurethane resin as an ink binder, and with the rapid increase of economy, the domestic flexible package gravure printing composite ink, the food package printing ink and the like show an increasing trend. In the aspect of flexible packaging such as laundry powder bags, hot pickled mustard tuber bags and the like, the materials are mostly PET, BOPP and other materials, and certain steaming resistance and solvent resistance are required, so that the application requirement of the connecting material is higher and higher.
Since the main chain of the macromolecule of polyurethane contains a plurality of urethane groups, which are generated by stepwise polymerization of di (or poly) isocyanate, di (or poly) polyol and di (or poly) amine, the macromolecule chain also contains ether groups, ester groups, carbamide groups, amide groups and the like besides the urethane groups, so that hydrogen bonds are easily generated among the macromolecules. Therefore, the polyurethane resin has excellent wear resistance, scratch resistance, adhesive property, flexibility, good low-temperature performance, high gloss and gloss retention, particularly the aliphatic polyurethane also has ultraviolet light resistance and good chemical resistance, and the application performance of the polyurethane resin has wide adjustability, so that the polyurethane resin can meet various requirements and can be widely applied to various fields. Therefore, the use of polyurethane resins in inks is becoming active and an important ink vehicle.
At present, alcohol ester-soluble polyurethane ink binder occupies a very important position in ink, and after polyurethane resin is prepared into ink, ester or alcohol solvent is added to dilute the ink to a certain viscosity for printing on a printing machine, so that the dilution ratio of the ink and the solvent is particularly important, and more solvents capable of being diluted are more and more emphasized by more and more printing plants. Therefore, not only the quality and performance of polyurethane resin are more and more important, but also the durability and use performance of polyurethane resin are more and more concerned.
For example, chinese patent CN104204020A discloses a polyurethane resin composition for a printing ink binder, but the polyurethane ink binder does not pay attention to the performance such as dilution resistance and boiling resistance, and has certain use defects. For another example, chinese patent CN103012724A discloses a polyurethane resin for gravure composite ink, which has good solubility, but the solvent dilution resistance is not ideal. Further, as disclosed in chinese patent CN101781453A, the polyurethane resin obtained by this method contains isocyanate groups and is inferior in storage stability. For another example, chinese patent CN102746735A discloses a two-component alcohol-soluble polyurethane ink binder, but the method has a complex using process, is prone to error during blending, and is inconvenient to operate. For another example, chinese patent CN101921374A discloses a polyacrylate-polyurethane resin binder for single-liquid universal plastic gravure alcohol-water-soluble composite ink, which is obtained by modifying polyurethane with polyacrylic acid, but the method cannot be applied to the packaging of food or medicine due to the introduction of an initiator, and has certain application limitations.
Therefore, the development of the polyurethane ink binder which is suitable for gravure printing for food flexible packaging and has excellent solvent dilution resistance, steaming resistance and anti-blocking performance is of great significance.
Disclosure of Invention
Therefore, the technical problem to be solved by the invention is to provide a polyurethane ink binder suitable for gravure printing for food flexible packaging, wherein the polyurethane ink binder has better solvent dilution resistance, boiling resistance and anti-blocking performance;
the second technical problem to be solved by the invention is to provide a preparation method and application of the ink vehicle.
In order to solve the technical problems, the solvent-resistant diluted polyurethane ink binder provided by the invention comprises the following raw materials for preparing double-crosslinking polyurethane and an organic solvent; wherein the content of the first and second substances,
the raw materials for preparing the double-crosslinking polyurethane comprise the following components in parts by weight:
Figure BDA0002342016600000031
specifically, the organic solvent includes ethyl acetate and/or isopropanol.
The solvent-resistant diluted polyurethane ink vehicle comprises the following preparation raw materials in total amount:
29-31 wt% of the double-crosslinking polyurethane;
0-70 wt% of ethyl acetate;
0-70 wt% of isopropanol.
Specifically, the cross-linked polyol is a cross-linked polymer which is formed by esterification, polycondensation and cross-linking by taking polyol and polybasic acid as raw materials in the presence of an esterification cross-linking agent;
the cross-linking type polyol comprises the following components in percentage by total amount of raw materials for preparing the cross-linking type polyol:
0-50 wt% of polyol;
0-50 wt% of polybasic acid;
0-10 wt% of esterified cross-linking agent.
Specifically, in the solvent-resistant diluted polyurethane ink vehicle:
the dibasic acid comprises adipic acid (structural formula is shown in the specification)
Figure BDA0002342016600000032
) Sebacic acid (structural formula is
Figure BDA0002342016600000033
) Terephthalic acid (structural formula is
Figure BDA0002342016600000034
) At least one of;
the dihydric alcohol comprises 1,6 hexanediol (with a structural formula shown in the specification)
Figure BDA0002342016600000035
) 1, 4-butanediol (structural formula is shown in the specification)
Figure BDA0002342016600000041
) Methyl propylene glycol (structural formula is shown in the specification)
Figure BDA0002342016600000042
) Diethylene glycol (structural formula is shown in the specification)
Figure BDA0002342016600000043
) At least one of;
the cross-linking agent comprises glycerol (structural formula is shown in the specification)
Figure BDA0002342016600000044
) Trimethylolpropane (structural formula
Figure BDA0002342016600000045
) At least one or more of;
the crosslinking polyol preferably has a hydroxyl value of 18.7 to 56.1mgKOH/g and an acid value of 0.05 to 0.5mgKOH/g, more preferably a hydroxyl value of 30.0mgKOH/g and an acid value of 0.2 mgKOH/g.
More preferably, the cross-linking polyol comprises the following components based on the total amount of raw materials for preparing the cross-linking polyol:
Figure BDA0002342016600000046
and adding a catalyst such as butyl orthotitanate in an amount of 0-1 wt% based on the total amount of the above raw materials.
Specifically, the solvent-resistant diluted polyurethane ink vehicle comprises:
the diisocyanate comprises isophorone diisocyanate (structural formula is shown in the specification)
Figure BDA0002342016600000047
) Toluene diisocyanate (structural formula is shown in the specification)
Figure BDA0002342016600000048
) 4,4' -diphenylmethane diisocyanate (structural formula is shown in the specification)
Figure BDA0002342016600000049
) Hexamethylene diisocyanate of the formula
Figure BDA00023420166000000410
) At least one of;
the diamine chain extender comprises isophorone diamine (structural formula is shown in the specification)
Figure BDA0002342016600000051
) Methyl cyclohexanediamine (structural formula is shown in the specification)
Figure BDA0002342016600000052
) Diethyl toluenediamine (structural formula is shown in the specification)
Figure BDA0002342016600000053
) Ethylenediamine (structural formula)
Figure BDA0002342016600000054
) At least one of;
the polyurethane crosslinking agent comprises glycerol (structural formula is shown in the specification)
Figure BDA0002342016600000055
) Diethylenetriamine (structural formula is
Figure BDA0002342016600000056
) Pentaerythritol (structural formula is
Figure BDA0002342016600000057
) At least one of;
the polyurethane terminator comprises n-butylamine (structural formula shown in the specification)
Figure BDA0002342016600000058
) Octadecylamine (structural formula is
Figure BDA0002342016600000059
) N-propylamine (structural formula is
Figure BDA00023420166000000510
) N-hexylamine (structural formula is shown in the specification)
Figure BDA00023420166000000511
) Ethanolamine (structural formula
Figure BDA00023420166000000512
) At least one of (1).
The invention also discloses a method for preparing the solvent-resistant diluted polyurethane ink binder, which comprises the following steps:
(1) uniformly mixing a selected amount of the cross-linking polyol, diisocyanate and part of ethyl acetate, and reacting at 80-100 ℃ to obtain a prepolymer;
(2) mixing a selected amount of the diamine chain extender, the polyurethane cross-linking agent and part of ethyl acetate and isopropanol uniformly to obtain a mixed solution;
(3) by N2Transferring the obtained prepolymer to the mixed liquid obtained in the step (2), adding a selected amount of the terminator, and continuing to react;
(4) and after the reaction is finished, continuing carrying out heat preservation reaction at 55-65 ℃, and adding the rest ethyl acetate and isopropanol and uniformly mixing to obtain the product.
Specifically, the step (2) further comprises the step of preserving the temperature of the obtained mixed solution at 40-55 ℃.
The invention also discloses application of the solvent-resistant diluted polyurethane ink binder in preparation of gravure printing ink for food flexible packaging. Specifically, the viscosity of the solvent-resistant diluted polyurethane ink binder is 1000-1600 mPas (25 ℃).
The invention also discloses gravure printing ink for food flexible packaging, which is prepared from the solvent-resistant diluted polyurethane ink binder.
According to the polyurethane connecting material for the gravure printing composite ink, the cross-linked polyol and the isocyanate react, then the cross-linking agent is used for carrying out cross-linking reaction on the polyurethane resin again, and a double cross-linked network-shaped three-dimensional structure is introduced in the polyurethane synthesis, so that the movement of a molecular chain is limited, solvent molecules are difficult to permeate, the solvent-resistant dilutability of the polyurethane resin is enhanced along with the improvement of the cross-linking degree, and the heat resistance, the solvent-resistant solubility and the solvent-resistant dilutability of the polyurethane are effectively improved; the terminator is introduced during chain extension, so that the risk of crosslinking caused by too fast reaction during polyurethane synthesis can be effectively controlled, and the reaction is easier to control. The polyurethane binder for the gravure printing composite ink has excellent solvent dilution resistance, boiling resistance and anti-blocking performance, and is suitable for the performance requirements of the flexible package gravure printing composite ink.
The polyurethane binder for gravure composite ink preferably selects the special cross-linking polyol with hydroxyl value of 30.0mgKOH/g and acid value of 0.2mgKOH/g, ensures enough ester groups and methylene in polyurethane resin, increases the crystallinity of chain segments along with the increase of hydrogen bonds, and improves the viscosity, tensile strength and bonding strength performance of the polyurethane resin; the hardness of the polyurethane resin is reduced, the flexibility of the polyurethane resin is improved, and the transferability and the leveling property of the polyurethane ink are ensured after the gravure printing composite ink is prepared.
Detailed Description
Example 1
The polyurethane binder for gravure printing composite ink in the embodiment comprises the following components in total amount of preparation raw materials:
30.3 wt% of raw materials for preparing the double-crosslinking polyurethane;
ethyl acetate 40.2 wt%;
and 29.5% of isopropanol.
The preparation method of the solvent-resistant diluted polyurethane ink vehicle comprises the following steps:
(1) uniformly mixing 100g of cross-linking polyol, 17.4g of diisocyanate and 10g of ethyl acetate in a reaction bottle 1, and heating to 90 ℃ to react for 2 hours to obtain a prepolymer;
(2) adding 12.8g of diamine chain extender, 1.5g of cross-linking agent, 1g of terminator, 157.4g of ethyl acetate and 120.2g of isopropanol into a reaction bottle 2, uniformly mixing, and keeping the temperature at 50 ℃;
(3) by N2Transferring the prepolymer from the reaction bottle 1 to the reaction bottle 2 for 15 min; adding 1g of terminating agent into the reaction bottle 2 continuously, and reacting for 20min continuously;
(4) after the reaction is finished, keeping the temperature at 60 ℃ for 4h, adding 10g of ethyl acetate and 10g of isopropanol, and stirring uniformly to obtain the product.
In the preparation raw materials of the solvent-resistant diluted polyurethane ink vehicle of the embodiment:
the cross-linked polyol is prepared by adding adipic acid (mass content of 58%), terephthalic acid (mass content of 5%), methyl propylene glycol (mass content of 35%), trimethylolpropane (mass content of 2%) and a catalyst (butyl orthotitanate accounting for 0.08% of the mass content of the raw materials) into a reaction bottle in sequence according to the mass of the prepared polyester polyol; heating to 200 ℃ for reaction for 4 hours, evaporating water generated in the reaction, continuously heating to 240 ℃ for reaction for 4 hours, wherein the reaction is esterification reaction, and the temperature rise process is controlled to be slow, and the temperature of distilled water is 100-; the hydroxyl value of the prepared crosslinking type polyol is 29.6mgKOH/g, and the acid value is 0.21 KOH/g;
the diisocyanate is isophorone diisocyanate and toluene diisocyanate, and the mass ratio of the diisocyanate to the toluene diisocyanate is 1.3: 1;
the diamine chain extender is isophorone diamine;
the polyurethane cross-linking agent is diethylenetriamine;
the polyurethane terminator is n-butylamine and ethanolamine, and the mass ratio is 1.2: 1.
in the polyurethane ink binder with the double-crosslinking structure, a crosslinking polyol and isocyanate react, then a crosslinking agent is used for carrying out a crosslinking reaction on polyurethane resin, and a crosslinking net-shaped three-dimensional structure is introduced in polyurethane synthesis, so that not only is the movement of a molecular chain limited, but also solvent molecules are difficult to permeate, and the solvent dilution resistance of the polyurethane resin is enhanced along with the improvement of the crosslinking degree; the viscosity of the polyurethane ink vehicle described in this example was 1200 mPas (25 ℃).
Example 2
The polyurethane binder for gravure printing composite ink in the embodiment comprises the following components in total amount of preparation raw materials:
29.5 wt% of raw materials for preparing the double-crosslinking polyurethane;
ethyl acetate 45.2 wt%;
24.5 percent of isopropanol.
The preparation method of the solvent-resistant diluted polyurethane ink vehicle comprises the following steps:
(1) uniformly mixing 100g of the cross-linking polyol, 24.7g of diisocyanate and 10g of ethyl acetate in a reaction bottle 1, and heating to 90 ℃ to react for 2.5 hours to obtain a prepolymer;
(2) adding 15.5g of diamine chain extender, 1.6g of cross-linking agent, 1.4g of terminator, 201.9g of ethyl acetate and 110.2g of isopropanol into a reaction bottle 2, uniformly mixing, and keeping the temperature at 50 ℃;
(3) by N2Transferring the prepolymer from the reaction bottle 1 to the reaction bottle 2 for 18 min; adding 1.6g of terminating agent into the reaction bottle 2, and continuing to react for 20 min;
(4) after the reaction is finished, preserving the heat for 4 hours at the temperature of 60 ℃, adding 10g of ethyl acetate and 10g of isopropanol, and uniformly stirring to obtain the product.
In the preparation raw materials of the solvent-resistant diluted polyurethane ink vehicle of the embodiment:
the preparation method comprises the following steps of taking adipic acid (40 wt%), sebacic acid (10 wt%), 1, 4-butanediol (25 wt%), methyl propylene glycol (21 wt%) and a crosslinking agent glycerol (4 wt%) as raw materials, and sequentially adding adipic acid (50 wt%), sebacic acid (12 wt%), 1, 4-butanediol (15 wt%), methyl propylene glycol (21 wt%), the crosslinking agent glycerol (2 wt%), and a catalyst (butyl orthotitanate, which accounts for 0.08 wt% of the raw materials) into a reaction bottle according to the mass of the prepared polyester polyol; heating to 200 ℃ for reaction for 4 hours, evaporating water generated in the reaction, continuously heating to 240 ℃ for reaction for 4 hours, wherein the reaction is esterification reaction, and the temperature rise process is controlled to be slow, and the temperature of distilled water is 100-; the hydroxyl value of the cross-linked polyol is 28.4mgKOH/g, and the acid value is 0.26 KOH/g;
the diisocyanate is isophorone diisocyanate and 4,4' -diphenylmethane diisocyanate, and the mass ratio is 0.9: 1;
the diamine chain extender is isophorone diamine and diethyl toluene diamine, and the mass ratio of the diamine chain extender to the diamine chain extender is 1: 1;
the polyurethane cross-linking agent is ethylene triamine;
the polyurethane terminator is composed of octadecylamine and ethanolamine in a mass ratio of 4.4: 1.
in the polyurethane ink binder with the double-crosslinking structure, a crosslinking polyol and isocyanate react, then a crosslinking agent is used for carrying out a crosslinking reaction on polyurethane resin, and a crosslinking net-shaped three-dimensional structure is introduced in polyurethane synthesis, so that not only is the movement of a molecular chain limited, but also solvent molecules are difficult to permeate, and the solvent dilution resistance of the polyurethane resin is enhanced along with the improvement of the crosslinking degree; the viscosity of the polyurethane ink vehicle described in this example was 1250 mPas (25 ℃).
Example 3
The polyurethane binder for gravure printing composite ink in the embodiment comprises the following components in total amount of preparation raw materials:
30.0 wt% of raw materials for preparing the double-crosslinking polyurethane;
ethyl acetate 50.3 wt%;
and 19.7% of isopropanol.
The preparation method of the solvent-resistant diluted polyurethane ink vehicle comprises the following steps:
(1) uniformly mixing 100g of novel special polyol, 23.5g of diisocyanate and 10g of ethyl acetate in a reaction bottle 1, heating to 85 ℃ and reacting for 3 hours to obtain a prepolymer;
(2) adding 16.5g of diamine chain extender, 1.5g of cross-linking agent, 1.6g of terminator, 222.6g of ethyl acetate and 95g of isopropanol into a reaction bottle 2, uniformly mixing, and keeping the temperature at 50 ℃;
(3) by N2Transferring the prepolymer A diluent from the reaction bottle 1 to the reaction bottle 2 for 20 min; adding 1.6g of terminating agent into the reaction bottle 2, and continuing to react for 20 min;
(4) after the reaction is finished, keeping the temperature at 60 ℃ for 4h, adding 10g of ethyl acetate and 10g of isopropanol, and stirring uniformly to obtain the product.
In the preparation raw materials of the solvent-resistant diluted polyurethane ink vehicle of the embodiment:
the preparation method of the cross-linked polyol comprises the following steps of adding adipic acid (55 wt% by mass), terephthalic acid (5 wt% by mass), 1, 4-butanediol (12 wt% by mass), diethylene glycol (26 wt% by mass), a cross-linking agent trimethylolpropane (2 wt% by mass) and a catalyst (butyl orthotitanate, accounting for 0.08% by mass of the raw materials) into a reaction bottle in sequence according to the mass of the prepared polyester polyol; heating to 200 ℃ for reaction for 4 hours, evaporating water generated in the reaction, continuously heating to 240 ℃ for reaction for 4 hours, wherein the reaction is esterification reaction, and the temperature rise process is controlled to be slow, and the temperature of distilled water is 100-; the hydroxyl value of the crosslinking polyol was 28.4mgKOH/g, and the acid value was 0.26 KOH/g.
The diisocyanate is isophorone diisocyanate and hexamethylene diisocyanate, and the mass ratio of the diisocyanate to the hexamethylene diisocyanate is 1.3: 1;
the diamine chain extender is isophorone diamine and methyl cyclohexane diamine, and the mass ratio is 1.3: 1;
the polyurethane cross-linking agent is glycerol;
the polyurethane terminator is n-butylamine and n-propylamine, and the mass ratio is 1.2: 1.
in the polyurethane ink binder with the double-crosslinking structure, a crosslinking polyol and isocyanate react, then a crosslinking agent is used for carrying out a crosslinking reaction on polyurethane resin, and a crosslinking net-shaped three-dimensional structure is introduced in polyurethane synthesis, so that not only is the movement of a molecular chain limited, but also solvent molecules are difficult to permeate, and the solvent dilution resistance of the polyurethane resin is enhanced along with the improvement of the crosslinking degree; the viscosity of the polyurethane ink vehicle described in this example was 1275mPa · s (25 ℃).
Example 4
The polyurethane binder for gravure printing composite ink in the embodiment comprises the following components in total amount of preparation raw materials:
30.8 wt% of raw materials for preparing the double-crosslinking polyurethane;
ethyl acetate 60.5 wt%;
8.7 percent of isopropanol.
The preparation method of the solvent-resistant diluted polyurethane ink vehicle comprises the following steps:
(1) uniformly mixing 100g of novel special polyol, 19.6g of diisocyanate and 10g of ethyl acetate in a reaction bottle 1, heating to 85 ℃ and reacting for 3 hours to obtain a prepolymer;
(2) adding 14.6g of diamine chain extender, 1.5g of cross-linking agent, 1.2g of terminator, 252.1g of ethyl acetate and 95g of isopropanol into a reaction bottle 2, uniformly mixing, and keeping the temperature at 50 ℃;
(3) by N2Mixing the prepolymerTransferring the diluent A from the reaction bottle 1 to the reaction bottle 2 for 20 min; adding 1.6g of terminating agent into the reaction bottle 2, and continuing to react for 20 min;
(4) after the reaction is finished, preserving the heat for 4 hours at the temperature of 60 ℃, adding 10g of ethyl acetate and 10g of isopropanol, and uniformly stirring to obtain the product.
In the preparation raw materials of the solvent-resistant diluted polyurethane ink vehicle of the embodiment:
the preparation method of the cross-linked polyol comprises the following steps of adding adipic acid (with the mass content of 58 wt%), sebacic acid (with the mass content of 6 wt%), 1, 6-hexanediol (with the mass content of 10 wt%), diethylene glycol (with the mass content of 22 wt%) and a cross-linking agent trimethylolpropane (with the mass content of 4%) into a reaction bottle in sequence according to the mass of the prepared polyester polyol, and adding a catalyst (butyl orthotitanate, which accounts for 0.08% of the mass content of the raw materials); heating to 200 ℃ for reaction for 4 hours, evaporating water generated in the reaction, continuously heating to 240 ℃ for reaction for 4 hours, wherein the reaction is esterification reaction, and the temperature rise process is controlled to be slow, and the temperature of distilled water is 100-; the hydroxyl value of the crosslinked polyol was 31.4mgKOH/g, and the acid value was 0.27 KOH/g.
The diisocyanate is isophorone diisocyanate, toluene diisocyanate and hexamethylene diisocyanate, and the mass ratio is 1.3: 1: 1;
the diamine chain extender is isophorone diamine and ethylene diamine, and the mass ratio is 2.8: 1;
the polyurethane cross-linking agent is diethylenetriamine;
the polyurethane terminator is composed of n-propylamine and n-hexylamine in a mass ratio of 0.6: 1.
in the polyurethane ink binder with the double-crosslinking structure, a crosslinking polyol and isocyanate react, then a crosslinking agent is used for carrying out a crosslinking reaction on polyurethane resin, and a crosslinking net-shaped three-dimensional structure is introduced in polyurethane synthesis, so that not only is the movement of a molecular chain limited, but also solvent molecules are difficult to permeate, and the solvent dilution resistance of the polyurethane resin is enhanced along with the improvement of the crosslinking degree; the viscosity of the polyurethane ink vehicle described in this example was 1350mPa · s (25 ℃).
Example 5
The polyurethane binder for gravure printing composite ink in the embodiment comprises the following components in total amount of preparation raw materials:
29.2 wt% of raw materials for preparing the double-crosslinking polyurethane;
26.5 wt% of ethyl acetate;
and 44.3 percent of isopropanol.
The preparation method of the solvent-resistant diluted polyurethane ink vehicle comprises the following steps:
(1) uniformly mixing 100g of novel special polyol, 26.3g of diisocyanate and 10g of ethyl acetate in a reaction bottle 1, heating to 95 ℃, and reacting for 3 hours to obtain a prepolymer;
(2) adding 16.5g of diamine chain extender, 1.5g of cross-linking agent, 1.8g of terminator, 75g of ethyl acetate and 224.4g of isopropanol into a reaction bottle 2, uniformly mixing, and keeping the temperature at 50 ℃;
(3) by N2Transferring the prepolymer A diluent from the reaction bottle 1 to the reaction bottle 2 for 20 min; adding 1.8g of terminating agent into the reaction bottle 2, and continuing to react for 20 min;
(4) after the reaction is finished, preserving the heat for 4 hours at the temperature of 60 ℃, adding 10g of ethyl acetate and 10g of isopropanol, and uniformly stirring to obtain the product.
In the preparation raw materials of the solvent-resistant diluted polyurethane ink vehicle of the embodiment:
the preparation method of the cross-linked polyol comprises the following steps of adding adipic acid (65 wt% in mass), 1, 6-hexanediol (8 wt% in mass), methyl propylene glycol (25 wt% in mass), a cross-linking agent glycerol (2 wt% in mass) and a catalyst (butyl orthotitanate, accounting for 0.08% in mass of raw materials) into a reaction bottle in sequence according to the mass of the prepared polyester polyol; heating to 200 ℃ for reaction for 4 hours, evaporating water generated in the reaction, continuously heating to 240 ℃ for reaction for 4 hours, wherein the reaction is esterification reaction, and the temperature rise process is controlled to be slow, and the temperature of distilled water is 100-; the hydroxyl value of the crosslinked polyol was 33.6mgKOH/g, and the acid value was 0.30 KOH/g.
The diisocyanate is isophorone diisocyanate and hexamethylene diisocyanate, and the mass ratio of the diisocyanate to the hexamethylene diisocyanate is 1.3: 1;
the diamine chain extender is isophorone diamine and diethyl toluene diamine, and the mass ratio of the diamine chain extender to the diamine chain extender is 1: 1;
the polyurethane cross-linking agent is pentaerythritol;
the polyurethane terminator is n-hexylamine and ethanolamine, and the mass ratio of the n-hexylamine to the ethanolamine is 1.7: 1.
in the polyurethane ink binder with the double-crosslinking structure, a crosslinking polyol and isocyanate react, then a crosslinking agent is used for carrying out a crosslinking reaction on polyurethane resin, and a crosslinking net-shaped three-dimensional structure is introduced in polyurethane synthesis, so that not only is the movement of a molecular chain limited, but also solvent molecules are difficult to permeate, and the solvent dilution resistance of the polyurethane resin is enhanced along with the improvement of the crosslinking degree; the viscosity of the polyurethane ink vehicle described in this example was 1250 mPas (25 ℃).
Example 6
The polyurethane binder for gravure printing composite ink in the embodiment comprises the following components in total amount of preparation raw materials:
29.8 wt% of raw materials for preparing the double-crosslinking polyurethane;
ethyl acetate 45.6 wt%;
24.6 percent of isopropanol.
The preparation method of the solvent-resistant diluted polyurethane ink vehicle comprises the following steps:
(1) uniformly mixing 100g of novel special polyol, 28.6g of diisocyanate and 10g of ethyl acetate in a reaction bottle 1, heating to 90 ℃, and reacting for 2.5 hours to obtain a prepolymer;
(2) adding 17.8g of diamine chain extender, 1.5g of cross-linking agent, 1.2g of terminator, 210.3g of ethyl acetate and 114.2g of isopropanol into a reaction bottle 2, uniformly mixing, and keeping the temperature at 50 ℃;
(3) by N2Transferring the prepolymer from the reaction bottle 1 to the reaction bottle 2 for 20 min; and in reactionAdding 1.4g of terminator into the bottle 2, and continuing to react for 20 min;
(4) after the reaction is finished, preserving the heat for 4 hours at the temperature of 60 ℃, adding 10g of ethyl acetate and 10g of isopropanol, and uniformly stirring to obtain the product.
In the preparation raw materials of the solvent-resistant diluted polyurethane ink vehicle of the embodiment:
the preparation method of the cross-linked polyol comprises the following steps of adding adipic acid (55 wt% by mass), terephthalic acid (7 wt% by mass), methyl propylene glycol (10 wt% by mass), diethylene glycol (25 wt% by mass), a cross-linking agent trimethylolpropane (3 wt% by mass) and a catalyst (butyl orthotitanate, accounting for 0.08% by mass of the raw materials) into a reaction bottle in sequence according to the mass of the prepared polyester polyol; heating to 200 ℃ for reaction for 4 hours, evaporating water generated in the reaction, continuously heating to 240 ℃ for reaction for 4 hours, wherein the reaction is esterification reaction, and the temperature rise process is controlled to be slow, and the temperature of distilled water is 100-; the hydroxyl value of the crosslinking polyol was 28.3mgKOH/g, and the acid value was 0.22 KOH/g.
The diisocyanate is a mixture of isophorone diisocyanate, 4' -diphenylmethane diisocyanate and hexamethylene diisocyanate, and the mass ratio is 1.3: 1.3: 1;
the diamine chain extender is isophorone diamine and methyl cyclohexane diamine, and the mass ratio is 1.5: 1;
the polyurethane cross-linking agent is glycerol;
the polyurethane terminator is n-propylamine and ethanolamine, and the mass ratio of the n-propylamine to the ethanolamine is 1: 1.
in the polyurethane ink binder with the double-crosslinking structure, a crosslinking polyol and isocyanate react, then a crosslinking agent is used for carrying out a crosslinking reaction on polyurethane resin, and a crosslinking net-shaped three-dimensional structure is introduced in polyurethane synthesis, so that not only is the movement of a molecular chain limited, but also solvent molecules are difficult to permeate, and the solvent dilution resistance of the polyurethane resin is enhanced along with the improvement of the crosslinking degree; the viscosity of the polyurethane ink vehicle described in this example was 1300 mPas (25 ℃).
Example 7
The polyurethane binder for gravure printing composite ink in the embodiment comprises the following components in total amount of preparation raw materials:
30.5 wt% of raw materials for preparing the double-crosslinking polyurethane;
47.6 wt% of ethyl acetate;
and 21.9% of isopropanol.
The preparation method of the solvent-resistant diluted polyurethane ink vehicle comprises the following steps:
(1) uniformly mixing 100g of novel special polyol, 22.5g of diisocyanate and 10g of ethyl acetate in a reaction bottle 1, heating to 95 ℃, and reacting for 3 hours to obtain a prepolymer;
(2) adding 14.6g of diamine chain extender, 1.6g of cross-linking agent, 1.2g of terminator, 200.8g of ethyl acetate and 91.6g of isopropanol into a reaction bottle 2, uniformly mixing, and keeping the temperature at 50 ℃;
(3) by N2Transferring the prepolymer A diluent from the reaction bottle 1 to the reaction bottle 2 for 20 min; adding 1.6g of terminating agent into the reaction bottle 2, and continuing to react for 20 min;
(4) after the reaction is finished, preserving the heat for 4 hours at the temperature of 60 ℃, adding 10g of ethyl acetate and 10g of isopropanol, and uniformly stirring to obtain the product.
In the preparation raw materials of the solvent-resistant diluted polyurethane ink vehicle of the embodiment:
the preparation method of the cross-linked polyol comprises the following steps of sequentially adding adipic acid (with the mass content of 60 wt%), terephthalic acid (with the mass content of 2 wt%), 1,6 hexanediol (with the mass content of 4 wt%), methyl propylene glycol (with the mass content of 31 wt%) and a cross-linking agent trimethylolpropane (with the mass content of 3%), and a catalyst (butyl orthotitanate, which accounts for 0.08% of the mass content of the raw materials) into a reaction bottle according to the mass of the prepared polyester polyol; heating to 200 ℃ for reaction for 4 hours, evaporating water generated in the reaction, continuously heating to 240 ℃ for reaction for 4 hours, wherein the reaction is esterification reaction, and the temperature rise process is controlled to be slow, and the temperature of distilled water is 100-; the hydroxyl value of the crosslinking polyol was 32.5mgKOH/g, and the acid value was 0.34 KOH/g.
The diisocyanate is isophorone diisocyanate and hexamethylene diisocyanate, and the mass ratio of the diisocyanate to the hexamethylene diisocyanate is 1.3: 1;
the diamine chain extender is isophorone diamine and ethylene diamine, and the mass ratio is 2.8: 1;
the polyurethane cross-linking agent is diethylenetriamine;
the polyurethane terminator is n-butylamine and ethanolamine, and the mass ratio of the n-butylamine to the ethanolamine is 1: 1.
in the polyurethane ink binder with the double-crosslinking structure, a crosslinking polyol and isocyanate react, then a crosslinking agent is used for carrying out a crosslinking reaction on polyurethane resin, and a crosslinking net-shaped three-dimensional structure is introduced in polyurethane synthesis, so that not only is the movement of a molecular chain limited, but also solvent molecules are difficult to permeate, and the solvent dilution resistance of the polyurethane resin is enhanced along with the improvement of the crosslinking degree; the viscosity of the polyurethane ink vehicle described in this example was 1350mPa · s (25 ℃).
Examples of the experiments
The polyurethane resin ink vehicles prepared in the above examples 1 to 6 were prepared into gravure composite inks according to the formulations shown in the following table 1, respectively, and the application properties thereof were tested using a conventional ink vehicle (model HZ1530B, a new material ltd, huang shan) of the related art as a comparative example.
TABLE 1 gravure composite ink formulation
Figure BDA0002342016600000161
Figure BDA0002342016600000171
The application performance of the prepared ink is detected by the following standard:
GB/T2024-2012 gravure plastic film composite ink;
GBT 13217.3-2008 liquid ink fineness test method;
GBT 13217.4-2008 liquid ink viscosity test method;
GBT 13217.6-2008 liquid ink tinting strength test method;
GBT 13217.7-2009 liquid ink adhesion test method;
GBT 13217.8-2009 liquid ink anti-blocking test method;
and (3) measuring dilution resistance: and (3) flushing the prepared ink to a fixed viscosity by using ethyl acetate to obtain the ratio of the mass of the diluted solvent to the mass of the ink. Note: the performance test is carried out until the viscosity of the prepared ink is 13 seconds/25 ℃;
and (3) measuring the water boiling performance: putting the sample into a water bath, setting the temperature at 100 ℃, boiling for 60min, cooling to room temperature after the test is finished, and observing whether the abnormal phenomena such as obvious deformation, interlayer peeling, heat-seal part peeling and the like exist;
and (3) determining the cooking performance: and (3) putting the sample into a cooking pot, setting the temperature at 121 ℃, cooking for 40min, cooling to room temperature after the test is finished, and observing whether the abnormal phenomena such as obvious deformation, interlayer peeling, heat-seal part peeling and the like exist.
The specific test results are shown in table 2 below.
TABLE 2 ink Performance test results
Figure BDA0002342016600000172
Figure BDA0002342016600000181
From the data in the table, the polyurethane binder for gravure printing composite ink has excellent solvent dilution resistance, boiling resistance and anti-blocking performance, and is suitable for the performance requirements of flexible package gravure printing composite ink.
It should be understood that the above examples are only for clarity of illustration and are not intended to limit the embodiments. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. And obvious variations or modifications therefrom are within the scope of the invention.

Claims (10)

1. A solvent-resistant diluted polyurethane ink binder is characterized in that the preparation raw materials comprise raw materials for preparing double-crosslinking polyurethane and an organic solvent; wherein the content of the first and second substances,
the raw materials for preparing the double-crosslinking polyurethane comprise the following components in parts by weight:
Figure FDA0002342016590000011
2. the solvent-resistant dilution-type polyurethane ink vehicle of claim 1, wherein the organic solvent comprises ethyl acetate and/or isopropyl alcohol.
3. The solvent-resistant dilution-type polyurethane ink vehicle according to claim 1 or 2, characterized in that it is prepared from raw materials comprising, in total:
29-31 wt% of the double-crosslinking polyurethane;
0-70 wt% of ethyl acetate;
0-70 wt% of isopropanol.
4. The solvent-resistant dilution-type polyurethane ink vehicle according to any one of claims 1 to 3, wherein the crosslinking polyol is a crosslinking polymer obtained by esterification polycondensation and crosslinking using a polyol and a polybasic acid as raw materials in the presence of an esterification crosslinking agent;
the cross-linking type polyol comprises the following components in percentage by total amount of raw materials for preparing the cross-linking type polyol:
0-50 wt% of polyol;
0-50 wt% of polybasic acid;
0-10 wt% of esterified cross-linking agent.
5. A solvent-resistant, dilution-type polyurethane ink vehicle of claim 4, wherein:
the polyhydric alcohol comprises dihydric alcohol, and more preferably comprises at least one of 1, 6-hexanediol, 1, 4-butanediol, methyl propylene glycol and diethylene glycol;
the polybasic acid comprises dibasic acid, more preferably at least one of adipic acid, sebacic acid and terephthalic acid;
the esterified crosslinker comprises glycerol or trimethylolpropane.
6. A solvent dilution resistant polyurethane ink vehicle according to any one of claims 1 to 5, wherein:
the diisocyanate comprises at least one of isophorone diisocyanate, toluene diisocyanate, 4' -diphenylmethane diisocyanate and hexamethylene diisocyanate;
the diamine chain extender comprises at least one of isophorone diamine, methyl cyclohexane diamine, diethyl toluene diamine and ethylene diamine;
the polyurethane cross-linking agent comprises at least one of glycerol, diethylenetriamine and pentaerythritol;
the polyurethane terminator comprises at least one of n-butylamine, octadecylamine, n-propylamine, n-hexylamine and ethanolamine.
7. A method of making a solvent-resistant, dilution-type polyurethane ink vehicle according to any one of claims 1-6, comprising the steps of:
(1) uniformly mixing a selected amount of the cross-linking polyol, diisocyanate and part of ethyl acetate, and reacting at 80-100 ℃ to obtain a prepolymer;
(2) uniformly mixing a selected amount of the diamine chain extender, the polyurethane cross-linking agent, part of the terminating agent, and part of the ethyl acetate and the isopropanol to obtain a mixed solution;
(3) by N2Transferring the obtained prepolymer into the mixed solution obtained in the step (2), adding the rest amount of the terminator, and thenContinuing the reaction;
(4) and after the reaction is finished, continuing carrying out heat preservation reaction at 55-65 ℃, and adding the rest ethyl acetate and isopropanol and uniformly mixing to obtain the product.
8. The method for preparing the solvent-resistant dilution-type polyurethane ink vehicle as defined in claim 7, wherein the step (2) further comprises the step of maintaining the temperature of the obtained mixture at 40 to 55 ℃.
9. Use of the solvent-resistant diluted polyurethane ink vehicle of any one of claims 1-6 for the preparation of gravure inks for flexible packaging of foodstuffs.
10. Gravure ink for flexible packaging of foods prepared from the solvent-resistant diluted polyurethane ink vehicle of any one of claims 1 to 6.
CN201911379893.4A 2019-12-27 2019-12-27 Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof Pending CN111087571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911379893.4A CN111087571A (en) 2019-12-27 2019-12-27 Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911379893.4A CN111087571A (en) 2019-12-27 2019-12-27 Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof

Publications (1)

Publication Number Publication Date
CN111087571A true CN111087571A (en) 2020-05-01

Family

ID=70398433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911379893.4A Pending CN111087571A (en) 2019-12-27 2019-12-27 Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN111087571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057980A (en) * 2020-07-30 2022-02-18 万华化学(北京)有限公司 Self-dispersible ester-soluble polyurethane ink resin, preparation method and ink
CN115403725A (en) * 2022-08-15 2022-11-29 黄山中泽新材料有限公司 Polyurethane binder for high-solid low-viscosity ink, and preparation method and device thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166222A (en) * 1980-05-27 1981-12-21 Kao Corp Production of polyurethane solution
JPH0485376A (en) * 1990-07-27 1992-03-18 Dainippon Ink & Chem Inc Decorative printing ink
JP2006231901A (en) * 2004-09-07 2006-09-07 Canon Chemicals Inc Cleaning member for ink jet printer
CN1894302A (en) * 2003-12-16 2007-01-10 纳幕尔杜邦公司 Processes for preparing printable and printed articles
CN101519486A (en) * 2009-03-25 2009-09-02 欧华新 Alcohol/water-soluble urethane resin and production method thereof
JP2010168461A (en) * 2009-01-22 2010-08-05 Hitachi Kasei Polymer Co Ltd Printing ink binder
CN101993628A (en) * 2009-08-12 2011-03-30 成都市新津托展油墨有限公司 Method for preparing alcohol-soluble bi-component thermophilic digestion-resistant plastic composite gravure printing ink
CN102532451A (en) * 2010-12-31 2012-07-04 四川国和新材料有限公司 Amine composition and application thereof, polyurethane resin and preparation method and application thereof
CN104031467A (en) * 2014-06-23 2014-09-10 奥斯汀新材料(张家港)有限公司 Method for preparing environment-friendly solvent-based polyurethane ink
JP2015028159A (en) * 2013-07-04 2015-02-12 三洋化成工業株式会社 Binder for printing ink, and printing ink using the same
WO2015052821A1 (en) * 2013-10-07 2015-04-16 リンテック株式会社 Coating agent for printing and coated film for printing
CN106349810A (en) * 2016-08-24 2017-01-25 广东德康化工实业有限公司 Environment-friendly steam-resisting printing ink
WO2017130685A1 (en) * 2016-01-28 2017-08-03 バンドー化学株式会社 Method for producing three-dimensional model and modeling material
CN110591046A (en) * 2019-09-10 2019-12-20 黄山中泽新材料有限公司 Cross-linked ester-soluble polyurethane ink binder, and preparation method and application thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166222A (en) * 1980-05-27 1981-12-21 Kao Corp Production of polyurethane solution
JPH0485376A (en) * 1990-07-27 1992-03-18 Dainippon Ink & Chem Inc Decorative printing ink
CN1894302A (en) * 2003-12-16 2007-01-10 纳幕尔杜邦公司 Processes for preparing printable and printed articles
JP2006231901A (en) * 2004-09-07 2006-09-07 Canon Chemicals Inc Cleaning member for ink jet printer
JP2010168461A (en) * 2009-01-22 2010-08-05 Hitachi Kasei Polymer Co Ltd Printing ink binder
CN101519486A (en) * 2009-03-25 2009-09-02 欧华新 Alcohol/water-soluble urethane resin and production method thereof
CN101993628A (en) * 2009-08-12 2011-03-30 成都市新津托展油墨有限公司 Method for preparing alcohol-soluble bi-component thermophilic digestion-resistant plastic composite gravure printing ink
CN102532451A (en) * 2010-12-31 2012-07-04 四川国和新材料有限公司 Amine composition and application thereof, polyurethane resin and preparation method and application thereof
JP2015028159A (en) * 2013-07-04 2015-02-12 三洋化成工業株式会社 Binder for printing ink, and printing ink using the same
WO2015052821A1 (en) * 2013-10-07 2015-04-16 リンテック株式会社 Coating agent for printing and coated film for printing
CN104031467A (en) * 2014-06-23 2014-09-10 奥斯汀新材料(张家港)有限公司 Method for preparing environment-friendly solvent-based polyurethane ink
WO2017130685A1 (en) * 2016-01-28 2017-08-03 バンドー化学株式会社 Method for producing three-dimensional model and modeling material
CN106349810A (en) * 2016-08-24 2017-01-25 广东德康化工实业有限公司 Environment-friendly steam-resisting printing ink
CN110591046A (en) * 2019-09-10 2019-12-20 黄山中泽新材料有限公司 Cross-linked ester-soluble polyurethane ink binder, and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李俊贤 主编: "《塑料工业手册 聚氨酯》", 31 July 1999, 化学工业出版社 *
王洁玲,等: "醇酯型聚氨酯油墨粘结树脂的研制", 《皮革与化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057980A (en) * 2020-07-30 2022-02-18 万华化学(北京)有限公司 Self-dispersible ester-soluble polyurethane ink resin, preparation method and ink
CN115403725A (en) * 2022-08-15 2022-11-29 黄山中泽新材料有限公司 Polyurethane binder for high-solid low-viscosity ink, and preparation method and device thereof

Similar Documents

Publication Publication Date Title
CN101456942B (en) Water-soluble polyurethane and cementing compound containing water-soluble polyurethane and use thereof
CN109160994B (en) Polyurethane dispersion for dry coating primer, and preparation method and application thereof
CN101173032A (en) Large-molecular weight polyurethane acrylic ester and synthesizing method thereof
JPWO2009060838A1 (en) Polyurethane for printing ink binder, its production method and printing ink
CN115181232B (en) Polyurethane material and preparation method and application thereof
CN110498900B (en) Polyurethane resin for high black color-developing leather and preparation method thereof
CA2428687A1 (en) Solvent soluble poly(urethane/urea) resins
CN109456459A (en) A method of raising aqueous polyurethane is water-fast or solvent resistance
CN114085353B (en) Photo-thermal dual-curing resin and preparation method thereof
CN111087571A (en) Solvent-resistant diluted polyurethane ink binder and preparation method and application thereof
CN110591046A (en) Cross-linked ester-soluble polyurethane ink binder, and preparation method and application thereof
CN104672421B (en) Compound oil ink binder polyurethane resin preparation method and intaglio printing compound oil ink
CN114181357A (en) Bio-based solvent-free waterborne polyurethane emulsion and application thereof in preparing printing ink
CN113122122A (en) High-solid-content polyurethane ink resin, preparation method and application thereof
JP3700166B2 (en) Binder for polyurethane-based printing ink and printing ink composition using the same
EP1553120A1 (en) Liquid carboxy-containing polyester oligomer, water-compatible polyurethane resin, and process for producing the same
CN111154446A (en) High-strength composite reactive polyurethane hot melt adhesive and preparation method thereof
JP3861948B2 (en) Resin for printing ink
CN114057980B (en) Self-dispersible ester-soluble polyurethane ink resin, preparation method and ink
CN112876636A (en) Water-based antibacterial and antiviral anionic polyurethane resin and preparation method thereof
JP4164931B2 (en) Non-aromatic solvent-type printing ink binder and non-aromatic solvent-type printing ink composition
CN110669467A (en) Two-liquid type high-stripping polyurethane adhesive for cloth and cloth compounding and preparation method thereof
CN111647120B (en) Preparation method of hyperbranched polyurethane oligomer
JP4734686B2 (en) Tackifier for polyurethane adhesive, binder for polyurethane adhesive, and polyurethane adhesive composition
TWI803722B (en) Developments of biomass aqueous pu resin with high resilience and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination