CN111074228A - 一种提高轴承钢耐腐蚀性的复合表面处理方法 - Google Patents

一种提高轴承钢耐腐蚀性的复合表面处理方法 Download PDF

Info

Publication number
CN111074228A
CN111074228A CN201911397349.2A CN201911397349A CN111074228A CN 111074228 A CN111074228 A CN 111074228A CN 201911397349 A CN201911397349 A CN 201911397349A CN 111074228 A CN111074228 A CN 111074228A
Authority
CN
China
Prior art keywords
bearing steel
corrosion resistance
treatment method
surface treatment
improving corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911397349.2A
Other languages
English (en)
Other versions
CN111074228B (zh
Inventor
王方方
张虎
郑立静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Ningbo Institute of Innovation of Beihang University
Original Assignee
Beihang University
Ningbo Institute of Innovation of Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University, Ningbo Institute of Innovation of Beihang University filed Critical Beihang University
Priority to CN201911397349.2A priority Critical patent/CN111074228B/zh
Publication of CN111074228A publication Critical patent/CN111074228A/zh
Application granted granted Critical
Publication of CN111074228B publication Critical patent/CN111074228B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于包括以下步骤:a、激光重熔:对轴承钢基体表面进行激光重熔;b、Cr离子注入:对激光重熔后的基体表面进行Cr离子注入;c、Cr层制备:再在基体表面制备Cr层。该种方法先进行激光重熔和Cr离子注入再制备Cr层,提高了Cr层与基体的结合力从而提高了轴承钢的耐腐蚀能力。

Description

一种提高轴承钢耐腐蚀性的复合表面处理方法
技术领域
本发明涉及钢材的表面处理领域,尤其涉及一种提高轴承钢耐腐蚀性的复合表面处理方法。
背景技术
主轴轴承是航空发动机最关键的零部件之一,在高转速、高负荷、高温、高DN值等严苛条件下工作,其寿命和可靠性直接影响着发动机的寿命和可靠性,一旦发生故障,将会对高速运转的发动机和正在高空飞行的飞机带来灾难性的后果。我国航空发动机主轴轴承制造技术起步较晚,虽已取得较大进展,但与欧美等航空轴承强国相比,仍存在较大差距。发动机室外使用统计也证实,大部分轴承故障模式的产生机理与轴承材料有关,未来先进航空发动机主轴轴承的工作环境更加恶劣,它要求轴承材料兼具更高的耐温性能、表面硬度、耐磨性能、芯部良好的冲击韧性、断裂韧性和优异的耐腐蚀性能。
表面涂层技术是一种用来提高轴承表面耐腐蚀性能的常用技术,其中硬质铬涂层是改善碳钢和许多合金材料摩擦和腐蚀性能的常用手段,广泛用于各种不同的机械构件和刀具。采用物理气相沉积或电镀法制备的铬涂层中存在较多的显微组织缺陷,涂层致密性和膜基结合力也有待进一步提高。因此需要一种能改善铬涂层质量提高轴承钢耐腐蚀性的复合表面处理方法。
发明内容
本发明所要解决的技术问题是针对现有技术的现状提供一种能改善铬涂层质量提高轴承钢耐腐蚀性的复合表面处理方法。
本发明解决上述技术问题所采用的技术方案为:该种提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于包括以下步骤:
a、激光重熔:对轴承钢基体表面进行激光重熔;
b、Cr离子注入:对激光重熔后的基体表面进行Cr离子注入;
c、Cr层制备:再在基体表面制备Cr层。
为了去除氧化膜和提高Cr层与基体的结合力,在进行步骤b之前用Cr离子束对所述基体进行表面清洗。
优选的,所述步骤a激光重熔的工艺参数为:激光输出功率250-500W,扫描速度100-250m/s,扫描间隔0.02-0.2mm,输入能量15-40J。进一步优选的,所述步骤a激光重熔的工艺参数为:激光输出功率300-450W,扫描速度150-200m/s,扫描间隔0.06-0.1mm,输入能量20-40J。
优选的,所述步骤b的Cr离子注入的工艺参数为:电压为6-10KV,束流为2-6mA,注入剂量为0.5-2x1017ions/cm2。进一步优选的,所述步骤b的Cr离子注入的工艺参数为:电压为7-9KV,束流为3-5mA,注入剂量为0.9-1.5x1017ions/cm2
优选的,所述步骤c的Cr层厚度为0.5-3μm。进一步优选的,所述Cr层厚度为0.5-1.5μm。
所述步骤c的Cr层制备采用磁控溅射、多弧离子镀、热喷涂、化学气相沉积、电镀或磁过滤阴极真空电弧沉积技术(FCVA)以及其他合适的制备方式中的任意一种。优选的,所述步骤c的Cr层制备采用磁过滤阴极真空电弧沉积技术(FCVA)。采用该种沉积技术,具有沉积速率高,成膜密度大,无气孔,附着力好等优点,同时,其特有的磁过滤效果,可过滤掉等离子体中的电中性和大尺寸颗粒,离子纯净,能够在基底上形成致密光滑且结合力强的优质薄膜;采用FCVA技术制备的Cr层于基体之间结合力更好,缺陷密度降低,从而具有更好的硬度、韧性、耐磨性和耐腐蚀性。
优选的,所述步骤c的Cr膜沉积的工艺参数为:在真空条件下,弧流90-130A,负偏压-60至-80V,占空比90%,电荷量1-3.5x106mC,沉积时间为40-60min。进一步优选的,在真空条件下,弧流100-120A,负偏压-65至-75V,占空比90%,电荷量1.5-3x106mC,沉积时间为45-55min。
优选的,所述轴承钢为CSS-42L、M50NiL、Cronidur 30、316L不锈钢、Cr4Mo4Ni4V以及其他合适的轴承钢中的任意一种。
与现有技术相比,本发明的优点在于:基体材料成分会对Cr涂层的晶体取向及膜基结合力产生影响,具有更高固溶态铬含量的基体上沉积铬层的耐蚀性更优异,涂层保护率更高。依次进行激光重熔、Cr离子注入,提高了基体表层固溶态Cr元素的含量,对Cr膜的晶体取向及其与基体的结合力产生积极影响,从而提高了轴承钢基体的耐腐蚀性能。
附图说明
图1为本发明的实施例的Substrate+Cr试样的电镜照片图;
图2为本发明的实施例的R1+Cr试样的电镜照片图;
图3为本发明的实施例的R2+Cr试样的电镜照片图;
图4为本发明的实施例的R3+Cr试样的电镜照片图;
图5为本发明的实施例的Substrate+Cr试样的表面钝化膜成分的XPS分析图;
图6为本发明的实施例的R3+Cr试样的表面钝化膜成分的XPS分析图;
图7为本发明的实施例的Substrate+Cr、R3+Cr试样的表面钝化膜成分的XPS分析图;
图8为本发明的实施例的Substrate+Cr、R3+Cr试样的表面钝化膜厚度和成分统计分析图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本实施例使用的是CSS-42L轴承钢基体,其主要成分为(wt.%):13.73Cr,13Co,4.6Mo,2.11Ni,0.6V,0.14C,0.2Si,0.024Nb,0.33Mn,0.0026B,余量为Fe。
本实施例选择四个试样分别标记为Substrate、R1、R2、R3其中Substrate为对比例,依次进行如下步骤
1、对R1、R2、R3进行激光表面重熔,具体的参数如下表所示:
Figure BDA0002346653450000031
2、对R1、R2、R3用Cr离子束对所述基体进行表面清洗;
3、对R1、R2、R3进行Cr离子注入:工艺参数为电压8KV,束流4mA,注入剂量1x1017ions/cm2
4、对Substrate、R1、R2、R3进行Cr层制备:本实施例采用磁过滤阴极真空电弧沉积技术(FCVA)进行Cr层制备,具体的工艺参数为:弧流110A,负偏压-70V,占空比90%,真空度2.3x10-3Pa,电荷量2.2x106mC,沉积时间50min。
制备Cr层后的试样标记为Substrate+Cr、R1+Cr、R2+Cr、R3+Cr,
将上述试样在30℃,3.5wt.%NaCl溶液中进行了电化学腐蚀测试,结果如下表所示:
Figure BDA0002346653450000032
从上表可以看到激光表面重熔预处理后,对沉积Cr的CSS-42L钢腐蚀性能的影响,与激光表面重熔预处理工艺参数有关。较未经预处理的沉积Cr层的CSS-42L钢,R1和R2条件下,腐蚀电流增加、腐蚀电位降低,腐蚀速率增加;R2条件下,腐蚀电流降低、腐蚀电位增加,腐蚀速率降低了约53倍,耐蚀性提高。
对上述试样经过电化学极化测试以后的表面形貌分别进行了观察,如附图1至图4为分别对应Substrate+Cr、R1+Cr、R2+Cr、R3+Cr的电镜照片,从图中可以看到Substrate+Cr的沉积薄铬层CSS-42L钢表面腐蚀较严重,涂层开裂且存在较大点蚀坑;而经过激光重熔预处理后的R1+Cr、R2+Cr、R3+Cr,尤其是R3+Cr,由于表面固溶态Cr元素富集,可影响Cr层的晶体取向改善了膜基结合力,表面腐蚀情况显著改善,表面平整,点蚀减轻,逐渐转变为均匀腐蚀,尤其当激光表面重熔的输入能量较高时。
对Substrate+Cr和R3+Cr经过电化学极化测试以后的的表层钝化膜相组成进行了分析,并计算了钝化膜厚度及各类氧化物成分占比,结果如图5-8所示,这些图5-图7中的横坐标Binding energy为结合能,纵坐标Intensity为强度。
从图中可以看到,Substrate+Cr表面钝化膜主要由Cr的氧化物组成,还检测到一定量的Mo的氧化物,主要是由基体中扩散而来,而R3+Cr的表面钝化膜只检测到Cr的氧化物,基本上未检测到Mo的氧化物。统计结果表明,经过激光重熔和Cr离子注入后表层组织中主要氧化物为Cr2O3和Cr(OH)3,且Cr2O3的比例显著增加,改善了钝化膜完整性,稳定性增强,改善了沉积薄铬层CSS-42L的耐腐蚀性性能。
本实施例只对CSS-42L进行了试验,除此之外M50NiL、Cronidur 30、316L不锈钢、Cr4Mo4Ni4V等其他轴承钢也具有类似的效果。本实施例的Cr层制备采用磁过滤阴极真空电弧沉积技术(FCVA),除此之外采用磁控溅射、多弧离子镀、热喷涂等也具有类似的效果。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于包括以下步骤:
a、激光重熔:对轴承钢基体表面进行激光重熔;
b、Cr离子注入:对激光重熔后的基体表面进行Cr离子注入;
c、Cr层制备:再在基体表面制备Cr层。
2.根据权利要求1所述的提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于:在进行步骤b之前用Cr离子束对所述基体进行表面清洗。
3.根据权利要求1所述的提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于:所述步骤a激光重熔的工艺参数为:激光输出功率250-500W,扫描速度100-250m/s,扫描间隔0.02-0.2mm,输入能量15-40J。
4.根据权利要求3所述的提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于:所述步骤a激光重熔的工艺参数为:激光输出功率300-450W,扫描速度150-200m/s,扫描间隔0.06-0.1mm,输入能量20-40J。
5.根据权利要求1所述的提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于:所述步骤b的Cr离子注入的工艺参数为:电压为6-10KV,束流为2-6mA,注入剂量为0.5-2x1017ions/cm2
6.根据权利要求1所述的提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于:所述步骤c的Cr层厚度为0.5-3μm。
7.根据权利要求1所述的提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于:所述步骤c的Cr层制备采用磁控溅射、多弧离子镀、热喷涂或磁过滤阴极真空电弧沉积技术(FCVA)中的任意一种。
8.根据权利要求1所述的提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于:所述步骤c的Cr层制备采用磁过滤阴极真空电弧沉积技术(FCVA)。
9.根据权利要求8所述的提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于:所述步骤c的Cr膜沉积的工艺参数为:在真空条件下,弧流90-130A,负偏压-60至-80V,占空比90%,电荷量1-3.5x106 mC,沉积时间为40-60min。
10.根据权利要求1至9任一项权利要求所述的提高轴承钢耐腐蚀性的复合表面处理方法,其特征在于:所述轴承钢为CSS-42L、M50NiL、Cronidur 30、316L不锈钢、Cr4Mo4Ni4V中的任意一种。
CN201911397349.2A 2019-12-30 2019-12-30 一种提高轴承钢耐腐蚀性的复合表面处理方法 Active CN111074228B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911397349.2A CN111074228B (zh) 2019-12-30 2019-12-30 一种提高轴承钢耐腐蚀性的复合表面处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911397349.2A CN111074228B (zh) 2019-12-30 2019-12-30 一种提高轴承钢耐腐蚀性的复合表面处理方法

Publications (2)

Publication Number Publication Date
CN111074228A true CN111074228A (zh) 2020-04-28
CN111074228B CN111074228B (zh) 2021-06-01

Family

ID=70319787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911397349.2A Active CN111074228B (zh) 2019-12-30 2019-12-30 一种提高轴承钢耐腐蚀性的复合表面处理方法

Country Status (1)

Country Link
CN (1) CN111074228B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219503B2 (zh) * 1982-04-14 1987-04-28 Sumitomo Electric Industries
US20070131661A1 (en) * 1999-02-25 2007-06-14 Reiber Steven F Solder ball placement system
CN106222582A (zh) * 2016-09-14 2016-12-14 北京航空航天大学 一种提高轴承钢表面耐腐蚀性的方法
CN106637123A (zh) * 2016-12-22 2017-05-10 当涂县宏宇金属炉料有限责任公司 一种基于离子注入的不锈钢表面处理工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219503B2 (zh) * 1982-04-14 1987-04-28 Sumitomo Electric Industries
US20070131661A1 (en) * 1999-02-25 2007-06-14 Reiber Steven F Solder ball placement system
CN106222582A (zh) * 2016-09-14 2016-12-14 北京航空航天大学 一种提高轴承钢表面耐腐蚀性的方法
CN106637123A (zh) * 2016-12-22 2017-05-10 当涂县宏宇金属炉料有限责任公司 一种基于离子注入的不锈钢表面处理工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN BIN ET AL: "high-temperature oxidation properties of Fe-based alloy coating prepared by laser cladding", 《CHINESE JOURNAL OF LASER》 *
戴宪军: "300M钢离子注入Cr工艺及改性层性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
陈贵清等: "H13钢表面镀铬工艺及其镀层性能分析", 《热加工工艺》 *

Also Published As

Publication number Publication date
CN111074228B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN110055496B (zh) 一种在核用锆合金基底表面制备Cr涂层的制备工艺
RU2161661C1 (ru) Способ нанесения износостойких покрытий и повышения долговечности деталей
CN112064024A (zh) 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用
CN106374116A (zh) 一种燃料电池金属双极板上的高熵合金复合涂层和工艺
CN109913771A (zh) 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN108624882B (zh) 锆合金表面氧化锆/氮化铬复合膜及其制备方法与应用
CN111763945A (zh) 一种具有多层强化涂层的剃须刀片及其制备方法
Jin et al. Effect of Ni content on the electrical and corrosion properties of CrNiN coating in simulated proton exchange membrane fuel cell
KR20070083600A (ko) 면도날 에지와 면도날 상에 층을 증착하는 방법
CN101294284A (zh) 一种耐冲蚀抗疲劳等离子表面复合强化方法
CN112962065B (zh) 一种镍基合金表面复合结构涂层及其制备方法
Immarigeon et al. Erosion testing of coatings for aero engine compressor components
CN111074228B (zh) 一种提高轴承钢耐腐蚀性的复合表面处理方法
Cao et al. Effect of bias voltage on microstructure, mechanical and tribological properties of TiAlN coatings
CN110983261B (zh) 一种耐腐蚀轴承钢及其离子注入表面处理方法
CN114507853A (zh) 一种镁合金表面梯度陶瓷复合涂层激光熔覆制备方法
US20170029930A1 (en) Coating comprising a mo-n-based layer in which the molybdenum nitride is provided as a delta phase
CN113235051A (zh) 一种纳米双相高熵合金薄膜及其制备方法
CN110656301A (zh) 一种高速钢刀具可控渗氮-pvd复合涂层制备方法
CN109023292A (zh) 一种镁合金表面dlc防护涂层制备方法
CN114774757A (zh) 合金及表面具有合金涂层的核反应堆构件
Chiang et al. Effect of metal bipolar plate channel fabrication on electroplating–using nickel electroplating of AISI 1045 channel substrate as an example
CN108560032B (zh) 一种镍基高温合金表面富铬化合物层的制备方法及应用
CN110592535A (zh) 一种碳钢表面耐磨蚀高温防护涂层及其制备方法
CN111676478A (zh) 一种GCr15钢表面耐蚀合金层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant