CN111073611A - MXene/graphene composite heat-conducting fluid and preparation method and application thereof - Google Patents

MXene/graphene composite heat-conducting fluid and preparation method and application thereof Download PDF

Info

Publication number
CN111073611A
CN111073611A CN201911292434.2A CN201911292434A CN111073611A CN 111073611 A CN111073611 A CN 111073611A CN 201911292434 A CN201911292434 A CN 201911292434A CN 111073611 A CN111073611 A CN 111073611A
Authority
CN
China
Prior art keywords
mxene
graphene
conducting fluid
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911292434.2A
Other languages
Chinese (zh)
Other versions
CN111073611B (en
Inventor
蒋林华
靳卫准
陈磊
袁浩寰
张晓婕
林正祥
崔晓辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201911292434.2A priority Critical patent/CN111073611B/en
Publication of CN111073611A publication Critical patent/CN111073611A/en
Application granted granted Critical
Publication of CN111073611B publication Critical patent/CN111073611B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials

Abstract

The invention discloses an MXene/graphene composite heat-conducting fluid and a preparation method and application thereof, wherein the heat-conducting fluid consists of 0.01-1% of MXene/graphene, 0.01-1% of a dispersing agent and 98-99.8% of water, and the mass ratio of MXene to graphene in an MXene/graphene material is 0.1: 1-1: 1. The preparation method of the heat-conducting fluid comprises the following steps: (1) adding MXene, graphene and a dispersing agent into water, and uniformly stirring; (2) and performing ultrasonic dispersion on the uniformly mixed raw materials to obtain the MXene/graphene heat-conducting fluid. The heat-conducting fluid is used as a heat-conducting medium for temperature control and crack prevention of mass concrete. The heat conductivity coefficient of the heat-conducting fluid is as high as 0.754W/m.K, and is increased by 25.9% compared with water.

Description

MXene/graphene composite heat-conducting fluid and preparation method and application thereof
Technical Field
The invention relates to a heat-conducting fluid, a preparation method and application thereof, and in particular relates to an MXene/graphene composite heat-conducting fluid, a preparation method and application thereof.
Background
The large-volume concrete generates more heat due to cement hydration in the construction period, so that the internal temperature of the concrete is sharply increased, the heat conductivity coefficient of the concrete is lower, the internal and external temperature difference of the concrete structure is larger, the internal and external temperature difference of the concrete is limited due to the constraint condition of the internal and external structures of the concrete, the temperature difference can cause the internal tensile stress of the concrete, when the tensile stress exceeds the tensile strength of the concrete, the concrete structure generates more temperature cracks, and the bearing capacity, the water resistance, the service life and the like of the concrete structure are greatly influenced, so that the large-volume concrete needs to adopt temperature control anti-cracking measures in the construction process. At present bulky concrete control by temperature change crack control measure is through reducing adiabatic temperature rise, reduces the difference in temperature to the production of control temperature crack, main measure is for arranging condenser tube in the concrete, and the heat transfer medium who uses in the traditional concrete condenser tube is water, but the coefficient of heat conductivity of water is lower, and heat transfer efficiency is lower when making water as the coolant liquid, has influenced control by temperature change crack control efficiency.
Disclosure of Invention
The purpose of the invention is as follows: the invention aims to provide MXene/graphene composite heat-conducting fluid with good heat-conducting property; another object of the present invention is to provide a method for preparing the heat transfer fluid; the invention also aims to provide application of the heat-conducting fluid as a heat-conducting medium in the temperature control and crack prevention of mass concrete.
The technical scheme is as follows: the MXene/graphene composite heat-conducting fluid is composed of 0.01-1% of MXene/graphene, 0.01-1% of a dispersing agent and 98-99.8% of water, wherein the mass ratio of MXene to graphene in the MXene/graphene material is 0.1: 1-1: 1.
The MXene/graphene composite heat-conducting fluid is composed of 0.5% -1% of MXene/graphene, 0.5% -1% of dispersing agent and 98% -99% of water, wherein the mass ratio of MXene to graphene in the MXene/graphene material is 0.5: 1-1: 1.
Wherein MXene material is Ti3C2Tx、Ti2CTx、V2CTx、Nb2One of CTx, Tx is-OH functional group, or-F functional group; the dispersant is sodium dodecyl benzene sulfonate, sodium dodecyl sulfate, and hexadecylAt least one of trimethyl ammonium bromide.
The preparation method of the MXene/graphene composite heat-conducting fluid comprises the following steps:
(1) adding MXene, graphene and a dispersing agent into water, and uniformly stirring;
(2) and performing ultrasonic dispersion on the uniformly mixed raw materials to obtain the MXene/graphene heat-conducting fluid.
Wherein, MXene, graphene, a dispersing agent and water are stirred by a magnetic stirrer at the speed of 400-600rpm for 30-60 min in the step 1, and the water is deionized water; the ultrasonic dispersion time in the step 2 is 30-60 min.
The MXene/graphene composite heat-conducting fluid is applied as a heat-conducting medium in the concrete solidification process.
The working principle is as follows: the terminating groups (-F, ═ O, and-OH) on the surface of MXene provide hydrophilicity, so MXene can be dispersed in water relatively easily. MXene and graphene have similar structures, and when MXene and graphene are mixed, MXene particles can enter between graphene sheet layers, so that the agglomeration effect between graphene sheet layers is overcome, and the MXene material can enable graphene in a super heat conduction material to be easily dispersed in water, and the heat conductivity coefficient of water can be greatly improved. The use of the dispersant can enable MXene/graphene to be well and uniformly dispersed in water and to be stably present for a long time.
Has the advantages that: compared with the prior art, the invention has the following remarkable advantages: 1. the heat conductivity coefficient of the heat-conducting fluid is as high as 0.754W/m.K, and the heat conductivity coefficient is increased by 25.9 percent compared with water; 2. the heat-conducting fluid has good dispersibility and good pumpability, and therefore, can be used as a heat-conducting medium in the temperature control and crack prevention of mass concrete.
Detailed Description
Example 1
Mixing 0.1667g Ti3C2Tx, 0.3333g of graphene and 0.5g of sodium dodecyl benzene sulfonate are added into 49g of water, stirred at the stirring speed of 600rpm for 30min and uniformly mixed, and then subjected to ultrasonic dispersion for 60min to obtain uniformly dispersed and stable MXene/graphene heat-conducting fluid. TheIn the MXene heat-conducting fluid, the content of MXene/graphene is 1%, and the content of MXene: graphene is 0.5:1, sodium dodecyl benzene sulfonate is 1%, and water is 98%. And introducing MXene/graphene heat-conducting fluid serving as a heat-conducting medium into a cooling water pipe in the concrete for heat dissipation.
Example 2
Mixing 0.1667g Ti3C2Tx, 0.3333g of graphene and 0.5g of hexadecyl trimethyl ammonium bromide are added into 49g of water, stirred at the stirring speed of 600rpm for 30min and uniformly mixed, and then subjected to ultrasonic dispersion for 60min to obtain the uniformly dispersed and stable MXene/graphene heat-conducting fluid. In the MXene heat-conducting fluid, the content of MXene/graphene is 1%, and the content of MXene: graphene 0.5:1, cetyltrimethylammonium bromide 1%, water 98%. And introducing MXene/graphene heat-conducting fluid serving as a heat-conducting medium into a cooling water pipe in the concrete for heat dissipation.
Example 3
0.25g of Ti3C2Tx, 0.25g of graphene and 0.5g of sodium dodecyl benzene sulfonate are added into 49g of water, stirred at the stirring speed of 600rpm for 30min and uniformly mixed, and then subjected to ultrasonic dispersion for 60min to obtain uniformly dispersed and stable MXene/graphene heat-conducting fluid. In the MXene heat-conducting fluid, the content of MXene/graphene is 1%, and the content of MXene: graphene 1:1, sodium dodecyl benzene sulfonate 1%, water 98%. And introducing MXene/graphene heat-conducting fluid serving as a heat-conducting medium into a cooling water pipe in the concrete for heat dissipation.
Comparative example
0.1667g of Ti3C2Tx and 0.3333g of graphene are added into 49.5g of water, stirred at a stirring speed of 600rpm for 30min and uniformly mixed, and then ultrasonically dispersed for 60min to obtain the MXene/graphene heat-conducting fluid which is uniformly and stably dispersed. In the MXene heat-conducting fluid, the content of MXene/graphene is 1%, and the content of MXene: graphene 0.5:1, water 99%.
As can be seen from table 1, after standing for 2 hours, the MXene/graphene heat-conducting fluid without the dispersant has a delamination phenomenon, and the MXene/graphene heat-conducting fluid has good dispersibility after the sodium dodecylbenzene sulfonate and the hexadecyl trimethyl ammonium bromide are added. After 120 hours, the MXene/graphene heat-conducting fluid doped with sodium dodecyl benzene sulfonate and hexadecyl trimethyl ammonium bromide can still keep better dispersibility. Therefore, after the dispersing agent is doped, MXene particles are uniformly dispersed in the MXene/graphene heat-conducting fluid, the viscosity of the heat-conducting fluid is low, the fluidity is good, and the pumpability is good, so that the MXene/graphene heat-conducting fluid can be well applied to temperature control and crack prevention of mass concrete.
As can be seen from table 2, MXene/graphene can effectively improve the thermal conductivity of the thermal conductive fluid, and the thermal conductivity of the thermal conductive fluid gradually increases with the increase of the amount of doped graphene. When sodium dodecyl benzene sulfonate is used as a dispersing agent, the mixing amount of MXene/graphene is 1%, wherein the mass ratio of MXene to graphene is 0.5:1 and 1:1, the thermal conductivity coefficients of the MXene/graphene are 0.731W/(m.K) and 0.754W/(m.K), and the thermal conductivity coefficients of the MXene/graphene are increased by 22.0% and 25.9% respectively compared with the thermal conductivity coefficient of pure water of 0.599W/(m.K). Therefore, the heat conductivity coefficient of the heat-conducting fluid can be obviously increased by doping MXene/graphene, and the heat conductivity coefficient of the heat-conducting fluid is further increased along with the increase of the doping amount of the graphene, so that the heat transfer efficiency of the mass concrete can be effectively improved by the MXene heat-conducting fluid.
TABLE 1 Dispersion Effect of MXene/graphene Heat-conducting fluid
Figure BDA0002319487480000031
TABLE 2 MXene/graphene Heat transfer Properties of Heat transfer fluids
Composition (I) Coefficient of thermal conductivity (W/m. K) Rate of increase
Pure water 0.599 ---
Example 1 0.731 22.0%
Example 2 0.734 22.5%
Example 3 0.754 25.9%

Claims (9)

1. The MXene/graphene composite heat-conducting fluid is characterized by consisting of 0.01-1% of MXene/graphene, 0.01-1% of dispersing agent and 98-99.8% of water, wherein the mass ratio of MXene to graphene is 0.1: 1-1: 1.
2. The MXene/graphene composite heat-conducting fluid as claimed in claim 1, wherein the MXene/graphene composite heat-conducting fluid is composed of 0.5-1% of MXene/graphene, 0.5-1% of dispersant and 98-99% of water, and the mass ratio of MXene to graphene in the MXene/graphene material is 0.5: 1-1: 1.
3. The MXene/graphene composite heat-conducting fluid as claimed in claim 1, wherein the MXene material is Ti3C2Tx、Ti2CTx、V2CTx、Nb2CTx, wherein Tx is at least one of-OH functional group and-F functional group.
4. The MXene/graphene composite thermal conductive fluid of claim 1, wherein the dispersant is at least one of sodium dodecylbenzene sulfonate, sodium dodecyl sulfate, cetyl trimethyl ammonium bromide.
5. The preparation method of the MXene/graphene composite heat-conducting fluid as claimed in claim 1, characterized by comprising the following steps:
(1) adding MXene, graphene and a dispersing agent into water according to a proportion and uniformly stirring;
(2) and performing ultrasonic dispersion on the uniformly mixed raw materials to obtain the MXene/graphene heat-conducting fluid.
6. The method for preparing MXene/graphene composite heat-conducting fluid according to claim 5, wherein MXene, graphene, dispersant and water are stirred by a magnetic stirrer at a speed of 400-600rpm for 30-60 min in the step 1.
7. The preparation method of MXene/graphene composite heat-conducting fluid according to claim 5, wherein the ultrasonic dispersion time in step 2 is 30-60 min.
8. The method for preparing MXene/graphene composite heat-conducting fluid according to claim 5, wherein the water in step 1 is deionized water.
9. The application of the MXene/graphene composite heat-conducting fluid disclosed by claim 1 as a heat-conducting medium in a condensation pipe in large-volume concrete temperature control crack prevention.
CN201911292434.2A 2019-12-16 2019-12-16 MXene/graphene composite heat-conducting fluid and preparation method and application thereof Active CN111073611B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911292434.2A CN111073611B (en) 2019-12-16 2019-12-16 MXene/graphene composite heat-conducting fluid and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911292434.2A CN111073611B (en) 2019-12-16 2019-12-16 MXene/graphene composite heat-conducting fluid and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN111073611A true CN111073611A (en) 2020-04-28
CN111073611B CN111073611B (en) 2021-12-07

Family

ID=70314791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911292434.2A Active CN111073611B (en) 2019-12-16 2019-12-16 MXene/graphene composite heat-conducting fluid and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN111073611B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120251521A1 (en) * 2011-04-02 2012-10-04 Bertha Rostro Technical field and industrial applicability of the invention
CN102942906A (en) * 2012-11-28 2013-02-27 上海第二工业大学 High thermal conductivity and low viscosity water base composite heat conductivity filler nanofluid and preparation method thereof
US20140312263A1 (en) * 2013-04-22 2014-10-23 Uchicago Argonne, Llc Advanced thermal properties of a suspension with graphene nano-platelets (gnps) and custom functionalized f-gnps
CN105860937A (en) * 2016-05-10 2016-08-17 高邮久创信息科技有限公司 Nano-fluid superconduction liquid for heat pipe type vacuum collector tube and preparation method of nano-fluid superconduction liquid
WO2017077381A2 (en) * 2016-11-17 2017-05-11 Research Institute Of Petroleum Industry (Ripi) Formulation for the synthesis of thermal nanofluid based on carbon nanodots
CN107633954A (en) * 2016-07-19 2018-01-26 中国科学院上海硅酸盐研究所 A kind of graphene/MXene combination electrode materials and its application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120251521A1 (en) * 2011-04-02 2012-10-04 Bertha Rostro Technical field and industrial applicability of the invention
CN102942906A (en) * 2012-11-28 2013-02-27 上海第二工业大学 High thermal conductivity and low viscosity water base composite heat conductivity filler nanofluid and preparation method thereof
US20140312263A1 (en) * 2013-04-22 2014-10-23 Uchicago Argonne, Llc Advanced thermal properties of a suspension with graphene nano-platelets (gnps) and custom functionalized f-gnps
CN105860937A (en) * 2016-05-10 2016-08-17 高邮久创信息科技有限公司 Nano-fluid superconduction liquid for heat pipe type vacuum collector tube and preparation method of nano-fluid superconduction liquid
CN107633954A (en) * 2016-07-19 2018-01-26 中国科学院上海硅酸盐研究所 A kind of graphene/MXene combination electrode materials and its application
WO2017077381A2 (en) * 2016-11-17 2017-05-11 Research Institute Of Petroleum Industry (Ripi) Formulation for the synthesis of thermal nanofluid based on carbon nanodots

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. K. M MAHMUDUL HAQUE: "An experimental study on thermal characteristics of nanofluid with graphene and multi-wall carbon nanotubes", 《J. CENT. SOUTH UNIV》 *
刘东: "水基石墨烯纳米流体在矩形小槽道内的流动换热特性", 《过程工程学报》 *

Also Published As

Publication number Publication date
CN111073611B (en) 2021-12-07

Similar Documents

Publication Publication Date Title
CN102367353B (en) Low thermal conductivity composite thermal insulation paint and preparation method thereof
CN105331108A (en) High thermal conductive silicone grease and preparation method thereof
CN111393714B (en) Preparation method of boron nitride composite structure filler for interface heat conduction material
CN107501610A (en) A kind of composite heat interfacial material based on boron nitride and preparation method thereof
CN104164222A (en) High-heat conductivity coefficient water-based nanofluid and preparation method thereof
CN107513377A (en) High heat conduction lazy flow liquid metal
CN104498142A (en) Silicon slice cutting fluid and preparation method thereof
CN104479644A (en) Graphene-type cooling medium as well as preparation method and application thereof
CN104449210A (en) Epoxy resin and SiO2-modified fluorine-containing acrylic acid resin composite material and preparation method thereof
CN111393856B (en) Graphene-based high-thermal-conductivity low-thermal-resistance thermal conductive paste and preparation method thereof
CN111073611B (en) MXene/graphene composite heat-conducting fluid and preparation method and application thereof
CN110257662A (en) A kind of copper-graphite alkene composite material and preparation method
CN110041895B (en) Heat storage and transfer material and preparation method thereof
CN112625659A (en) High-thermal-conductivity heat-conducting silicone grease and preparation process thereof
CN109294032B (en) Multi-element composite filling particle modified heat-conducting PE composite material and preparation method thereof
CN109762280A (en) A kind of valve Special pad material, preparation method and applications
CN103319898B (en) Micro-nano lamellar boron nitride/rubber composite material and preparation method thereof
CN105111603A (en) Copper molybdate nanorod composite electronic packaging material
CN109456601B (en) Anti-cracking computer heat-conducting silicone grease and preparation method thereof
CN106085252A (en) A kind of heat-conducting daub and its preparation method and application
CN102585404A (en) Modified polytetrafluoroethylene turning large plate
CN111056758B (en) Large-volume concrete heat-conducting fluid based on MXene and preparation method thereof
CN105037991B (en) A kind of bismuthic acid barium nanometer rods electronic package material
CN105586013A (en) Heat conductive oil composition with addition of composite metal nano additive
CN107163836A (en) The manufacture method of a kind of electronic equipment heat radiation coating

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant