CN111059957A - 一种实时监测板式换热器污垢系数的***及方法 - Google Patents

一种实时监测板式换热器污垢系数的***及方法 Download PDF

Info

Publication number
CN111059957A
CN111059957A CN201911383478.6A CN201911383478A CN111059957A CN 111059957 A CN111059957 A CN 111059957A CN 201911383478 A CN201911383478 A CN 201911383478A CN 111059957 A CN111059957 A CN 111059957A
Authority
CN
China
Prior art keywords
cold
hot
temperature
cold side
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911383478.6A
Other languages
English (en)
Inventor
石翔
赵志勇
葛永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nine Shanghai Han Electromechanical Equipment Co ltd
Original Assignee
Nine Shanghai Han Electromechanical Equipment Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nine Shanghai Han Electromechanical Equipment Co ltd filed Critical Nine Shanghai Han Electromechanical Equipment Co ltd
Priority to CN201911383478.6A priority Critical patent/CN111059957A/zh
Publication of CN111059957A publication Critical patent/CN111059957A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • F28G15/003Control arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Thermal Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明涉及一种实时监测板式换热器污垢系数的***及方法,该***包括传感器组件、处理器、服务器、报警器和储存器,传感器组件获取板式换热器冷侧、热侧进出口的温度、压力,并获取热侧冷侧的质量流量数据,处理器用于根据传感器数据和储存器中数据获取污垢系数,该方法基于该***,对传感器组件和储存器的数据进行处理,最终根据传热系数公式获取污垢系数,根据污垢系数大小判断是否需要清洗并报警。与现有技术相比,本发明具有能够准确获取板式换热器污垢系数并报警,提高***的安全性并节约人力财力,利用压差比进行初次判断再结合温度、压力、质量流量确认结垢系数,双层保护和判断,确保***的准确性和安全性。

Description

一种实时监测板式换热器污垢系数的***及方法
技术领域
本发明涉及一种实时监测污垢系数的***及方法,尤其是涉及一种实时监测板式换热器污垢系数的***及方法。
背景技术
目前大型能源中心项目较多,能源中心与各独立单体之间都采用板式换热器隔开,已区分各自的功能区域及保护能源中心的核心设备,采用板式换热器后的确提高了换热效率,但由于板式换热器的结构上,通道较小一般在3mm左右,长时间使用后容易结垢堵塞,容易造成板式换热器的换热效率及效果降低,增加了能源的消耗,也降低了空调的舒适性;而且能源中心的板式换热器一般规格都较大,拆装均较为麻烦,一般不轻易拆装。如何及时发现板式换热器的结垢堵塞通知专业人员对板式换热器进行清洗,是目前市场的一个迫切需求。
其中,污垢系数是对板式换热器是否结垢堵塞以及堵塞程度判断的重要数据之一,现有的板式换热器设备中,不能准确获取污垢系数,也就难以对结构堵塞进行判断,只能通过拆卸板式换热器直接查看有无结垢,这就导致人工成本增大,反复拆卸也会造成设备损耗。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种实时监测板式换热器污垢系数的***及方法。
本发明的目的可以通过以下技术方案来实现:
一种实时监测板式换热器污垢系数的***,所述的板式换热器包括冷侧进口、冷侧出口、热侧进口和热侧出口,所述的***包括传感器组件、用于根据传感器获取的数据计算污垢系数的处理器、用于储存、传输处理器数据的服务器和用于提示板式换热器需要进行污垢清洗的报警器,所述的传感器组件包括用于检测冷侧进口温度、质量流速及压力的第一传感器组件、用于检测冷侧出口温度及压力的第二传感器组件、用于检测热侧进口温度、质量流速及压力的第三传感器组件和用于检测换热器热侧出口温度及压力的第四传感器组件,所述的第一传感器组件设于冷侧进口的管道内,所述的第二传感器组件设于冷侧出口的管道内,所述的第三传感器组件设于热侧进口的管道内,所述的第四传感器组件设于热侧出口的管道内,所述的第一传感器组件、第二传感器组件、第三传感器组件和第四传感器组件与所述的处理器连接,所述的处理器和报警器与服务器连接,所述的***还包括储存有根据水的温度获取水的密度、黏度、普朗特数、导热系数和比热容的表格的储存器,所述的储存器与处理器连接。使用时,当所述的处理器判断板式换热器的污垢系数过高时,所述的处理器通过服务器控制报警器报警。
优选地,所述的第一传感器组件包括用于测量冷侧进口温度的第一温度传感器、用于测量冷侧进口质量流速的第一流量传感器和用于测量冷侧进口压力的第一压力传感器,所述的第二传感器组件包括用于测量冷侧出口温度的第二温度传感器和用于测量冷侧出口压力的第二压力传感器,所述的第三传感器组件包括用于测量热侧进口温度的第三温度传感器、用于测量热侧进口质量流速的第二流量传感器和用于测量热侧进口压力的第三压力传感器,所述的第四传感器组件包括用于测量热侧出口温度的第四温度传感器和用于测量热侧出口压力的第四压力传感器。
优选地,所述的第一温度传感器、第二温度传感器、第三温度传感器和第四温度传感器均为***式温度传感器。所述的***式温度传感器能够更好的进行更换和维护。
优选地,所述的第一流量传感器和第二流量传感器均为法兰式超声波流量传感器。
优选地,所述的第一传感器组件、第二传感器组件、第三传感器组件和第四传感器组件均为无线传感器组件,所述的***还包括无线连接器,所述的第一传感器组件、第二传感器组件、第三传感器组件和第四传感器组件与无线连接器连接,所述的无线连接器与处理器连接。使用时,所述的传感器组件均通过无线传输的方式将数据通过无线连接器传输给处理器。
优选地,所述的冷侧进口、冷侧出口、热侧进口、热侧出口的管道内均设有碟阀,所述的碟阀为电动蝶阀,所述的碟阀与处理器连接。
优选地,所述的***还包括用于提示板式换热器需要进行污垢清洗的智能手机,所述的服务器的输出端与智能手机的输入端连接。
一种实时监测板式换热器污垢系数的方法,所述的方法包括:
S1:获取板式换热器的热侧板片数、冷侧板片数、板片厚度、单通道截面积、特征长度、设定热侧压差和设定冷侧压差,储存在储存器中;
S2:传感器组件获取冷侧进口温度、冷侧出口温度、热侧进口温度、热侧出口温度、冷侧进口压力、冷侧出口压力、热侧进口压力、热侧出口压力、热侧质量流速和冷侧质量流速,储存在储存器中;
S3:处理器根据冷侧进口温度和冷侧出口温度得到冷侧平均温度,储存在储存器中,根据热侧进口温度和热侧出口温度得到热侧平均温度,储存在储存器中;
S4:处理器根据冷侧进口压力和冷侧出口压力得到冷侧压差,根据冷侧压差和设定冷侧压差获取冷侧压差比,根据热侧进口压力和热侧出口压力得到热侧压差,根据热侧压差和设定热侧压差获取热侧压差比,判断冷侧压差比或热侧压差比是否大于设定压差比,若是进入S3,否则返回S1;
S5:处理器根据热侧平均温度从储存器中获取热侧密度,根据热侧密度、热侧质量流速、热侧板片数和单通道截面积得到热侧流速,处理器根据冷侧平均从储存器中获取冷侧密度,根据冷侧密度、冷侧质量流速、冷侧板片数和单通道截面积得到冷侧流速;
S6:处理器根据热侧平均温度从储存器中获取热侧粘度,根据热侧粘度、特征长度和热侧流速得到热侧雷诺数,处理器根据冷侧平均温度从储存器中获取冷侧粘度,根据冷侧粘度、特征长度和冷侧流速得到冷侧雷诺数;
S7:处理器根据热侧平均温度从储存器中获取热侧普朗特数,根据热侧雷诺数和热侧普朗特数得到热侧努塞尔数,处理器根据冷侧平均温度从储存器中获取冷侧普朗特数,根据冷侧雷诺数和冷侧普朗特数得到冷侧努塞尔数;
S8:处理器根据热侧平均温度从储存器中获取热侧导热系数,根据热侧导热系数、特征长度和热侧努塞尔数得到热侧换热系数,处理器根据冷侧平均温度从储存器中获取冷侧导热系数,根据冷侧导热系数、特征长度和冷侧努塞尔数得到冷侧换热系数;
S9:根据冷侧进口温度、冷侧出口温度、热侧进口温度、热侧出口温度得到对数温差;
S10:根据冷侧进口温度和冷侧出口温度得到换热温差,根据冷侧质量流量得到流体流量,根据冷侧进口温度得到冷侧比热容,根据换热温差、流体流量和冷侧比热容得到换热量;
S11:根据换热量、换热面积、换热量获取传热系数;
S12:根据传热系数、热侧换热系数、冷侧换热系数、板片厚度和换热器传热热阻获取污垢系数,判断污垢系数是否大于设定值,如果污垢系数大于设定值,处理器控制报警器报警,否则返回步骤S1。
所述的步骤S3中,冷侧平均温度的公式为:
Figure BDA0002342875160000041
热侧平均温度的公式为:
Figure BDA0002342875160000042
其中,TH为热侧平均温度,Th为冷侧平均温度,T1为热侧进口温度,T2为热侧出口温度,t1为冷侧入口温度,t2为冷侧出口温度,
所述的步骤S5中热侧流速的公式为:
Figure BDA0002342875160000043
其中,uH为热侧流速,ωH为热侧质量流速,ρH为热侧密度,nH为热侧板片数,f为单通道截面积,
冷侧流速的公式为:
Figure BDA0002342875160000044
其中,uh为冷侧流速,ωh冷侧质量流速,ρh冷侧水密度,nh冷侧板片数,
所述的步骤S6中热侧雷诺数的公式为:
Figure BDA0002342875160000045
其中,ReH为热侧雷诺数,νH为热侧粘度,L为特征长度,
冷侧雷诺数的公式为:
Figure BDA0002342875160000046
其中,Reh为冷侧雷诺数,uh为冷侧流速,νh为冷侧粘度,
所述的步骤S7中热侧努塞尔数的公式为:
Figure BDA0002342875160000051
其中,NuH为热侧努塞尔数,PrH为热侧普朗特数,
冷侧努塞尔数的公式为:
Figure BDA0002342875160000052
其中,Prh为冷侧普朗特数,
所述的S8中,热侧换热系数的公式为:
Figure BDA0002342875160000053
其中,H为热侧换热系数,λH热侧导热系数,
Figure BDA0002342875160000054
其中,h为冷侧换热系数,λh冷侧导热系数,
所述的S9中,对数温差的公式为:
Figure BDA0002342875160000055
Figure BDA0002342875160000056
T1-t2=T2-t1
其中,Δtm为对数温差,
所述的S10中,换热量的公式为:
Q=cmΔt,
其中,Q为换热量,c为比热容,m为流体流量,Δt为换热温差,
所述的S11中,传热系数的公式为:
Figure BDA0002342875160000057
其中,K为传热系数,A为换热面积,
所述的S12中,污垢系数的公式为,
Figure BDA0002342875160000058
其中,δ为板片厚度,λ0为换热器传热热阻,R污垢系数。
与现有技术相比,本发明具有如下优点:
(1)本发明的一种实时监测板式换热器污垢系数的***能够有效监测板式换热器内的温度、压力、流量等数据,并根据这些数据获取板式换热器的污垢系数,判断板式换热器是否需要清洗,保证设备的安全正常运行,并且确保板式换热器在污垢达到一定程度后才进行清洗,避免人力、财力的浪费;
(2)本发明的一种实时监测板式换热器污垢系数的***利用无线传感器及无线连接器获取板式换热器内的温度、压力和质量流量,减少有线设备对现场线缆复杂程度的影响,降低维修难度,提高设备现场的安全性;
(3)本发明的一种实时监测板式换热器污垢系数的***采用***式温度传感器,能够更好的进行更换和维护;
(4)本发明的一种实时监测板式换热器污垢系数的***利用处理器通过服务器控制报警器和移动手机进行污垢系数过高报警,能够更好的确保***的安全性;
(5)本发明的一种实时监测板式换热器污垢系数的方法能够根据板式换热器的温度、压力和质量流量数据获取板式换热器的污垢系数,并及时报警,避免板式换热器结垢对设备安全和能效的影响,避免频繁清洗造成人力、财力的浪费;
(6)本发明的一种实时监测板式换热器污垢系数的方法利用热侧压差比、冷侧压差比进行污垢系数初判断,利用板式换热器的温度、压力和质量流量数据确认板式换热器的污垢系数,双层保护和判断,确保***的的准确性和安全性。
附图说明
图1为本发明一种实时监测板式换热器污垢系数的***的结构示意图;
图2为本发明一种实时监测板式换热器污垢系数的方法的流程图。
其中,1、冷侧进口,2、冷侧出口,3、热侧进口,4、热侧出口,5、第一温度传感器,6、第一流量传感器,7、第一压力传感器,8、第二温度传感器,9、第二压力传感器,10、第三压力传感器,11、第二流量传感器,12、第三温度传感器,13、第四压力传感器,14、第四温度传感器,15、处理器,16、服务器,17、报警器,18、智能手机,19、蝶阀,20、板式换热器,21、储存器,22、无线连接器。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。注意,以下的实施方式的说明只是实质上的例示,本发明并不意在对其适用物或其用途进行限定,且本发明并不限定于以下的实施方式。
实施例
一种实时监测板式换热器污垢系数的***,板式换热器20包括冷侧进口1、冷侧出口2、热侧进口3和热侧出口4,冷侧进口1、冷侧出口2、热侧进口3、热侧出口4的管道内均设有碟阀19,碟阀19为电动蝶阀,碟阀19与处理器15连接,***还包括第一传感器组件、第二传感器组件、第三传感器组件、第四传感器组件、处理器15、服务器16、报警器17、智能手机和储存器21,第一传感器组件、第二传感器组件、第三传感器组件、第四传感器组件、服务器16和储存器21分别与处理器连接,服务器16的输出端与报警器17及智能手机18的输入端连接。
其中,第一传感器组件设于冷侧进口1的管道内,第一传感器组件包括用于测量冷侧进口1温度的第一温度传感器5、用于测量冷侧进口1质量流速的第一流量传感器6和用于测量冷侧进口1压力的第一压力传感器7,第二传感器组件设于冷侧出口2的管道内,第二传感器组件包括用于测量冷侧出口2温度的第二温度传感器8和用于测量冷侧出口2压力的第二压力传感器9,第三传感器组件设于热侧进口3的管道内,第三传感器组件包括用于测量热侧进口3温度的第三温度传感器12、用于测量热侧进口3质量流速的第二流量传感器11和用于测量热侧进口3压力的第三压力传感器10,第四传感器组件设于热侧出口4的管道内,第四传感器组件包括用于测量热侧出口4温度的第四温度传感器14和用于测量热侧出口4压力的第四压力传感器13。
具体地,第一温度传感器5、第二温度传感器8、第三温度传感器12和第四温度传感器14均为***式温度传感器,第一流量传感器6和第二流量传感器11均为法兰式超声波流量传感器,第一温度传感器5、第二温度传感器8、第三温度传感器12、第四温度传感器14、第一压力传感器7、第二压力传感器9、第三压力传感器10、第四压力传感器13、第一流量传感器6和第二流量传感器11均为无线传感器,***还包括无线连接器,第一温度传感器5、第二温度传感器8、第三温度传感器12、第四温度传感器14、第一压力传感器7、第二压力传感器9、第三压力传感器10、第四压力传感器13、第一流量传感器6和第二流量传感器11与无线连接器连接,无线连接器与处理器15连接。
处理器15用于根据传感器获取的数据计算污垢系数,服务器16用于储存、传输处理器15数据,报警器17用于提示板式换热器20需要进行污垢清洗,储存器21用于储存根据水的温度获取水的密度、黏度、普朗特数、导热系数和比热容的表格。
一种实时监测板式换热器污垢系数的方法,该方法包括:
S1:获取板式换热器的热侧板片数、冷侧板片数、板片厚度、单通道截面积、特征长度、设定热侧压差和设定冷侧压差,储存在储存器21中;
S2:传感器组件获取冷侧进口1温度、冷侧出口2温度、热侧进口3温度、热侧出口4温度、冷侧进口1压力、冷侧出口2压力、热侧进口3压力、热侧出口4压力、热侧质量流速和冷侧质量流速,储存在储存器21中;
S3:处理器15根据冷侧进口1温度和冷侧出口2温度得到冷侧平均温度,储存在储存器21中,根据热侧进口3温度和热侧出口4温度得到热侧平均温度,储存在储存器21中,具体地本实施例中,冷侧平均温度的公式为:
Figure BDA0002342875160000081
热侧平均温度的公式为:
Figure BDA0002342875160000082
其中,TH为热侧平均温度,Th为冷侧平均温度,T1为热侧进口3温度,T2为热侧出口4温度,t1为冷侧入口温度,t2为冷侧出口2温度;
S4:处理器15根据冷侧进口1压力和冷侧出口2压力得到冷侧压差,根据冷侧压差和设定冷侧压差获取冷侧压差比,根据热侧进口3压力和热侧出口4压力得到热侧压差,根据热侧压差和设定热侧压差获取热侧压差比,判断冷侧压差比或热侧压差比是否大于设定压差比,若是进入S3,否则返回S1;
步骤S4利用热侧压差比和冷侧压差比对污垢系数进行初判断,如果冷侧压差或者热侧压差过大,则板式换热器20可能结垢,然后再进行后续具体结垢系数的计算。
S5:处理器15根据热侧平均温度从储存器21中获取热侧密度,根据热侧密度、热侧质量流速、热侧板片数和单通道截面积得到热侧流速,处理器15根据冷侧平均从储存器21中获取冷侧密度,根据冷侧密度、冷侧质量流速、冷侧板片数和单通道截面积得到冷侧流速,具体地本实施例中,热侧流速的公式为:
Figure BDA0002342875160000083
其中,uH为热侧流速,ωH为热侧质量流速,ρH为热侧密度,nH为热侧板片数,f为单通道截面积,
冷侧流速的公式为:
Figure BDA0002342875160000091
其中,uh为冷侧流速,ωh冷侧质量流速,ρh冷侧水密度,nh冷侧板片数;
S6:处理器15根据热侧平均温度从储存器21中获取热侧粘度,根据热侧粘度、特征长度和热侧流速得到热侧雷诺数,处理器15根据冷侧平均温度从储存器21中获取冷侧粘度,根据冷侧粘度、特征长度和冷侧流速得到冷侧雷诺数,具体地本实施例中,热侧雷诺数的公式为:
Figure BDA0002342875160000092
其中,ReH为热侧雷诺数,νH为热侧粘度,L为特征长度,
冷侧雷诺数的公式为:
Figure BDA0002342875160000093
其中,Reh为冷侧雷诺数,uh为冷侧流速,νh为冷侧粘度;
S7:处理器15根据热侧平均温度从储存器21中获取热侧普朗特数,根据热侧雷诺数和热侧普朗特数得到热侧努塞尔数,处理器15根据冷侧平均温度从储存器21中获取冷侧普朗特数,根据冷侧雷诺数和冷侧普朗特数得到冷侧努塞尔数,具体地本实施例中,热侧努塞尔数的公式为:
Figure BDA0002342875160000094
其中,NuH为热侧努塞尔数,PrH为热侧普朗特数,
冷侧努塞尔数的公式为:
Figure BDA0002342875160000095
其中,Prh为冷侧普朗特数;
S8:处理器15根据热侧平均温度从储存器21中获取热侧导热系数,根据热侧导热系数、特征长度和热侧努塞尔数得到热侧换热系数,处理器15根据冷侧平均温度从储存器21中获取冷侧导热系数,根据冷侧导热系数、特征长度和冷侧努塞尔数得到冷侧换热系数,具体地本实施例中,热侧换热系数的公式为:
Figure BDA0002342875160000096
其中,H为热侧换热系数,λH热侧导热系数,
Figure BDA0002342875160000101
其中,h为冷侧换热系数,λh冷侧导热系数;
S9:根据冷侧进口1温度、冷侧出口2温度、热侧进口3温度、热侧出口4温度得到对数温差,具体地本实施例中,对数温差的公式为:
Figure BDA0002342875160000102
Figure BDA0002342875160000103
T1-t2=T2-t1
其中,Δtm为对数温差;
S10:根据冷侧进口1温度和冷侧出口2温度得到换热温差,根据冷侧质量流量得到流体流量,根据冷侧进口1温度得到冷侧比热容,根据换热温差、流体流量和冷侧比热容得到换热量,换热量的公式为:
Q=cmΔt,
其中,Q为换热量,c为比热容,m为流体流量,Δt为换热温差,;
S11:根据换热量、换热面积、换热量获取传热系数,具体地本实施例中,传热系数的公式为:
Figure BDA0002342875160000104
其中,K为传热系数,A为换热面积;
S12:根据传热系数、热侧换热系数、冷侧换热系数、板片厚度和换热器传热热阻获取污垢系数,判断污垢系数是否大于设定值,如果污垢系数大于设定值,处理器15控制报警器报警,否则返回步骤S1,具体地本实施例中,将数据代入传热系数的公式求出污垢系数:
Figure BDA0002342875160000105
其中,δ为板片厚度,λ0为换热器传热热阻,R污垢系数。
上述实施方式仅为例举,不表示对本发明范围的限定。这些实施方式还能以其它各种方式来实施,且能在不脱离本发明技术思想的范围内作各种省略、置换、变更。

Claims (9)

1.一种实时监测板式换热器污垢系数的***,所述的板式换热器(20)包括冷侧进口(1)、冷侧出口(2)、热侧进口(3)和热侧出口(4),其特征在于,所述的***包括传感器组件、用于根据传感器获取的数据计算污垢系数的处理器(15)、用于储存、传输处理器(15)数据的服务器(16)和用于提示板式换热器(20)需要进行污垢清洗的报警器(17),所述的传感器组件包括用于检测冷侧进口(1)温度、质量流速及压力的第一传感器组件、用于检测冷侧出口(2)温度及压力的第二传感器组件、用于检测热侧进口(3)温度、质量流速及压力的第三传感器组件和用于检测换热器热侧出口(4)温度及压力的第四传感器组件,所述的第一传感器组件设于冷侧进口(1)的管道内,所述的第二传感器组件设于冷侧出口(2)的管道内,所述的第三传感器组件设于热侧进口(3)的管道内,所述的第四传感器组件设于热侧出口(4)的管道内,所述的第一传感器组件、第二传感器组件、第三传感器组件和第四传感器组件与所述的处理器(15)连接,所述的处理器(15)和报警器(17)与服务器(16)连接,所述的***还包括储存有根据水的温度获取水的密度、黏度、普朗特数、导热系数和比热容的表格的储存器(21),所述的储存器(21)与处理器(15)连接。
2.根据权利要求1所述的一种实时监测板式换热器污垢系数的***,其特征在于,所述的第一传感器组件包括用于测量冷侧进口(1)温度的第一温度传感器(5)、用于测量冷侧进口(1)质量流速的第一流量传感器(6)和用于测量冷侧进口(1)压力的第一压力传感器(7),所述的第二传感器组件包括用于测量冷侧出口(2)温度的第二温度传感器(8)和用于测量冷侧出口(2)压力的第二压力传感器(9),所述的第三传感器组件包括用于测量热侧进口(3)温度的第三温度传感器(12)、用于测量热侧进口(3)质量流速的第二流量传感器(11)和用于测量热侧进口(3)压力的第三压力传感器(10),所述的第四传感器组件包括用于测量热侧出口(4)温度的第四温度传感器(14)和用于测量热侧出口(4)压力的第四压力传感器(13)。
3.根据权利要求2所述的一种实时监测板式换热器污垢系数的***,其特征在于,所述的第一温度传感器(5)、第二温度传感器(8)、第三温度传感器(12)和第四温度传感器(14)均为***式温度传感器。
4.根据权利要求2所述的一种实时监测板式换热器污垢系数的***,其特征在于,所述的第一流量传感器(6)和第二流量传感器(11)均为法兰式超声波流量传感器。
5.根据权利要求1所述的一种实时监测板式换热器污垢系数的***,其特征在于,所述的第一传感器组件、第二传感器组件、第三传感器组件和第四传感器组件均为无线传感器组件,所述的***还包括无线连接器(22),所述的第一传感器组件、第二传感器组件、第三传感器组件和第四传感器组件与无线连接器(22)连接,所述的无线连接器(22)与处理器(15)连接。
6.根据权利要求1所述的一种实时监测板式换热器污垢系数的***,其特征在于,所述的冷侧进口(1)、冷侧出口(2)、热侧进口(3)、热侧出口(4)的管道内均设有碟阀(19),所述的碟阀(19)为电动蝶阀,所述的碟阀(19)与处理器(15)连接。
7.根据权利要求1所述的一种实时监测板式换热器污垢系数的***,其特征在于,所述的***还包括用于提示板式换热器(20)需要进行污垢清洗的智能手机(18),所述的服务器(16)的输出端与智能手机(18)的输入端连接。
8.一种实时监测板式换热器污垢系数的方法,采用权利要求1至7任意一项所述的一种实时监测板式换热器污垢系数的***,其特征在于,所述的方法包括:
S1:获取板式换热器的热侧板片数、冷侧板片数、板片厚度、单通道截面积、特征长度、设定热侧压差和设定冷侧压差,储存在储存器(21)中;
S2:传感器组件获取冷侧进口(1)温度、冷侧出口(2)温度、热侧进口(3)温度、热侧出口(4)温度、冷侧进口(1)压力、冷侧出口(2)压力、热侧进口(3)压力、热侧出口(4)压力、热侧质量流速和冷侧质量流速,储存在储存器(21)中;
S3:处理器(15)根据冷侧进口(1)温度和冷侧出口(2)温度得到冷侧平均温度,储存在储存器(21)中,根据热侧进口(3)温度和热侧出口(4)温度得到热侧平均温度,储存在储存器(21)中;
S4:处理器(15)根据冷侧进口(1)压力和冷侧出口(2)压力得到冷侧压差,根据冷侧压差和设定冷侧压差获取冷侧压差比,根据热侧进口(3)压力和热侧出口(4)压力得到热侧压差,根据热侧压差和设定热侧压差获取热侧压差比,判断冷侧压差比或热侧压差比是否大于设定压差比,若是进入S3,否则返回S1;
S5:处理器(15)根据热侧平均温度从储存器(21)中获取热侧密度,根据热侧密度、热侧质量流速、热侧板片数和单通道截面积得到热侧流速,处理器(15)根据冷侧平均从储存器(21)中获取冷侧密度,根据冷侧密度、冷侧质量流速、冷侧板片数和单通道截面积得到冷侧流速;
S6:处理器(15)根据热侧平均温度从储存器(21)中获取热侧粘度,根据热侧粘度、特征长度和热侧流速得到热侧雷诺数,处理器(15)根据冷侧平均温度从储存器(21)中获取冷侧粘度,根据冷侧粘度、特征长度和冷侧流速得到冷侧雷诺数;
S7:处理器(15)根据热侧平均温度从储存器(21)中获取热侧普朗特数,根据热侧雷诺数和热侧普朗特数得到热侧努塞尔数,处理器(15)根据冷侧平均温度从储存器(21)中获取冷侧普朗特数,根据冷侧雷诺数和冷侧普朗特数得到冷侧努塞尔数;
S8:处理器(15)根据热侧平均温度从储存器(21)中获取热侧导热系数,根据热侧导热系数、特征长度和热侧努塞尔数得到热侧换热系数,处理器(15)根据冷侧平均温度从储存器(21)中获取冷侧导热系数,根据冷侧导热系数、特征长度和冷侧努塞尔数得到冷侧换热系数;
S9:根据冷侧进口(1)温度、冷侧出口(2)温度、热侧进口(3)温度、热侧出口(4)温度得到对数温差;
S10:根据冷侧进口(1)温度和冷侧出口(2)温度得到换热温差,根据冷侧质量流量得到流体流量,根据冷侧进口(1)温度得到冷侧比热容,根据换热温差、流体流量和冷侧比热容得到换热量;
S11:根据换热量、换热面积、换热量获取传热系数;
S12:根据传热系数、热侧换热系数、冷侧换热系数、板片厚度和换热器传热热阻获取污垢系数,判断污垢系数是否大于设定值,如果污垢系数大于设定值,处理器(15)控制报警器报警,否则返回步骤S1。
9.根据权利要求8所述的一种实时监测板式换热器污垢系数的方法,其特征在于,所述的步骤S3中,冷侧平均温度的公式为:
Figure FDA0002342875150000031
热侧平均温度的公式为:
Figure FDA0002342875150000041
其中,TH为热侧平均温度,Th为冷侧平均温度,T1为热侧进口(3)温度,T2为热侧出口(4)温度,t1为冷侧入口温度,t2为冷侧出口(2)温度,
所述的步骤S5中热侧流速的公式为:
Figure FDA0002342875150000042
其中,uH为热侧流速,ωH为热侧质量流速,ρH为热侧密度,nH为热侧板片数,f为单通道截面积,
冷侧流速的公式为:
Figure FDA0002342875150000043
其中,uh为冷侧流速,ωh冷侧质量流速,ρh冷侧水密度,nh冷侧板片数,
所述的步骤S6中热侧雷诺数的公式为:
Figure FDA0002342875150000044
其中,ReH为热侧雷诺数,νH为热侧粘度,L为特征长度,
冷侧雷诺数的公式为:
Figure FDA0002342875150000045
其中,Reh为冷侧雷诺数,uh为冷侧流速,νh为冷侧粘度,
所述的步骤S7中热侧努塞尔数的公式为:
Figure FDA0002342875150000046
其中,NuH为热侧努塞尔数,PrH为热侧普朗特数,
冷侧努塞尔数的公式为:
Figure FDA0002342875150000047
其中,Prh为冷侧普朗特数,
所述的S8中,热侧换热系数的公式为:
Figure FDA0002342875150000048
其中,H为热侧换热系数,λH热侧导热系数,
Figure FDA0002342875150000051
其中,h为冷侧换热系数,λh冷侧导热系数,
所述的S9中,对数温差的公式为:
Figure FDA0002342875150000052
Figure FDA0002342875150000053
T1-t2=T2-t1
其中,Δtm为对数温差,
所述的S10中,换热量的公式为:
Q=cmΔt,
其中,Q为换热量,c为比热容,m为流体流量,Δt为换热温差,
所述的S11中,传热系数的公式为:
Figure FDA0002342875150000054
其中,K为传热系数,A为换热面积,
所述的S12中,污垢系数的公式为,
Figure FDA0002342875150000055
其中,δ为板片厚度,λ0为换热器传热热阻,R污垢系数。
CN201911383478.6A 2019-12-28 2019-12-28 一种实时监测板式换热器污垢系数的***及方法 Pending CN111059957A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911383478.6A CN111059957A (zh) 2019-12-28 2019-12-28 一种实时监测板式换热器污垢系数的***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911383478.6A CN111059957A (zh) 2019-12-28 2019-12-28 一种实时监测板式换热器污垢系数的***及方法

Publications (1)

Publication Number Publication Date
CN111059957A true CN111059957A (zh) 2020-04-24

Family

ID=70304350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911383478.6A Pending CN111059957A (zh) 2019-12-28 2019-12-28 一种实时监测板式换热器污垢系数的***及方法

Country Status (1)

Country Link
CN (1) CN111059957A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112069650A (zh) * 2020-07-21 2020-12-11 国网河北省电力有限公司电力科学研究院 凝汽器性能评估方法及终端设备
CN112380653A (zh) * 2020-11-17 2021-02-19 潍柴动力股份有限公司 换热器性能数据确定方法、装置、设备及存储介质
CN112678904A (zh) * 2020-11-04 2021-04-20 杭州电子科技大学 一种多级闪蒸海水淡化***结垢清洗装置及方法
CN112716293A (zh) * 2021-01-27 2021-04-30 上海朴道水汇环保科技股份有限公司 一种检测饮水机加热热胆水垢的方法及***
CN112923349A (zh) * 2021-02-26 2021-06-08 华能洛阳热电有限责任公司 一种燃煤锅炉低温省煤器的污垢动态监测方法及其***
CN113190924A (zh) * 2021-03-26 2021-07-30 内蒙古中煤蒙大新能源化工有限公司 一种煤化工企业循环水***建模与结垢分析方法及***
CN113654184A (zh) * 2021-08-23 2021-11-16 珠海格力电器股份有限公司 一种预防空调板式换热器水侧堵塞的控制方法、空调器
CN113701550A (zh) * 2021-08-19 2021-11-26 武汉理工大学 适用于扩散焊接混合式换热器的自动清洗装置及方法
CN113916292A (zh) * 2021-10-09 2022-01-11 中国科学技术大学 一种全尺寸房屋火灾行为测量***及测试方法
CN114087915A (zh) * 2021-12-09 2022-02-25 北京中科华誉热泵设备制造有限公司 水源热泵换热器污垢热阻在线监控***及控制方法
CN114543724A (zh) * 2022-01-11 2022-05-27 国能浙江宁海发电有限公司 一种凝汽器结垢厚度测试方法
CN117433339A (zh) * 2023-11-27 2024-01-23 无锡鼎邦换热设备股份有限公司 多热源换热器的换热除垢***及方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112069650A (zh) * 2020-07-21 2020-12-11 国网河北省电力有限公司电力科学研究院 凝汽器性能评估方法及终端设备
CN112069650B (zh) * 2020-07-21 2023-08-18 国网河北省电力有限公司电力科学研究院 凝汽器性能评估方法及终端设备
CN112678904A (zh) * 2020-11-04 2021-04-20 杭州电子科技大学 一种多级闪蒸海水淡化***结垢清洗装置及方法
CN112678904B (zh) * 2020-11-04 2023-03-17 杭州电子科技大学 一种多级闪蒸海水淡化***结垢清洗装置及方法
CN112380653A (zh) * 2020-11-17 2021-02-19 潍柴动力股份有限公司 换热器性能数据确定方法、装置、设备及存储介质
CN112380653B (zh) * 2020-11-17 2023-04-18 潍柴动力股份有限公司 换热器性能数据确定方法、装置、设备及存储介质
CN112716293B (zh) * 2021-01-27 2022-12-06 上海朴道水汇环保科技股份有限公司 一种检测饮水机加热热胆水垢的方法及***
CN112716293A (zh) * 2021-01-27 2021-04-30 上海朴道水汇环保科技股份有限公司 一种检测饮水机加热热胆水垢的方法及***
CN112923349A (zh) * 2021-02-26 2021-06-08 华能洛阳热电有限责任公司 一种燃煤锅炉低温省煤器的污垢动态监测方法及其***
CN113190924A (zh) * 2021-03-26 2021-07-30 内蒙古中煤蒙大新能源化工有限公司 一种煤化工企业循环水***建模与结垢分析方法及***
CN113190924B (zh) * 2021-03-26 2024-01-23 中煤鄂尔多斯能源化工有限公司 一种煤化工企业循环水***建模与结垢分析方法及***
CN113701550B (zh) * 2021-08-19 2022-07-19 武汉理工大学 适用于扩散焊接混合式换热器的自动清洗装置及方法
CN113701550A (zh) * 2021-08-19 2021-11-26 武汉理工大学 适用于扩散焊接混合式换热器的自动清洗装置及方法
CN113654184A (zh) * 2021-08-23 2021-11-16 珠海格力电器股份有限公司 一种预防空调板式换热器水侧堵塞的控制方法、空调器
CN113916292A (zh) * 2021-10-09 2022-01-11 中国科学技术大学 一种全尺寸房屋火灾行为测量***及测试方法
CN114087915A (zh) * 2021-12-09 2022-02-25 北京中科华誉热泵设备制造有限公司 水源热泵换热器污垢热阻在线监控***及控制方法
CN114543724A (zh) * 2022-01-11 2022-05-27 国能浙江宁海发电有限公司 一种凝汽器结垢厚度测试方法
CN114543724B (zh) * 2022-01-11 2023-08-22 国能浙江宁海发电有限公司 一种凝汽器结垢厚度测试方法
CN117433339A (zh) * 2023-11-27 2024-01-23 无锡鼎邦换热设备股份有限公司 多热源换热器的换热除垢***及方法
CN117433339B (zh) * 2023-11-27 2024-05-24 无锡鼎邦换热设备股份有限公司 多热源换热器的换热除垢***及方法

Similar Documents

Publication Publication Date Title
CN111059957A (zh) 一种实时监测板式换热器污垢系数的***及方法
EP1943465B1 (en) A device and a method for measurement of energy for heating tap water separated from the building's heating energy-usage .
CN102261968B (zh) 管壳式换热器节点温度的预测方法与装置
CN105067661B (zh) 气-液换热器传热系数测定装置
CN102338568B (zh) 基于清洁系数指标的电厂凝汽器性能在线监测***及方法
CN100451442C (zh) 基于混沌分析和微处理器的管道微泄漏诊断方法与装置
CN104036115B (zh) 热交换器的一种能效定量评价方法
CN103759961A (zh) 一种电制冷冷水机组中央空调***能效评估方法
CN107402228A (zh) 一种核电站换热器换热性能的监测***及方法
CN103670809A (zh) Egr冷却器状况模块及相关***
CN211575977U (zh) 一种实时监测板式换热器污垢系数的***
CN112923349A (zh) 一种燃煤锅炉低温省煤器的污垢动态监测方法及其***
CN113158494A (zh) 一种热交换器虚实融合故障诊断方法及***
CN104298888A (zh) 一种基于流量冷量关系模型的风机盘管冷量计量方法
CN202041328U (zh) 热量表及信号采集装置
CN102221424A (zh) 热量表信号采集装置、热量表及供热量计算方法
CN108692608A (zh) 一种换热器运行状况智能在线监控装置
CN200996922Y (zh) 防垢性能评价试验装置
CN103822095A (zh) 天然气输送管线冰堵形成的预测方法及装置
CN111289214B (zh) 风洞实验装置及测温方法
CN208606637U (zh) 一种换热器运行状况智能在线监控装置
CN204807492U (zh) 一种气-液换热器传热系数测定装置
CN102788813A (zh) 一种强化传热管壳式热交换器节能量的测量方法
CN206420709U (zh) 冷热冲击设备
CN206583619U (zh) 一种加热器试验台

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination