CN111055286A - 一种工业机器人轨迹生成方法、***、装置和存储介质 - Google Patents

一种工业机器人轨迹生成方法、***、装置和存储介质 Download PDF

Info

Publication number
CN111055286A
CN111055286A CN202010031229.7A CN202010031229A CN111055286A CN 111055286 A CN111055286 A CN 111055286A CN 202010031229 A CN202010031229 A CN 202010031229A CN 111055286 A CN111055286 A CN 111055286A
Authority
CN
China
Prior art keywords
data points
data
error
curve
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010031229.7A
Other languages
English (en)
Other versions
CN111055286B (zh
Inventor
张见双
高燕
庄健培
李雪锋
钟乐华
邓颂坤
徐建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongzheng Data Technology Co ltd
Original Assignee
Guangzhou Start To Sail Industrial Robot Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Start To Sail Industrial Robot Co filed Critical Guangzhou Start To Sail Industrial Robot Co
Priority to CN202010031229.7A priority Critical patent/CN111055286B/zh
Publication of CN111055286A publication Critical patent/CN111055286A/zh
Application granted granted Critical
Publication of CN111055286B publication Critical patent/CN111055286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种工业机器人轨迹生成方法、***和存储介质,其中方法包括以下步骤:获取待生成机器人轨迹的原始数据,对原始数据进行滤波处理后,获得多个数据点;获取各数据点的离散曲率,结合离散曲率和数据点获取拟合曲线;计算拟合曲线与数据点的误差,并在误差小于预设允差时,根据拟合曲线生成工业机器人轨迹。本发明将原始数据中的噪声点和错误点进行剔除,再结合离散曲率获取拟合曲线,最后根据拟合曲线生成工业机器人轨迹,从而是机器人轨迹更加平滑,提高了加工速度和加工质量,可广泛应用于机器人路径规划领域。

Description

一种工业机器人轨迹生成方法、***、装置和存储介质
技术领域
本发明涉及机器人路径规划领域,尤其涉及一种工业机器人轨迹生成方法、***和存储介质。
背景技术
目前机器人在工业生成制造领域的应用越来越广泛,机器人与三维相机扫描仪的结合也越来越常见。受物体表面粗糙度、光源位置、待扫描物体材质颜色及控制台振动等各方面因素影响,扫描出的模型不可避免会产生噪声,导致从模型中提取的离散数据存在噪声点,甚至错误点,若直接使用离散数据生成机器人加工轨迹,加工轨迹会出现不光顺的情况,机器人末端会产生抖动,极大地影响加工速度和造成加工质量不达标等现象。
发明内容
为了解决上述技术问题,本发明的目的是提供一种更加平滑地生成工业机器人轨迹的方法、***和存储介质。
本发明所采用的第一技术方案是:
一种工业机器人轨迹生成方法,包括以下步骤:
获取待生成机器人轨迹的原始数据,对原始数据进行滤波处理后,获得多个数据点;
获取各数据点的离散曲率,结合离散曲率和数据点获取拟合曲线;
计算拟合曲线与数据点的误差,并在误差小于预设允差时,根据拟合曲线生成工业机器人轨迹。
进一步,所述对原始数据进行滤波处理后,获得多个数据点这一步骤,具体包括以下步骤:
依次从原始数据中获取初始数据点,并在检测到初始数据点为噪声点时,剔除该初始数据点;
采用预设方式对初始数据点的坐标进行处理,并获得最终的数据点。
进一步,通过以下方式检测初始数据点是否为噪声点:
获取该初始数据点前后位置相邻的两个初始数据点,获取三个初始数据点依次相连后的角度值;
判断角度值是否小于第一预设角度,并在判定角度值小于第一预设角度时,判定该初始数据点为噪声点。
进一步,所述采用预设方式对初始数据点的坐标进行处理,并获得最终的数据点这一步骤,具体为:
判断角度值是否大于第二预设角度,若是,将该初始数据点的坐标作为最终的数据点;反之,结合三个初始数据点的坐标计算新的坐标作为最终的数据点;
其中,所述第二预设角度大于第一预设角度。
进一步,所述获取各数据点的离散曲率,结合离散曲率和数据点获取拟合曲线这一步骤,具体包括以下步骤:
A1、获取各数据点的离散曲率,以及计算所有数据点的离散曲率的累加和;
A2、结合离散曲率的累加和和预设的拟合节点数量获取初始平均离散曲率;
A3、结合离散曲率和初始平均离散曲率获取拟合曲线的节点矢量;
A4、结合数据点和节点矢量获取最终的拟合曲线。
进一步,所述步骤A4,具体为:
结合数据点、节点矢量和最小二乘曲线拟合方式获取最终的拟合曲线。
进一步,所述计算拟合曲线与数据点的误差,并在误差小于预设允差时,根据拟合曲线生成工业机器人轨迹这一步骤,具体包括以下步骤:
计算拟合曲线与数据点的误差;
若误差小于Maxerror,对拟合曲线拟合上所有的数据点进行离散化,获得离散数据点;
若误差大于Maxerror,返回执行步骤A4,直至误差小于Maxerror;
若误差大于t*Maxerror,重新设置拟合节点数量后,返回执行步骤A1~A4,直至误差小于Maxerror;
根据离散数据点生成机器人轨迹;
其中,所述Maxerror为预设允差,所述t为正整数。
本发明所采用的第二技术方案是:
一种工业机器人轨迹生成***,包括:
数据滤波模块,用于获取待生成机器人轨迹的原始数据,对原始数据进行滤波处理后,获得多个数据点;
曲线拟合模块,用于获取各数据点的离散曲率,结合离散曲率和数据点获取拟合曲线;
误差计算模块,用于计算拟合曲线与数据点的误差,并在误差小于预设允差时,根据拟合曲线生成工业机器人轨迹。
本发明所采用的第三技术方案是:
一种工业机器人轨迹生成装置,,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现上所述方法。
本发明所采用的第四技术方案是:
一种存储介质,其中存储有处理器可执行的指令,所述处理器可执行的指令在由处理器执行时用于执行如上所述方法。
本发明的有益效果是:本发明将原始数据中的噪声点和错误点进行剔除,再结合离散曲率获取拟合曲线,最后根据拟合曲线生成工业机器人轨迹,从而是机器人轨迹更加平滑,提高了加工速度和加工质量。
附图说明
图1是具体实施方式中一种工业机器人轨迹生成方法的步骤流程图;
图2是具体实施方式中一种工业机器人轨迹生成***的结构框图;
图3是现有方法生成的工业机器人轨迹的示意图;
图4是采用具体实施例方法生成的工业机器人轨迹的示意图;
图5是具体实施例中一种工业机器人轨迹生成方法的流程示意图。
具体实施方式
如图1所示,本实施例提供了一种工业机器人轨迹生成方法,包括以下步骤:
S1、获取待生成机器人轨迹的原始数据,对原始数据进行滤波处理后,获得多个数据点;
S2、获取各数据点的离散曲率,结合离散曲率和数据点获取拟合曲线;
S3、计算拟合曲线与数据点的误差,并在误差小于预设允差时,根据拟合曲线生成工业机器人轨迹。
在本实施例方法中,先对待生成机器人轨迹的原始数据进行滤波删除,对明显错误的数据点进行剔除,其中,可采用现有的数据滤波方式对数据点进行剔除,比如通过比较相邻两个点的坐标距离或者点与点之间的矢量变化情况来剔除。在进行滤波处理后,获得多个数据点。根据数据点的坐标计算各数据点的离散曲率,结合离散曲率、数据点和预设的曲线拟合方式获取拟合曲线,当拟合曲线与数据点的误差小于预设允差时,则根据拟合曲线生成工业机器人轨迹,比如可以将拟合曲线作为机器人轨迹,也可以重新对拟合曲线的点重新离散化,再进行组合等。通过上述方法,将原始数据中的噪声点和错误点进行剔除,再结合离散曲率获取拟合曲线,最后根据拟合曲线生成工业机器人轨迹,从而是机器人轨迹更加平滑,提高了加工速度和加工质量。
其中,步骤S1具体包括步骤S11~S12:
S11、依次从原始数据中获取初始数据点,并在检测到初始数据点为噪声点时,剔除该初始数据点;
S12、采用预设方式对初始数据点的坐标进行处理,并获得最终的数据点。
具体地,步骤S11具体包括步骤S111~S112:
S111、获取该初始数据点前后位置相邻的两个初始数据点,获取三个初始数据点依次相连后的角度值;
S112、判断角度值是否小于第一预设角度,并在判定角度值小于第一预设角度时,判定该初始数据点为噪声点。
步骤S12具体为:判断角度值是否大于第二预设角度,若是,将该初始数据点的坐标作为最终的数据点;反之,结合三个初始数据点的坐标计算新的坐标作为最终的数据点;其中,所述第二预设角度大于第一预设角度。
对数据点中尖锐噪声点进行过滤和平滑,其具体步骤如下:
步骤1,原始数据中错误点剔除:相邻的三个数据点Pi-1,Pi,Pi+1,求∠Pi-1PiPi+1角度,若∠Pi-1PiPi+1<30°,则认为点Pi为噪声点,将点Pi剔除;
步骤2,对步骤1中求出的∠Pi-1PiPi+1进行判断,若∠Pi-1PiPi+1>90°,则认为点Pi数据为正常数据,不对数据进行处理;
步骤3,若∠Pi-1PiPi+1<90°,则计算线段|Pi-1Pi|、|PiPi+1|的长度,若|Pi-1Pi|=|PiPi+1|,则在线段Pi-1Pi+1上取点P,使P满足:P=(Pi-1+Pi+1)/2,代替点Pi;若|Pi-1Pi|>|PiPi+1|,则求比例系数
Figure BDA0002364374250000041
在线段Pi-1Pi上取一点P,使P点满足:P=Pi+α*(Pi-1-Pi),将P点坐标代替Pi点坐标;若|Pi-1Pi|<|PiPi+1|,则求比例系数
Figure BDA0002364374250000042
在线段Pi+1Pi上取一点P,使P点满足:P=Pi+α*(Pi+1-Pi),将P点坐标代替Pi点坐标。
其中,步骤S2具体包括步骤S21~步骤S24:
S21、获取各数据点的离散曲率,以及计算所有数据点的离散曲率的累加和;
S22、结合离散曲率的累加和和预设的拟合节点数量获取初始平均离散曲率;
S23、结合离散曲率和初始平均离散曲率获取拟合曲线的节点矢量;
S24、结合数据点和节点矢量获取最终的拟合曲线。
步骤S24具体为:结合数据点、节点矢量和最小二乘曲线拟合方式获取最终的拟合曲线。
其中,步骤S3具体包括步骤S31~S33:
S31、计算拟合曲线与数据点的误差;
S32、若误差小于Maxerror,对拟合曲线拟合上所有的数据点进行离散化,获得离散数据点;若误差大于Maxerror,返回执行步骤A4,直至误差小于Maxerror;若误差大于t*Maxerror,重新设置拟合节点数量后,返回执行步骤A1~A4,直至误差小于Maxerror;
S33、根据离散数据点生成机器人轨迹;
其中,所述Maxerror为预设允差,所述t为正整数。
在本实施例中,具体实现如下所示。
步骤1:设置最大允差Maxerror、拟合节点数量InitNum和最大迭代次数N;
其中,设数据滤波后,数据点表示为q0,q1,q2…qm,并InitNum<m+1。
步骤2:对第一步给出的初始数据求离散曲率,对相邻的三个点Pi-1,Pi,Pi+1分别求出|Pi-1Pi|、|PiPi+1|的模,若|Pi-1Pi|≥|PiPi+1|,令di=|PiPi+1|,令
Figure BDA0002364374250000051
在Pi-1Pi上求一点P,使P点坐标满足:P=Pi+α*(Pi-1-Pi),然后求出Di=|Pi+1P|,点Pi的离散曲率为
Figure BDA0002364374250000052
Figure BDA0002364374250000053
若|Pi-1Pi|<|PiPi+1|,令di=|PiPi-1|,令
Figure BDA0002364374250000054
在Pi+1Pi上求一点P,使P点坐标满足:P=Pi+α*(Pi+1-Pi),然后求出Di=|Pi-1P|,点Pi的离散曲率为
Figure BDA0002364374250000055
求出所有数据点离散曲率的累加和Csum
步骤3:根据离散曲率求拟合曲线的节点矢量,根据积累弦长参数化求出初始数据点的节点矢量m_aUi,根据步骤1设置的拟合节点矢量数量InitNum和步骤2求出的离散曲率累加和Csum求出逼近曲线初始平均离散曲率,即
Figure BDA0002364374250000056
然后对初始数据点的离散曲率遍历,求出拟合曲线的初始节点矢量,如第j个数据点的离散曲率满足条件
Figure BDA0002364374250000057
Figure BDA0002364374250000058
进而求出第i个节点矢量,
Figure BDA0002364374250000059
其中i的取值范围为0<i≤InitNum。
步骤4:最小二乘样条曲线逼近,根据步骤3求出的节点矢量和初始数据点求出最小二乘B样条逼近曲线,公式如下
Figure BDA00023643742500000510
其中,Nj,k(u)是B样条基函数,k表示次数,j表示序号;dj表示最小二乘曲线逼近的控制点。
步骤5:求数据点最大误差:
根据最小二乘目标函数为优化目标,满足端点约束条件,即q0=p(0),qm=p(1),满足第一步求出的初始数据点最小二乘意义上逼近:
Figure BDA0002364374250000061
其中,qi表示第i个初始数据点;p(ui)是第i个数据点的节点矢量对应的最小二乘曲线上的点位置;
步骤6:逼近曲线误差值与最大允差比较:
根据步骤5求出的最小二乘逼近曲线的误差值与最大允差进行比较;
若f>Maxerror,逼近曲线大于允差,则需要重新逼近曲线拟合,若f>t*Maxerror,则逼近曲线节点InitNum′=InitNum+t,重复步骤2~6,迭代次数+1;
若f<Maxerror,则流程结束,重新对数据取点离散化。
其中,t为正整数。
步骤7:对步骤6求出的离散数据生成机器人加工轨迹。
具体实施例
参照图3-图5,以下结合工业机器人鞋底涂胶轨迹的具体实施例对上述方法进行详细说明。
参照图5,步骤一:将待生成机器人轨迹数据点滤波。
其中,步骤一包括S101~S101:
步骤S101将原始数据中错误点剔除:相邻的三个数据点Pi-1,Pi,Pi+1,求∠Pi-1PiPi+1角度,若∠Pi-1PiPi+1<30°,则认为点Pi为噪声点,将点Pi剔除;
步骤S101对步骤S101中求出的∠Pi-1PiPi+1进行判断,若∠Pi-1PiPi+1>90°,则认为点Pi数据为正常数据,不对数据进行处理;
步骤S101:若∠Pi-1PiPi+1<90°,则计算线段|Pi-1Pi|、|PiPi+1|的长度,若|Pi-1Pi|=|PiPi+1|,则在线段Pi-1Pi+1上取点P,使P满足:P=(Pi-1+Pi+1)/2,代替点Pi;若|Pi-1Pi|>|PiPi+1|,则求比例系数
Figure BDA0002364374250000062
在线段Pi-1Pi上取一点P,使P点满足:P=Pi+α*(Pi-1-Pi),将P点坐标代替Pi点坐标;若|Pi-1Pi|<|PiPi+1|,则求比例系数
Figure BDA0002364374250000063
在线段Pi+1Pi上取一点P,使P点满足:P=Pi+α*(Pi+1-Pi),将P点坐标代替Pi点坐标。
步骤二:根据离散曲率设置逼近曲线节点矢量。
其中,步骤二包括步骤S201~S207
步骤S201设置最大允差Maxerror、拟合节点数量InitNum和最大迭代次数N;
其中,经过步骤一的数据滤波后,数据点数量为m+1,并InitNum<m+1。
步骤S202.对第一步给出的初始数据求离散曲率,对相邻的三个点Pi-1,Pi,Pi+1分别求出|Pi-1Pi|、|PiPi+1|的模,若|Pi-1Pi|≥|PiPi+1|,令di=|PiPi+1|,令
Figure BDA0002364374250000071
在Pi-1Pi上求一点P,使P点坐标满足:P=Pi+α*(Pi-1-Pi),然后求出Di=|Pi+1P|,点Pi的离散曲率为
Figure BDA0002364374250000072
若|Pi-1Pi|<|PiPi+1|,令di=|PiPi-1|,令
Figure BDA0002364374250000073
在Pi+1Pi上求一点P,使P点坐标满足:P=Pi+α*(Pi+1-Pi),然后求出Di=|Pi-1P|,点Pi的离散曲率为
Figure BDA0002364374250000074
求出所有数据点离散曲率的累加和Csum
步骤S203根据离散曲率求拟合曲线的节点矢量,根据积累弦长参数化求出初始数据点的节点矢量m_aUi,公式如下;
Figure BDA0002364374250000075
其中k为拟合次数,k>1,n为数据点的数量;
根据步骤S201设置的拟合节点矢量数量InitNum和步骤S202求出的离散曲率累加和Csum求出平均离散曲率,即
Figure BDA0002364374250000076
然后对初始数据点的离散曲率遍历,求出拟合曲线的初始节点矢量,如第j个数据点的离散曲率满足条件
Figure BDA0002364374250000077
进而求出第i个节点矢量,
Figure BDA0002364374250000078
步骤S204,最小二乘样条曲线拟合,根据步骤3求出的节点矢量和初始数据点求出最小二乘B样条逼近曲线,公式如下
Figure BDA0002364374250000079
Figure BDA0002364374250000081
(NTN)D=R (5)
Figure BDA0002364374250000082
Figure BDA0002364374250000083
Figure BDA0002364374250000084
其中,公式(3)是逼近曲线公式,Nj,k(u)是B样条基函数,k表示次数,j表示序号;dj表示最小二乘曲线逼近的控制点。公式(4)是B样条基函数,公式(5)是控制点递推公式,其中N是(m-1)×(n-1)阶标量矩阵,通过公式(5)-(8)求解得出控制点。
步骤S205求数据点最大误差:
根据最小二乘目标函数为优化目标,满足端点约束条件,即q0=p(0),qm=p(1),满足第一步求出的初始数据点最小二乘意义上逼近:
Figure BDA0002364374250000085
其中,qi表示第i个初始数据点,p(ui)是第i个数据点的节点矢量对应的最小二乘曲线上的点位置。
步骤S206,逼近曲线误差值与最大允差比较:
根据步骤S205求出的最小二乘逼近曲线的误差值与最大允差进行比较;
若f>Maxerror,逼近曲线大于允差,则需要重新逼近曲线拟合,若f>t*Maxerror,则逼近曲线节点InitNum′=InitNum+t,重复步骤2~6,迭代次数+1;
若f<Maxerror,则流程结束,重新对数据取点离散化。
其中,t为正整数。
步骤S207,对步骤6求出的离散数据生成机器人加工轨迹,如图3所示,为一般方法获得的工业机器人鞋底涂胶轨迹,该轨迹出现很多尖锐的地方;而图4所示,为经过本实施例方法获得的工业机器人鞋底涂胶轨迹,曲线更加平滑,如此,机器人末端不会产生抖动,满足工业上高质量生产的要求。
如图2所示,本实施例还提供了一种工业机器人轨迹生成***,包括:
数据滤波模块,用于获取待生成机器人轨迹的原始数据,对原始数据进行滤波处理后,获得多个数据点;
曲线拟合模块,用于获取各数据点的离散曲率,结合离散曲率和数据点获取拟合曲线;
误差计算模块,用于计算拟合曲线与数据点的误差,并在误差小于预设允差时,根据拟合曲线生成工业机器人轨迹。
本实施例的一种工业机器人轨迹生成***,可执行本发明方法实施例所提供的一种工业机器人轨迹生成方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
本实施例还提供了一种工业机器人轨迹生成装置,,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现上所述方法。
本实施例的一种工业机器人轨迹生成装置,可执行本发明方法实施例所提供的一种工业机器人轨迹生成方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
本实施例还提供了一种存储介质,其中存储有处理器可执行的指令,所述处理器可执行的指令在由处理器执行时用于执行如上所述方法。
本实施例的一种存储介质,可执行本发明方法实施例所提供的一种工业机器人轨迹生成方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种工业机器人轨迹生成方法,其特征在于,包括以下步骤:
获取待生成机器人轨迹的原始数据,对原始数据进行滤波处理后,获得多个数据点;
获取各数据点的离散曲率,结合离散曲率和数据点获取拟合曲线;
计算拟合曲线与数据点的误差,并在误差小于预设允差时,根据拟合曲线生成工业机器人轨迹。
2.根据权利要求1所述的一种工业机器人轨迹生成方法,其特征在于,所述对原始数据进行滤波处理后,获得多个数据点这一步骤,具体包括以下步骤:
依次从原始数据中获取初始数据点,并在检测到初始数据点为噪声点时,剔除该初始数据点;
采用预设方式对初始数据点的坐标进行处理,并获得最终的数据点。
3.根据权利要求2所述的一种工业机器人轨迹生成方法,其特征在于,通过以下方式检测初始数据点是否为噪声点:
获取该初始数据点前后位置相邻的两个初始数据点,获取三个初始数据点依次相连后的角度值;
判断角度值是否小于第一预设角度,并在判定角度值小于第一预设角度时,判定该初始数据点为噪声点。
4.根据权利要求3所述的一种工业机器人轨迹生成方法,其特征在于,所述采用预设方式对初始数据点的坐标进行处理,并获得最终的数据点这一步骤,具体为:
判断角度值是否大于第二预设角度,若是,将该初始数据点的坐标作为最终的数据点;
反之,结合三个初始数据点的坐标计算新的坐标作为最终的数据点;
其中,所述第二预设角度大于第一预设角度。
5.根据权利要求1所述的一种工业机器人轨迹生成方法,其特征在于,所述获取各数据点的离散曲率,结合离散曲率和数据点获取拟合曲线这一步骤,具体包括以下步骤:
A1、获取各数据点的离散曲率,以及计算所有数据点的离散曲率的累加和;
A2、结合离散曲率的累加和和预设的拟合节点数量获取初始平均离散曲率;
A3、结合离散曲率和初始平均离散曲率获取拟合曲线的节点矢量;
A4、结合数据点和节点矢量获取最终的拟合曲线。
6.根据权利要求5所述的一种工业机器人轨迹生成方法,其特征在于,所述步骤A4,具体为:
结合数据点、节点矢量和最小二乘曲线拟合方式获取最终的拟合曲线。
7.根据权利要求5或6所述的一种工业机器人轨迹生成方法,其特征在于,所述计算拟合曲线与数据点的误差,并在误差小于预设允差时,根据拟合曲线生成工业机器人轨迹这一步骤,具体包括以下步骤:
计算拟合曲线与数据点的误差;
若误差小于Maxerror,对拟合曲线拟合上所有的数据点进行离散化,获得离散数据点;
若误差大于Maxerror,返回执行步骤A4,直至误差小于Maxerror;
若误差大于t*Maxerror,重新设置拟合节点数量后,返回执行步骤A1~A4,直至误差小于Maxerror;
根据离散数据点生成机器人轨迹;
其中,所述Maxerror为预设允差,所述t为正整数。
8.一种工业机器人轨迹生成***,其特征在于,包括:
数据滤波模块,用于获取待生成机器人轨迹的原始数据,对原始数据进行滤波处理后,获得多个数据点;
曲线拟合模块,用于获取各数据点的离散曲率,结合离散曲率和数据点获取拟合曲线;
误差计算模块,用于计算拟合曲线与数据点的误差,并在误差小于预设允差时,根据拟合曲线生成工业机器人轨迹。
9.一种工业机器人轨迹生成装置,其特征在于,包括:
至少一个处理器;
至少一个存储器,用于存储至少一个程序;
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现权利要求1-7任一项所述的一种工业机器人轨迹生成方法。
10.一种存储介质,其中存储有处理器可执行的指令,其特征在于,所述处理器可执行的指令在由处理器执行时用于执行如权利要求1-7任一项所述方法。
CN202010031229.7A 2020-01-13 2020-01-13 一种工业机器人轨迹生成方法、***、装置和存储介质 Active CN111055286B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010031229.7A CN111055286B (zh) 2020-01-13 2020-01-13 一种工业机器人轨迹生成方法、***、装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010031229.7A CN111055286B (zh) 2020-01-13 2020-01-13 一种工业机器人轨迹生成方法、***、装置和存储介质

Publications (2)

Publication Number Publication Date
CN111055286A true CN111055286A (zh) 2020-04-24
CN111055286B CN111055286B (zh) 2021-08-03

Family

ID=70307259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010031229.7A Active CN111055286B (zh) 2020-01-13 2020-01-13 一种工业机器人轨迹生成方法、***、装置和存储介质

Country Status (1)

Country Link
CN (1) CN111055286B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112231844A (zh) * 2020-10-30 2021-01-15 中国商用飞机有限责任公司北京民用飞机技术研究中心 零件模型的曲面离散方法、装置、设备及存储介质
CN113341886A (zh) * 2021-05-25 2021-09-03 深圳市汇川技术股份有限公司 平滑进给速度规划方法、设备及计算机可读存储介质
CN113654457A (zh) * 2021-07-22 2021-11-16 太原理工大学 光谱共焦测头波长与位移映射关系标定装置及拟合方法
CN113791578A (zh) * 2021-08-23 2021-12-14 五邑大学 基于数控加工***的轨迹滤波方法、装置和电子设备
CN113847894A (zh) * 2021-09-23 2021-12-28 深圳市人工智能与机器人研究院 一种机器人多定位***坐标统一方法及***
CN116372927A (zh) * 2023-04-06 2023-07-04 深圳市康士达科技有限公司 一种机器人示教的轨迹生成方法、装置、设备和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106826829A (zh) * 2017-02-22 2017-06-13 武汉工程大学 一种可控误差的工业机器人光顺运动轨迹生成方法
CN106959666A (zh) * 2017-03-31 2017-07-18 华南理工大学 一种基于nurbs的空间自由曲线拟合方法
CN107808415A (zh) * 2017-11-17 2018-03-16 中国科学院合肥物质科学研究院 基于机器视觉的鞋底边缘轨迹及涂胶位姿提取方法
CN109454642A (zh) * 2018-12-27 2019-03-12 南京埃克里得视觉技术有限公司 基于三维视觉的机器人涂胶轨迹自动生产方法
WO2019089995A1 (en) * 2016-11-01 2019-05-09 Brachium Labs Llc Vision guided robot path programming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019089995A1 (en) * 2016-11-01 2019-05-09 Brachium Labs Llc Vision guided robot path programming
CN106826829A (zh) * 2017-02-22 2017-06-13 武汉工程大学 一种可控误差的工业机器人光顺运动轨迹生成方法
CN106959666A (zh) * 2017-03-31 2017-07-18 华南理工大学 一种基于nurbs的空间自由曲线拟合方法
CN107808415A (zh) * 2017-11-17 2018-03-16 中国科学院合肥物质科学研究院 基于机器视觉的鞋底边缘轨迹及涂胶位姿提取方法
CN109454642A (zh) * 2018-12-27 2019-03-12 南京埃克里得视觉技术有限公司 基于三维视觉的机器人涂胶轨迹自动生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵德安: "静电喷涂机器人变量喷涂轨迹优化关键技术研究", 《中国博士学位论文全文数据库-信息科技辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112231844A (zh) * 2020-10-30 2021-01-15 中国商用飞机有限责任公司北京民用飞机技术研究中心 零件模型的曲面离散方法、装置、设备及存储介质
CN112231844B (zh) * 2020-10-30 2024-05-28 中国商用飞机有限责任公司北京民用飞机技术研究中心 零件模型的曲面离散方法、装置、设备及存储介质
CN113341886A (zh) * 2021-05-25 2021-09-03 深圳市汇川技术股份有限公司 平滑进给速度规划方法、设备及计算机可读存储介质
CN113654457A (zh) * 2021-07-22 2021-11-16 太原理工大学 光谱共焦测头波长与位移映射关系标定装置及拟合方法
CN113791578A (zh) * 2021-08-23 2021-12-14 五邑大学 基于数控加工***的轨迹滤波方法、装置和电子设备
WO2023024264A1 (zh) * 2021-08-23 2023-03-02 五邑大学 基于数控加工***的轨迹滤波方法、装置和电子设备
CN113847894A (zh) * 2021-09-23 2021-12-28 深圳市人工智能与机器人研究院 一种机器人多定位***坐标统一方法及***
CN113847894B (zh) * 2021-09-23 2024-03-29 深圳市人工智能与机器人研究院 一种机器人多定位***坐标统一方法及***
CN116372927A (zh) * 2023-04-06 2023-07-04 深圳市康士达科技有限公司 一种机器人示教的轨迹生成方法、装置、设备和介质
CN116372927B (zh) * 2023-04-06 2024-03-22 深圳市康士达科技有限公司 一种机器人示教的轨迹生成方法、装置、设备和介质

Also Published As

Publication number Publication date
CN111055286B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN111055286B (zh) 一种工业机器人轨迹生成方法、***、装置和存储介质
CN108656117B (zh) 一种多约束条件下最优时间的机械臂空间轨迹优化方法
TWI776113B (zh) 物體位姿估計方法及裝置、電腦可讀儲存介質
CN111897349B (zh) 一种基于双目视觉的水下机器人自主避障方法
CN108972554B (zh) 一种基于拟合曲线曲率特征的复杂曲面机器人路径点提取方法
CN114063570B (zh) 机器人喷涂控制方法、装置、电子设备及存储介质
CN111474946A (zh) 边沿检测方法及装置、机器人沿边清扫的控制方法及装置
CN111240275B (zh) 基于对数几率函数在运动和误差限制下的进给率规划方法
CN111352430B (zh) 路径规划方法、装置及机器人
CN116117813A (zh) 机械臂控制方法、机械臂、机器人及存储介质
CN115457510A (zh) 一种基于变分贝叶斯的自适应协同目标跟踪方法
CN114115131B (zh) 一种应用于五轴数控机床的时间样条曲线拟合与插补方法
JPWO2020179798A1 (ja) 加工プログラム変換装置、数値制御装置、加工プログラム変換方法および機械学習装置
CN114186189A (zh) 坐标转换矩阵的计算方法、装置、设备及可读存储介质
WO2004090782A1 (en) Accurate linear parameter estimation with noisy inputs
CN111283683A (zh) 一种机器人视觉特征规划轨迹的伺服跟踪加速收敛方法
CN113932799A (zh) 激光地图更新方法、***、电子设备、介质及程序产品
CN114488941A (zh) 微小线段的轨迹光顺方法、介质及机床数控设备
CN111546337B (zh) 基于自由曲面的工业机器人全覆盖路径生成方法及***
CN110275895B (zh) 一种缺失交通数据的填充设备、装置及方法
CN113927606B (zh) 一种机器人3d视觉抓取方法及***
CN113204892B (zh) 质心轨迹生成方法、装置、计算机可读存储介质及机器人
CN107967691B (zh) 一种视觉里程计算方法和装置
CN114186190A (zh) 坐标转换矩阵的计算方法、装置、设备及可读存储介质
CN111767981B (zh) Mish激活函数的近似计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220520

Address after: 510230 room J, 16 / F, No. 308, Binjiang Middle Road, Haizhu District, Guangzhou, Guangdong

Patentee after: Zhongzheng Data Technology Co.,Ltd.

Address before: 511356 No. 97, Tianyuan Road, Yonghe Development Zone, Guangzhou, Guangdong

Patentee before: GUANGZHOU START TO SAIL INDUSTRIAL ROBOT Co.