CN111054397B - 一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法 - Google Patents

一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法 Download PDF

Info

Publication number
CN111054397B
CN111054397B CN201911167836.XA CN201911167836A CN111054397B CN 111054397 B CN111054397 B CN 111054397B CN 201911167836 A CN201911167836 A CN 201911167836A CN 111054397 B CN111054397 B CN 111054397B
Authority
CN
China
Prior art keywords
oxygen storage
storage material
mesoporous nano
grinding
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911167836.XA
Other languages
English (en)
Other versions
CN111054397A (zh
Inventor
杜君臣
罗永明
张黎明
杨冬霞
常仕英
冯丰
贺小昆
赵云昆
夏文正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Sino Platinum Metals Catalyst Co ltd
Original Assignee
Kunming Sino Platinum Metals Catalyst Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Sino Platinum Metals Catalyst Co ltd filed Critical Kunming Sino Platinum Metals Catalyst Co ltd
Priority to CN201911167836.XA priority Critical patent/CN111054397B/zh
Publication of CN111054397A publication Critical patent/CN111054397A/zh
Application granted granted Critical
Publication of CN111054397B publication Critical patent/CN111054397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法,该方法将Ln(NO3)3·nH2O置于研钵中捣碎、研细;加入表面活性剂溶液研磨至成凝胶状;转移至坩埚或烧杯在马弗炉中进行焙烧,得到介孔纳米态Ln2O2SO4氧储存材料。本发明制备时间短,合成温度低,工艺简单,且节约能源,对环境无污染。制得的介孔纳米态Ln2O2SO4氧储存材料比表面积大、氧化还原温度低,在机动车尾气净化催化剂中具有较大的应用潜力。

Description

一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法
技术领域
本发明属于催化材料制备技术领域,具体涉及一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法。
背景技术
三效催化剂通常工作于围绕理论空燃比频繁波动的动态稀富燃切换气氛中。作为三效催化剂关键组分的氧储存材料,利用自身在稀燃条件下储存氧,富燃条件下释放氧的特性来调节催化剂工作窗口,适应能力,帮助实现CO、HC、NOx的高效转化。出于氧储存容量、储放氧速率、耐热稳定性、化学稳定性的综合考量,铈锆复合氧化物是当前主要的氧储存材料。但随着近年来汽车燃油经济性需求的持续增加,汽车发动机运行于断油工况的持续时间增长,三效催化剂需要更高氧储存容量的材料来调节催化剂的工作窗口。
文献Chem.Comm.(2004)662-663首次报道了基于S氧化还原的Ln2O2SO4材料,发现其具有8倍于CeO2的氧储存容量,且具有良好的耐热稳定性,但其工作温度大于800℃。主要原因是采用Ln2(SO4)3直接热分解法制备的块体Ln2O2SO4材料,具有大的孔径,小的比表面积,低的表面活化能。文献J.Mater.Chem.16(2006)3084-3090报道了采用表面活性剂辅助法合成微孔、具有较大比表面积Pr2O2SO4材料的实验过程。该过程先将Pr(NO3)3·6H2O,C12H25OSO3Na,28%氨水,水在40℃混合搅拌1h,然后在60℃混合搅拌老化10h,再降温至室温调节pH至11形成沉淀,最后沉淀被离心、洗涤、干燥、焙烧。整个过程,控制点多,工艺复杂,制备周期长,能耗大。
发明内容
本发明的发明目的是针对现有技术的不足,提供一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法。
本发明提供的一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法,所述方法包括如下步骤:将Ln(NO3)3·nH2O置于研钵中捣碎、研细;加入表面活性剂溶液研磨至成凝胶状;转移至坩埚或烧杯在马弗炉中进行焙烧,得到介孔纳米态Ln2O2SO4氧储存材料。
所述Ln2O2SO4氧储存材料是指La2O2SO4、Pr2O2SO4、Ce2O2SO4、(La0.8Pr0.2)2O2SO4、(La0.8Ce0.2)2O2SO4、(Pr0.8Ce0.2)2O2SO4其中的一种。
所述的表面活性剂溶液是十二烷基硫酸铵溶液(月桂醇硫酸酯铵盐溶液;月桂基硫酸铵;月桂酸硫酸脂铵)。
所述马弗炉焙烧是250~700℃恒温焙烧,焙烧时间为20~60min。
本发明以十二烷基硫酸铵为络合剂、模板剂、还原剂和S源。在原材料加入时,减少了原材料加入种类,节约了采购和管理成本;在研磨过程中,Ln(NO3)3·nH2O与十二烷基硫酸铵发生络合反应,生成聚合物凝胶,保证了化学计量比的准确性和产物的均匀性;在凝胶生成时,十二烷基以模板剂镶嵌于前驱体层状结构中,促进了后续产物介孔结构的形成;在马弗炉焙烧过程,利用前驱体凝胶的氧化还原放热反应,释放出大量气体,抑制了颗粒之间的团聚,增大了比表面积和孔隙率,保证了纳米结构的生成。
本发明制备工艺简单、可操作性强、制造成本低、制备周期短、节约能源、对环境无污染,制得的Ln2O2SO4材料呈现介孔纳米结构,且比表面积大、氧化还原温度低,在机动车尾气净化催化剂中具有较大的应用潜力。
附图说明
图1为本发明实施例1~6制备的介孔纳米态Ln2O2SO4表征谱图。
图2为本发明实施例4的典型制备过程示意图。
具体实施方式
下面结合实施例对本发明作进一步的说明。
本发明实施例中所采用的化学药品均为分析纯。
本发明实施例采用日本理学D/MX2000型全自动X射线衍射仪,在管电压36kV,管电流30mA,辐射源Cu Kα为
Figure BDA0002287931480000031
扫描范围为2θ=10~80°,步长0.02°,扫描速度10(°)·min-1对样品进行XRD表征。所得实验数据可以采用MID Jade 6.0进行物相分析和晶粒尺寸计算。
本发明实施例采用Quantachrome公司NOVA2000 e型物理吸附仪进行低温N2吸附表征。样品测试前在300℃的真空条件下脱气处理30min,然后在-196℃下对测试样品进行测试,采用BET和DFT计算样品的比表面积和孔径分布。
本发明实施例采用Quantachrome公司CHEMBET 3000型化学吸附仪进行H2-TPR、O2-TPO分析,来确定样品的氧化还原温度。具体实验流程为:将50mg催化剂装于U形管中,通入合成空气(流速75ml/min),以10℃/min速率升温至600℃并维持1h进行预处理。切换成He气(流速75ml/min)冷却至室温并吹扫1h,用10.2%H2/Ar混合气(流速75ml/min) 进行程序升温还原,以10℃/min速率升温至950℃,用TCD检测器检测H2消耗。再切换成 He气(流速75ml/min)冷却至室温并吹扫1h,用合成空气(流速75ml/min)进行程序升温氧化,以10℃/min速率升温至950℃,用TCD检测器检测O2消耗。最后,取程序升温过程 TCD最大峰值点为还原或氧化温度点。
实施例1
称取10.67g La(NO3)3·6H2O置于玛瑙研钵中捣碎、研细,加入7.33g十二烷基硫酸铵水溶液(含水30%),研磨至溶液成凝胶状,转移至坩埚中700℃恒温焙烧60min得到蓬松状La2O2SO4。其X射线衍射分析谱图如图1(实施例1)所示。经XRD、低温N2吸附、TPR、 TPO测试,其晶粒尺寸为10.3nm,比表面积为14.3m2/g,孔径分布为7~35nm,还原温度为 843℃,氧化温度为372℃。
实施例2
称取8.54g La(NO3)3·6H2O和2.12g Ce(NO3)3·6H2O置于玛瑙研钵中捣碎、研细,加入 7.33g十二烷基硫酸铵水溶液(含水30%),研磨至溶液成凝胶状,转移至坩埚中700℃恒温焙烧30min得到蓬松状(La0.8Ce0.2)2O2SO4。其X射线衍射分析谱图如图1(实施例2)所示。经XRD、低温N2吸附、TPR、TPO测试,其晶粒尺寸为10.1nm,比表面积为15.2m2/g, 孔径分布为7~35nm,还原温度为801℃,氧化温度为370℃。
实施例3
称取8.54g La(NO3)3·6H2O和2.12g Pr(NO3)3·6H2O置于玛瑙研钵中捣碎、研细,加入7.33g 十二烷基硫酸铵水溶液(含水30%),研磨至溶液成凝胶状,转移至坩埚中550℃恒温焙烧20min得到蓬松状(La0.8Pr0.2)2O2SO4。其X射线衍射分析谱图如图1(实施例3)所示。经 XRD、低温N2吸附、TPR、TPO测试,其晶粒尺寸为8.1nm,比表面积为30.5m2/g,孔径分布为5~30nm,还原温度为753℃,氧化温度为377℃。
实施例4
称取8.49g Pr(NO3)3·6H2O和2.12g Ce(NO3)3·6H2O置于玛瑙研钵中捣碎、研细,加入7.33g 十二烷基硫酸铵水溶液(含水30%),研磨至溶液成凝胶状,转移至烧杯中400℃恒温焙烧 20min得到蓬松状(Pr0.8Ce0.2)2O2SO4。其X射线衍射分析谱图如图1(实施例4)所示。经 XRD、低温N2吸附、TPR、TPO测试,其晶粒尺寸为5.9nm,比表面积为32.9m2/g,孔径分布为3~25nm,还原温度为694℃,氧化温度为342℃。
实施例5
称取10.62g Pr(NO3)3·6H2O置于玛瑙研钵中捣碎、研细,加入7.33g十二烷基硫酸铵水溶液(含水30%),研磨至溶液成凝胶状,转移至烧杯中250℃恒温焙烧60min得到蓬松状Pr2O2SO4。其X射线衍射分析谱图如图1(实施例5)所示。经XRD、低温N2吸附、TPR、 TPO测试,其晶粒尺寸为5.0nm,比表面积为18.4m2/g,孔径分布为3~15nm,还原温度为 642℃,氧化温度为452℃。
实施例6
称取10.63g Ce(NO3)3·6H2O置于玛瑙研钵中捣碎、研细,加入7.33g十二烷基硫酸铵水溶液(含水30%),研磨至溶液成凝胶状,转移至烧杯中250℃恒温焙烧20min得到蓬松状Ce2O2SO4。其X射线衍射分析谱图如图1(实施例5)所示。经XRD、低温N2吸附、TPR、TPO测试,其晶粒尺寸为5.2nm,比表面积为18.1m2/g,孔径分布为3~15nm,还原温度为628℃,氧化温度为301℃。

Claims (5)

1.一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法,其特征在于,包括以下步骤:
(1)将Ln(NO3)3·nH2O置于研钵中捣碎、研细;
(2)加入作为表面活性剂溶液的十二烷基硫酸铵溶液研磨至成凝胶状;
(3)转移凝胶状前驱物至坩埚或烧杯,在马弗炉中进行焙烧,得到介孔纳米态Ln2O2SO4氧储存材料。
2.根据权利要求1所述的快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法,其特征在于,所述Ln2O2SO4氧储存材料是指La2O2SO4、Pr2O2SO4、Ce2O2SO4、(La0.8Pr0.2)2O2SO4、(La0.8Ce0.2)2O2SO4、(Pr0.8Ce0.2)2O2SO4其中的一种。
3.根据权利要求1所述的快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法,其特征在于,所述步骤(3)中的马弗炉焙烧是250~700 °C 恒温焙烧,焙烧时间为20~60min。
4.根据权利要求1至3任一项所述的快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法,其特征在于,所述步骤十二烷基硫酸铵溶液含水30%。
5.根据权利要求4所述的快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法,其特征在于,按照质量比1:0.25 Pr(NO3)3·6H2O和Ce(NO3)3·6H2O置于玛瑙研钵中捣碎、研细混合,再按照所加入的Pr(NO3)3·6H2O和Ce(NO3)3·6H2O的质量之和的1:0.69质量比加入十二烷基硫酸铵水溶液,所述马弗炉焙烧是400 °C 恒温焙烧,焙烧时间为20min。
CN201911167836.XA 2019-11-25 2019-11-25 一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法 Active CN111054397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911167836.XA CN111054397B (zh) 2019-11-25 2019-11-25 一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911167836.XA CN111054397B (zh) 2019-11-25 2019-11-25 一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法

Publications (2)

Publication Number Publication Date
CN111054397A CN111054397A (zh) 2020-04-24
CN111054397B true CN111054397B (zh) 2022-08-09

Family

ID=70298227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911167836.XA Active CN111054397B (zh) 2019-11-25 2019-11-25 一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法

Country Status (1)

Country Link
CN (1) CN111054397B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118885B2 (ja) * 2007-05-21 2013-01-16 国立大学法人 熊本大学 酸素吸放出材及びそれを含む排ガス浄化用触媒
JP5118886B2 (ja) * 2007-05-21 2013-01-16 国立大学法人 熊本大学 酸素吸放出材及びそれを含む排ガス浄化用触媒
CN101478047B (zh) * 2009-01-23 2010-12-01 北京工业大学 一种中温固体氧化物燃料电池阴极的制备方法
US8628744B2 (en) * 2009-11-09 2014-01-14 Tufts University Sulfur-tolerant water-gas shift catalysts

Also Published As

Publication number Publication date
CN111054397A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
Zhang et al. K2CO3 promoted novel Li4SiO4-based sorbents from sepiolite with high CO2 capture capacity under different CO2 partial pressures
Wang et al. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation
AU2020103244A4 (en) Preparation of CuO-LaCoO3 mesoporous supported catalyst
Da et al. Catalytic oxidation of diesel soot particulates over Pt substituted LaMn1-xPtxO3 perovskite oxides
CN112058270B (zh) 一种片状La0.8Sr0.2CoO3钙钛矿型催化剂的原位合成方法及其应用
Zhao et al. Multi-phase coexisting metal oxide derived by MOFs for the CO-SCR reaction at low temperature and in situ DRIFTS study on reaction mechanism
CN110479280B (zh) 一种CO低温选择性甲烷化Ni-ZrO2/NiAl2O4催化剂及其制备方法和应用
Xing et al. Characteristic of macroporous CeO2-ZrO2 oxygen carrier for chemical-looping steam methane reforming
CN107321351B (zh) 一种甲烷/二氧化碳重整反应的高效催化剂制备方法
CN106268787A (zh) 一种钐掺杂MnOx低温SCR催化剂及其制备方法和应用
CN113941325B (zh) 一种特定价态的贵金属催化剂及其制备方法和应用
CN110975871A (zh) 一种介孔碳材料负载的钴基催化剂及其制备方法
CN112076757A (zh) 一种醋酸刻蚀制备多孔LaCoO3钙钛矿催化剂的方法
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
Hu et al. Synthesis, characterization, and application of mesoporous alumina prepared from pseudo-boehmite as precursor
CN114272927A (zh) 二氧化锆改性层状多孔蛭石负载镍基催化剂的制备方法
Mao et al. The effect of the structure and oxygen defects on the simultaneous removal of NO x and soot by La 2− x Ba x CuO 4
CN111054397B (zh) 一种快速合成介孔纳米态Ln2O2SO4氧储存材料的制备方法
Hu et al. Cobalt silicate: critical synthetic conditions affect its electrochemical properties for energy storage and conversion
CN114471539B (zh) 一种高性能铂钛单原子催化剂及其制备方法和应用
JP4254444B2 (ja) 内燃機関用排ガス浄化触媒およびその製造方法
CN108470916A (zh) 一种以三维多孔碳材料为原料的燃料电池氧还原催化剂及制备方法
CN113198483A (zh) 一种co氧化用过渡金属复合二氧化铈纳米催化剂及其制备方法和应用
CN110694622A (zh) 一种负载贵金属的铈锆复合氧化物及其制备方法和应用
JPH11165070A (ja) 水素ガス中のco選択酸化触媒およびその製造方法ならびに水素ガス中のco除去方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant