CN111051560A - 生产具有钙钛矿状结构的吸光材料的膜的方法 - Google Patents

生产具有钙钛矿状结构的吸光材料的膜的方法 Download PDF

Info

Publication number
CN111051560A
CN111051560A CN201880051659.6A CN201880051659A CN111051560A CN 111051560 A CN111051560 A CN 111051560A CN 201880051659 A CN201880051659 A CN 201880051659A CN 111051560 A CN111051560 A CN 111051560A
Authority
CN
China
Prior art keywords
perovskite
component
layer
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880051659.6A
Other languages
English (en)
Other versions
CN111051560B (zh
Inventor
A·B·塔拉瑟夫
N·A·贝利希
E·A·古地林
A·A·彼得洛夫
A·I·格里什科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krasnoyarsk Hydropower Plant JSC
Original Assignee
Krasnoyarsk Hydropower Plant JSC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krasnoyarsk Hydropower Plant JSC filed Critical Krasnoyarsk Hydropower Plant JSC
Publication of CN111051560A publication Critical patent/CN111051560A/zh
Application granted granted Critical
Publication of CN111051560B publication Critical patent/CN111051560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/811Controlling the atmosphere during processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种生产具有钙钛矿状结构的有机‑无机吸光材料的方法,该方法可用于钙钛矿太阳能电池的制造中。具有式АСВ3的钙钛矿状结构的吸光材料的生产方法包括将具有指定反应化学计量的厚度的试剂AB的层涂布到试剂C的层上,然后将该多层置于包含试剂В2的液体或气体介质中,其中组分А可以是CH3NH3+、(NH2)2CH+、C(NH2)3+、Cs+或其混合物,组分В可以是Cl、Br、I或其混合物,且组分C可以是金属Sn、Pb或Bi、或它们的合金、氧化物或盐。通过使用要求保护的发明可以实现的技术结果是一种简单且快速的生产层的方法,由于形成中间相АВ‑В2的膜该层是均质的,该层为具有改善形态的具有钙钛矿状结构的吸光有机‑无机材料,由于在大面积表面上的快速结晶,这将使得生产的材料用于大面积太阳能电池中成为可能。

Description

生产具有钙钛矿状结构的吸光材料的膜的方法
发明领域
本发明涉及生产具有钙钛矿状结构的有机-无机吸光材料的方法,该材料可用于例如钙钛矿太阳能电池的制造中。
背景技术
现有技术公开了获得具有钙钛矿状结构的吸光材料的方法。
在本申请的框架内,这些结构直接指钙钛矿结构以及具有各种结构变化的结构(该术语详细描述于信息源Attfield J.P.,Lightfoot P.,Morris R.E.钙钛矿//Dalt.Trans.2015年,第44卷,第23期,第10541-10542页)。
特别地,文章[Burschka J.等人,作为通往高性能钙钛矿敏感型太阳能电池途径的顺序沉积(Sequential deposition as a route to high-performance perovskite-sensitized solar cells)//自然(Nature).–2013年.–Т.499.–第7458期.–С.316.]描述了一种分两步制造钙钛矿CH3NH3PbI3薄膜的方法,通过围绕垂直于衬底平面的轴线高速旋转PbI2溶液以所需厚度的层的形式将其沉积到衬底上(旋涂法),然后将所得的PbI2薄层浸入MAI的异丙醇溶液中。
文章[Saliba M.等人,铷阳离子掺入钙钛矿太阳能电池提高了光伏性能(Incorporation of rubidium cations into perovskite solar cells improvesphotovoltaic performance)//科学(Science)(80-.),2016年,第354卷,第6309期,第206–209页]描述了一步法制造钙钛矿CH3NH3PbI3薄层,通过围绕垂直于衬底平面的轴高速旋转多种有机溶剂混合物中的钙钛矿溶液以薄层形式沉积其在衬底上。
上述方法的缺点是不可能在大面积衬底上从溶液获得钙钛矿或初始组分(PbI2)的层,并且相应地不可能获得大面积钙钛矿太阳能电池。
专利CN104250723,2014年9月9日,郑直、程佳美、雷岩、贾会敏、何伟伟、贺盈盈,“一种基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PBI3薄膜材料的化学方法”描述了一种通过将容易以可控厚度大面积均匀沉积的金属铅膜浸入碘和甲基碘化铵的有机溶剂(例如乙醇)溶液中来制备钙钛矿CH3NH3PbI3的方法。通过磁控溅射将均匀层形式的金属铅沉积在电子导电层的无孔表面上。之后,使其与包含分子碘和甲基碘化铵的有机溶剂接触。结果,连续的无孔铅层转变为连续无孔钙钛矿层。
专利CN105369232,2015年2月16日,郑直、贺迎迎、雷岩、程佳美、贾会敏、何伟伟,“基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PbBr3薄膜材料的化学方法”描述了一种通过将容易以可控厚度大面积均匀沉积的金属铅膜浸入甲基溴化铵的有机溶剂(例如异丙醇)溶液中来制备钙钛矿CH3NH3PbBr3的方法。
上述方法的缺点是需要使用溶剂和对所得钙钛矿层的形态的较差控制,这复杂化并减慢了有机-无机钙钛矿制造的技术过程,从而导致生产、健康和环境风险。
文章Mater.Horiz.,2017,4,625-632,Petrov Andrey A.,Belich Nikolai A.,Grishko Aleksei Y.,Stepanov Nikita M.,Dorofeev Sergey G.,Maksimov Eugene G.,Shevelkov Andrei V.,Zakeeruddin Shaik M.,Michael Graetzel,Tarasov Alexey B.,Goodilin Eugene A.,“通过室温反应性聚碘化物熔体形成杂化钙钛矿的新策略(A newformation strategy of hybrid perovskites via room temperature reactivepolyiodide melts)”描述了一种由金属铅层与施加到其的一般组成为MAI3+x的试剂的反应而无需溶剂的钙钛矿层的制备方法。
已知方法的缺点是难以在大的衬底面积上实现粘性聚碘化物(聚卤化物)试剂的均匀分布,并且在相互作用中缺乏控制和化学计量的偏差,这尤其可能导致形成碘化铅亚层。沉积在衬底上的试剂是液体熔体,这导致在最终产品的成膜反应过程中控制前体的化学计量比时存在一定的复杂性。结果,所得膜的质量(特别是厚度均匀性和相组成)降低,因此,负面影响基于制造的膜的最终产品(例如太阳能电池)的效率。
发明内容
要求保护的发明解决的技术问题是创造一种技术方法,无需使用溶剂即可在大面积衬底上生产具有钙钛矿状结构的吸光有机-无机材料。
通过使用要求保护的发明实现的技术结果是提供获得具有高均匀度的无通孔的单相膜的可能性,这将允许该材料能用于大面积太阳能电池中。该方法还具有可制造性和易于实施的特征,这使其更易于用于工业生产。所要求保护的方法在不使用溶剂的情况下进行,由于消除了其与所生产的钙钛矿成分之间不希望的相互作用的可能性,因此有助于提高最终产品的质量,并且还潜在地实现了更环境友好的生产。
通过以下方法解决问题:在该方法中,根据如下方式的技术方案获得由具有钙钛矿状结构的、具有结构式ACB3的吸光材料制成的膜:在衬底上依次沉积试剂C的层和试剂AB的层,然后将具有沉积多层的衬底浸入包含试剂B2的液体或气体介质中一段必要且充分的时间,以进行反应С+АВ+B2=АСВ3+Х,其中组分A表示CH3NH3 +、(NH2)2CH+、C(NH2)3 +、Cs+或它们的混合物,组分B表示Cl-、Br-、I-或它们的混合物,组分C表示金属Sn、Pb、Bi、它们的熔体、氧化物或盐,组分X表示组分C以氧化物或盐形式使用时的分解产物。所述液体介质的特征在于在其中试剂AB的不溶性和B2的溶解性。试剂C和AB以化学计量的量在每单位面积上涂布,以提供具有给定厚度的膜。通过真空溅射、电化学沉积、溶液的气溶胶喷涂或旋涂来沉积组分C和AB。在反应完成后,通过在溶剂中洗涤、将溶剂滴在表面上、在高温下退火或在减压下蒸发来除去过量的组分B。在使用氧化物或盐作为组分C的情况下,在反应C+AB+B2=ACB3+X完成后,还应确保除去组分X。没有载气的干燥的空气、氩气、或含氮的碘蒸气(卤素或它们的混合物)或碘蒸气(卤素或它们的混合物)可以用作气相;CCl4、甲苯、***和其他含碘的有机溶剂(卤素或它们的混合物)可以用作液相。
除了类似物外,在要求保护的发明的框架内,可以通过在衬底上由沉积参数严格限定的比例预先控制前体膜(AB和C)的沉积来精确地控制由吸光材料制成的膜的形成的反应的化学计量。在用含有组分B2的溶液或气体进一步处理含有组分AB和C的双层膜之后,在其表面上形成由反应混合物AB-B2制成的均匀膜,该混合物的量由先前沉积的组分AB严格限定。此外,该反应混合物与组分C的层反应以形成最终产物,这使得可以在大面积上实现膜的高均质性。
当具有试剂C的层和化学计量的试剂AB沉积在其上的衬底浸入含有试剂B2的液体或气体介质中时,试剂AB与试剂B2反应并形成组合物AB-nB2(n≥1),其与试剂C反应。结果,通过以下中间反应形成钙钛矿ACB3:AB-nB2+C=ACB3+[(n-3)/2]B2
在要求保护的方法的框架内,通过控制吸光材料成膜反应的化学计量来实现技术结果的实现,即大面积的吸光材料的单相高均质膜的生产。影响获得技术成果的主要参数是沉积在衬底上的膜C和AB的厚度和均匀性,以及所得双层膜与含有组分B2的溶液或气体进一步相互作用的条件。为了获得最均一的ACB3单相膜,建议均匀涂上组分AB和C的厚膜,其厚度应对应于单位面积上组分AB和C的量的等摩尔比。在组分比例明显不同的情况下,可能在最终产品的膜中形成附加相。
附图说明
通过以下附图和图片来解释所要求保护的发明,特别示出所要求保护的方法的实施方式对于特定组合物的结果。
图1示出了要求保护的方法的方案,该方法用于合成具有组成ACB3的吸光材料的膜。
图2示出了根据要求保护的方法获得的吸光有机-无机钙钛矿CH3NH3PbI3的膜的显微照片。
图上的位置表示如下:
1–衬底
2–试剂C的沉积
3–试剂AB的沉积
4–含B2的气态介质或溶液。
发明详述
可以使用已知的手段和方法来实施要求保护的发明,包括在工业生产条件下。
任何导电或非导电材料或其组合都可用作衬底。衬底材料的面积和选择可以受到吸光层形成的其他特定技术步骤的要求的限制,但是可能是任意的。基于衬底的面积和膜的特定厚度,确定所需的试剂C和AB的量。为了实施该方法,通过已知方法将试剂C沉积在选择的衬底上。最佳方法是使用金属铅、锡或铋作为C,例如通过真空沉积或电化学沉积来沉积金属铅、锡或铋。在使用组分C的氧化物或盐的情况下,除了上述方法之外,还可以使用其他形成膜的方法,例如旋涂、将溶液喷涂到衬底上、喷涂热解、化学气相沉积(CVD)等。通过诸如溅射(包括真空沉积)、旋涂、将溶液喷涂到衬底上的方法,将组分AB的层沉积到C的层上。因此,形成具有两个顺序沉积的层C和AB的双层膜。为了进行由具有钙钛矿状结构的吸光材料制成的膜的形成反应,将获得的具有沉积多层的衬底浸入包含B2的液体或气体介质中。不含载气的干燥空气、氩气或含氮的碘蒸气(卤素或它们的混合物)或碘蒸气(卤素或它们的混合物)可以用作气相;CCl4、甲苯、***和其他含碘的有机溶剂(卤素或它们的混合物)可以用作液相。实验结果表明,进行所述反应的最佳特征是通过碘蒸气与任何载气或不存在载气以及碘的甲苯和CCl4的溶液来实现。推荐的反应温度是0-150℃。
对于每种特定情况,该过程的持续时间由化学反应的速率决定直至完成。可以通过X射线相分析等来控制该过程的完成。在反应结束时,将衬底上的所得膜从包含具有组分B2的介质的室中取出。通过电子显微镜检查所得膜的质量,所述电子显微镜用于评估参数,例如膜的连续性(无通孔)和微晶的平均尺寸。确定通过所述方法获得的吸光化合物CH3NH3PbI3的膜具有均匀的结构,如图2所示,其特征在于没有通孔并且平均结晶尺寸为约800nm。
实施例
作为特定实施方式的示例,提供了关于所要求保护的方法的实施方式以及使用各种组分作为试剂的吸光化合物CH3NH3PbI3的膜的制造的信息。
实施例1:
通过真空热蒸发将60nm厚的铅层沉积在衬底上,该衬底由沉积在FTO(氟化氧化锡)或ITO(掺杂铟的氧化锡)的导电衬底上的TiO2阻挡层组成。然后通过真空热蒸发将MAI层沉积到铅层上,其量对应于每单位衬底面积的金属铅和MAI的量的等摩尔比。此后,将具有沉积多层的衬底浸入氩气中的饱和碘蒸气中,并在40℃下保持10至30分钟。结果,在衬底上形成钙钛矿状结构MAPbI3层。通过扫描电子显微镜(图2)和X射线相分析检查膜的形态和相组成。
实施例2:
通过真空热蒸发将250nm厚的铅层沉积在衬底上,该衬底由沉积在FTO(氟化氧化锡)或ITO(掺杂铟的氧化锡)的导电衬底上的TiO2阻挡层组成。然后通过真空热蒸发将MAI层沉积到铅层上,其量对应于每单位衬底面积的金属铅和MAI的量的等摩尔比。之后,将具有沉积多层的衬底浸入I2含量为10mg/ml的碘的CCl4溶液中,并在室温下保持90秒。结果,在衬底上形成钙钛矿状结构MAPbI3层。通过扫描电子显微镜和X射线相分析检查膜的形态和相组成。
实施例3:
通过真空热蒸发将250nm厚的铅层沉积在衬底上,该衬底由沉积在FTO(氟化氧化锡)或ITO(掺杂铟的氧化锡)的导电衬底上的TiO2阻挡层组成。然后通过真空热蒸发将由摩尔比为1:1的MAI和FAI的混合物组成的层沉积到铅层上,其量对应于每单位衬底面积的金属铅和MAI的量的2:1的摩尔比。之后,将具有沉积多层的衬底浸入I2含量为10mg/ml的碘的CCl4溶液中,并在室温下保持90秒。结果,在衬底上形成钙钛矿状结构MA0.5FA0.5PbI3层。通过扫描电子显微镜和X射线相分析检查膜的形态和相组成。
下面给出了使用各种化合物作为试剂的方法的实施方式的实例。
表1.
Figure BDA0002380857510000051
Figure BDA0002380857510000061
在该方法的实施方式的上述实施例(表1)中,通过确保可以制造大面积的相应膜的方法,获得了具有钙钛矿状结构的吸光材料ACB3的高度均质的膜。

Claims (6)

1.合成由结构式为ACB3、具有钙钛矿状结构的吸光材料制成的膜的方法,其特征在于,依次沉积试剂C的层和试剂AB的层,然后将具有沉积多层的衬底放置在包含试剂B2的液体或气体介质中一段必要且充分的时间进行反应从而完成(С+АВ+B2=АСВ3+Х),其中组分A表示CH3NH3 +、(NH2)2CH+、C(NH2)3 +、Cs+或它们的混合物,组分B表示Cl-、Br-、I-或它们的混合物,组分C表示金属Sn、Pb、Bi、它们的熔体、氧化物或盐,组分X表示组分C以氧化物或盐形式使用时的分解产物。
2.如权利要求1所述的方法,其特征在于,所述液体介质的特征在于在其中试剂AB的不溶性和B2的溶解性。
3.如权利要求1所述的方法,其特征在于,所述试剂C和AB以化学计量的量在每单位面积上涂布,以提供具有给定厚度的膜。
4.如权利要求1所述的方法,其特征在于,所述试剂C和AB通过沉积(真空沉积)、旋转衬底或喷涂溶液到衬底上来涂布。
5.如权利要求1所述的方法,其特征在于,在所述氧化物或盐用于反应С+АВ+B2=АСВ3+Х中的情况下,除去组分X。
6.如权利要求1所述的方法,其特征在于,在反应完成后,通过在溶剂中洗涤、将溶剂滴在表面上、在高温下退火或在减压下蒸发来除去过量的组分B。
CN201880051659.6A 2017-08-10 2018-08-06 生产具有钙钛矿状结构的吸光材料的膜的方法 Active CN111051560B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2017128559 2017-08-10
RU2017128559A RU2675610C1 (ru) 2017-08-10 2017-08-10 Способ получения пленки светопоглощающего материала с перовскитоподобной структурой
PCT/RU2018/050093 WO2019031991A1 (ru) 2017-08-10 2018-08-06 Способ получения пленки светопоглощающего материала с перовскитоподобной структурой

Publications (2)

Publication Number Publication Date
CN111051560A true CN111051560A (zh) 2020-04-21
CN111051560B CN111051560B (zh) 2022-04-22

Family

ID=64051653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880051659.6A Active CN111051560B (zh) 2017-08-10 2018-08-06 生产具有钙钛矿状结构的吸光材料的膜的方法

Country Status (10)

Country Link
US (1) US11081292B2 (zh)
EP (1) EP3666921B1 (zh)
JP (1) JP7161535B2 (zh)
KR (1) KR102306250B1 (zh)
CN (1) CN111051560B (zh)
AU (1) AU2018312837B2 (zh)
CA (1) CA3072159C (zh)
ES (1) ES2906881T3 (zh)
RU (1) RU2675610C1 (zh)
WO (1) WO2019031991A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685296C1 (ru) * 2017-12-25 2019-04-17 АО "Красноярская ГЭС" Способ получения пленки светопоглощающего материала с перовскитоподобной структурой
RU2708365C1 (ru) * 2018-12-27 2019-12-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения тонкопленочных структур галогенидных полупроводников (варианты)
RU2714273C1 (ru) * 2018-12-29 2020-02-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ формирования двухслойной светопоглощающей электропроводящей структуры
RU2712151C1 (ru) 2019-06-19 2020-01-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ получения полупроводниковой пленки на основе органо-неорганических комплексных галогенидов с перовскитоподобной структурой
CN111081880B (zh) * 2019-11-22 2021-10-29 武汉理工大学 一种用于钙钛矿气相生长的中间相及其制备方法与应用
CN110993804B (zh) * 2019-12-16 2023-02-28 合肥工业大学 一种无铅稳定甲胺锡碘薄膜的制备方法及基于其的光伏器件
CN116745921A (zh) * 2021-11-22 2023-09-12 宁德时代新能源科技股份有限公司 一种钙钛矿薄膜的制备方法及相关的钙钛矿薄膜和太阳能电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250723A (zh) * 2014-09-09 2014-12-31 许昌学院 一种基于铅单质薄膜原位大面积控制合成钙钛矿型ch3nh3pbi3薄膜材料的化学方法
CN106611819A (zh) * 2017-01-10 2017-05-03 太原理工大学 太阳能电池用钙钛矿薄膜的微纳结构界面诱导生长方法
CN106676631A (zh) * 2016-11-28 2017-05-17 昆明理工大学 一种制备abx3钙钛矿单晶薄膜的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2347299C1 (ru) * 2007-07-28 2009-02-20 Государственное научно-производственное объединение "Научно-практический центр Национальной академии наук Беларуси по материаловедению" (ГО "НПЦ НАН Беларуси по материаловедению") СПОСОБ ПОЛУЧЕНИЯ ПОГЛОЩАЮЩЕГО СЛОЯ Cu2ZnSnS4 ДЛЯ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
FI20096154A0 (fi) * 2009-11-06 2009-11-06 Beneq Oy Menetelmä kalvon muodostamiseksi, kalvo ja sen käyttöjä
US9391287B1 (en) * 2013-12-19 2016-07-12 The Board Of Regents Of The University Of Nebraska Photovoltaic perovskite material and method of fabrication
JP6362868B2 (ja) * 2014-01-21 2018-07-25 国立大学法人京都大学 高効率ペロブスカイト型太陽電池の製造方法
EP3024042B1 (en) * 2014-11-21 2017-07-19 Heraeus Deutschland GmbH & Co. KG PEDOT in perovskite solar cells
AU2015367228B2 (en) * 2014-12-19 2017-04-20 Commonwealth Scientific And Industrial Research Organisation Process of forming a photoactive layer of an optoelectronic device
CN105369232B (zh) * 2015-02-16 2018-09-28 许昌学院 基于铅单质薄膜原位大面积控制合成钙钛矿型CH3NH3PbBr3薄膜材料的化学方法
WO2017009688A1 (en) * 2015-07-13 2017-01-19 Tubitak Perovskite thin film production method and optoelectronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250723A (zh) * 2014-09-09 2014-12-31 许昌学院 一种基于铅单质薄膜原位大面积控制合成钙钛矿型ch3nh3pbi3薄膜材料的化学方法
CN106676631A (zh) * 2016-11-28 2017-05-17 昆明理工大学 一种制备abx3钙钛矿单晶薄膜的方法
CN106611819A (zh) * 2017-01-10 2017-05-03 太原理工大学 太阳能电池用钙钛矿薄膜的微纳结构界面诱导生长方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDREY A. PETROV ETAL: "A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts", 《MATERIALS》 *

Also Published As

Publication number Publication date
CA3072159A1 (en) 2019-02-14
AU2018312837B2 (en) 2021-10-14
EP3666921A1 (en) 2020-06-17
ES2906881T3 (es) 2022-04-20
US11081292B2 (en) 2021-08-03
WO2019031991A1 (ru) 2019-02-14
RU2675610C1 (ru) 2018-12-20
EP3666921B1 (en) 2021-11-17
JP7161535B2 (ja) 2022-10-26
US20210020383A1 (en) 2021-01-21
JP2020532882A (ja) 2020-11-12
KR20200028989A (ko) 2020-03-17
CN111051560B (zh) 2022-04-22
CA3072159C (en) 2022-05-31
KR102306250B1 (ko) 2021-09-28
AU2018312837A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
CN111051560B (zh) 生产具有钙钛矿状结构的吸光材料的膜的方法
JP7417792B2 (ja) ペロブスカイト様構造を有する光吸収フィルムを製造するための方法
CN110178240B (zh) 钙钛矿结构光吸收材料及可变组成液态多卤化物生产方法
KR100789064B1 (ko) 금속유기물증착법에 의한 CuInS2 박막의 제조방법,그로 제조된 CuInS2 박막 및 그를 이용한 In2S3박막의 제조방법
US20220263025A1 (en) A method for producing a semiconducting film of organic-inorganic metal-halide compound with perovskite-like structure
US4675207A (en) Process and apparatus for the deposition on a substrate of a thin film of a compound containing at least one cationic constituent and at least one anionic constituent
KR101115389B1 (ko) Ⅱ?ⅵ족 화합물 반도체 박막의 용액상 제조방법 및 이에 의해 제조된 ⅱ?ⅵ족 화합물 반도체 박막
CN112640140A (zh) 一种形成类似钙钛矿材料的薄膜的方法
KR101116705B1 (ko) Cigs 박막의 용액상 제조방법 및 이에 의해 제조된 cigs 박막
RU2779016C2 (ru) Способ получения плёнки кристаллического материала на основе комплексных галогенидов с перовскитоподобной структурой
Salmi Atomic Layer Deposition of Inorganic—Organic Hybrid Material Thin Films
JP4351478B2 (ja) 誘電体薄膜の作成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant