CN111049147B - 一种混合补偿型线路间功率转移装置及其控制方法 - Google Patents

一种混合补偿型线路间功率转移装置及其控制方法 Download PDF

Info

Publication number
CN111049147B
CN111049147B CN202010039825.XA CN202010039825A CN111049147B CN 111049147 B CN111049147 B CN 111049147B CN 202010039825 A CN202010039825 A CN 202010039825A CN 111049147 B CN111049147 B CN 111049147B
Authority
CN
China
Prior art keywords
series
compensation
group
voltage source
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010039825.XA
Other languages
English (en)
Other versions
CN111049147A (zh
Inventor
潘磊
董云龙
田杰
卢宇
***
黄如海
邱德锋
姜崇学
鲁江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NR Electric Co Ltd
NR Engineering Co Ltd
Original Assignee
NR Electric Co Ltd
NR Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NR Electric Co Ltd, NR Engineering Co Ltd filed Critical NR Electric Co Ltd
Priority to CN202010039825.XA priority Critical patent/CN111049147B/zh
Publication of CN111049147A publication Critical patent/CN111049147A/zh
Application granted granted Critical
Publication of CN111049147B publication Critical patent/CN111049147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • H02J3/1814Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1878Arrangements for adjusting, eliminating or compensating reactive power in networks using tap changing or phase shifting transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提出了一种混合型的线路间功率转移装置,包括两组串联补偿装置,每组串联补偿装置均包括至少一个串联变压器、一个电压源换流器和至少一个旁路开关,至少一组串联补偿装置包括至少一个电抗器单元。每组串联补偿装置中的串联变压器的第一侧绕组与一个旁路开关并联连接后、再串联接入一条线路;每组串联补偿装置中的串联变压器的第二侧绕组均与电压源换流器的交流侧连接,或者串联变压器的第二侧绕组均与电抗器单元连接后,再与电压源换流器的交流侧连接;两组串联补偿装置的电压源换流器的直流侧连接。本发明还提出了相应的控制方法。本发明的技术方案能够减小装置的总容量,降低成本和占地,同时还具备故障限流能力,提高设备可靠性。

Description

一种混合补偿型线路间功率转移装置及其控制方法
技术领域
本发明属于电力***中柔***流输电技术领域,具体涉及一种线路间功率转移的补偿器及其控制方法。
背景技术
电力***迅速发展,随着负荷不断增长、网架结构日益复杂、新能源大规模接入,潮流分布不均、电压支撑能力不足、机电振荡等问题往往相互交织,给电网运行控制带来新的挑战。由于输电走廊的饱和以及电网公司的商业化操作,依靠建设新的输电线路来增加输电容量将会越来越困难。用户负荷的不断增长需要潮流控制手段提高现有的功率输送能力;正在蓬勃发展的智能电网和电力市场间复杂的功率交换需要频繁的潮流控制。
线间潮流控制器,又称IPFC(Interline Power Flow Controller)是一种柔***流输电装置,它可以控制多条传输线的功率,平衡多条线路之间的有功和无功潮流,通过有功功率的平衡疏通减少过负荷线路的负担,提高多条线路的整体输电能力,增加***在动态扰动下的整体补偿效果,IPFC为变电站多线路的潮流管理提供了高效的控制模式。
采用电压源换流器的具有串联补偿与移相控制等功能的补偿器,可以优化调节***潮流,但是容量和价格优势较弱。传统的电抗器可以作为线路串联补偿、限制故障电流,但是不能满足精准快速调节的要求。将传统的电抗器与采用电压源换流器的补偿器结合,构成混合型补偿器,可以充分发挥两者的优势。此外,应用于目前多回线路输电通道的线路间功率转移装置方案均需要与线路数量相同的电压源换流器,占地和成本较高,且控制功能实现复杂。为了节省工程应用的投资及占地,降低控制***的复杂度、增加***可靠性,需要一种更加简单和实用的结构。
发明内容
本发明的目的,在于提供一种混合补偿型的线路间功率转移装置,在满足对电网线路功率转移调节的需求的同时,可以节约装置的整体成本和占地,适合于工程应用。本发明还提出了相应的控制方法。
为了达到上述目的,本发明的解决方案是:
一种混合补偿型线路间功率转移装置,包括两组串联补偿装置,第一组串联补偿装置包含一个电压源换流器、至少一个串联变压器和至少一个旁路开关;第二组串联补偿装置包含至少一个电压源换流器、至少一个串联变压器、至少一个旁路开关和至少一个固定补偿单元;第一组串联补偿装置接入第一个输电线路通道,第二组串联补偿装置接入第二个输电线路通道。第一组串联补偿装置的串联变压器的第一侧绕组的两端串联接入第一个输电线路通道,第一侧绕组与至少一个旁路开关并联连接;第二侧绕组的三相出线与第一组串联补偿装置的电压源换流器的交流侧分相连接。第二组串联补偿装置的串联变压器的第一侧绕组的两端串联接入第二个输电线路通道,第一侧绕组与至少一个旁路开关并联连接;第二侧绕组的三相出线与所述固定补偿单元的第一侧分相连接,固定补偿单元的第二侧与第二组串联补偿装置的电压源换流器的交流侧分相连接。两组串联补偿装置的电压源换流器的直流侧互相连接。
作为本发明的进一步优选方案,至少一组串联补偿装置的电压源换流器为模块化多电平换流器,包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N1个半桥子模块单元和N2个全桥子模块单元串联构成,N1和N2均为大于等于0的整数,且N1不小于N2。
作为本发明的进一步优选方案,所述固定补偿单元包含至少一个电抗器和至少一个机械开关,每一个电抗器与一个机械开关并联连接。
作为本发明的进一步优选方案,上述混合补偿型线路间功率转移装置还包括一个直流储能单元,所述直流储能单元与所述两组串联补偿装置的电压源换流器的直流侧连接。
作为本发明的进一步优选方案,所述储能单元包括电容、储能电池、变流器、UPS不间断电源中至少一种。
作为本发明的进一步优选方案,上述混合补偿型线路间功率转移装置还包含直流电压变换器,所述直流电压变换器的第一侧与所述两组串联补偿装置的电压源换流器的直流侧连接,所述直流电压变换器的第二侧与所述直流储能单元连接。
作为本发明的进一步优选方案,上述混合补偿型线路间功率转移装置还包括一组并联补偿装置,所述并联补偿装置包括一台电压源换流器和一台并联变压器。所述并联补偿装置的电压源换流器的直流侧与所述两组串联补偿装置的电压源换流器的直流侧连接;所述并联补偿装置的并联变压器的第一侧与所述并联补偿装置的电压源换流器的交流侧连接,所述并联变压器的第二侧与任意交流母线连接。
作为本发明的进一步优选方案,所述旁路开关包括机械开关或电力电子器件构成的开关。
作为本发明的进一步优选方案,上述混合补偿型线路间功率转移装置应用于两组多回线路输电通道时,包括两组串联补偿装置。第一组串联补偿装置的串联变压器的数量与第一组多回线路的数量相等,第一组串联补偿装置的旁路开关的数量不少于第一组多回线路的数量,第一组串联补偿装置包含一个电压源换流器;每台串联变压器的第一侧绕组的两端分别串联接入第一组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器第二侧绕组的三相出线分相并联连接,再与第一组串联补偿装置的电压源换流器的交流侧分相连接。第二组串联补偿装置的串联变压器的数量与第二组多回线路的数量相等,第二组串联补偿装置的旁路开关的数量不少于第二组多回线路的数量;第二组固定补偿单元的数量与第二组多回线路的数量相等;第二组串联补偿装置包含一个电压源换流器;每台串联变压器的第一侧绕组的两端分别串联接入第二组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;每个串联变压器第二侧绕组的三相出线与一个固定补偿单元的第一侧分相连接,所有固定补偿单元的第二侧分相并联连接,再与第二组串联补偿装置的电压源换流器的交流侧分相连接。
作为本发明的进一步优选方案,上述混合补偿型线路间功率转移装置应用于多组输电线路通道时,对于N组输电线路通道,包括N组串联补偿装置,每一组串联补偿装置接入一组线路输电通道。每一组串联补偿装置的串联变压器的数量与对应的输电通道中线路的数量相同;每一组串联补偿装置的旁路开关的数量不少于对应的输电通道中线路的数量;每一组串联补偿装置仅包含一台电压源换流器;最多N-1组串联补偿装置包含固定补偿单元。不包含固定补偿单元的串联补偿装置中,每台串联变压器的第一侧绕组的两端分别串联接入本组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。包含固定补偿单元的串联补偿装置中,固定补偿单元的数量与对应的输电通道中线路的数量相同;每台串联变压器的第一侧绕组的两端分别串联接入本组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;每个串联变压器第二侧绕组的三相出线与一个固定补偿单元的第一侧分相连接,所有固定补偿单元的第二侧分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。所有串联补偿装置的电压源换流器直流侧并联连接。
本发明同时提出了一种混合补偿型线路间功率转移装置的控制方法,具体为:在第二输电线路通道需要降低的功率超过设定的功率阈值时,分开固定补偿单元中的机械开关;在固定补偿单元中的电抗器因故障需要检修时,闭合固定补偿单元中的机械开关。
本发明提出的又一种混合补偿型线路间功率转移装置的控制方法,具体为:在第二输电线路通道的线路电流小于设定的电流阈值时,闭合固定补偿单元中的机械开关,在混合补偿型线路间功率转移装置所接入线路的电流大于设定的电流阈值后,分开固定补偿单元中的机械开关。
本发明提出的另一种混合补偿型线路间功率转移装置的控制方法,具体为:在交流***处于小运行方式下,闭合固定补偿单元中的机械开关;在交流***处于大运行方式下,分开固定补偿单元中的机械开关。
本发明提出的再一种混合补偿型线路间功率转移装置的控制方法,具体为:在检测到第二组串联补偿装置中的电压源换流器产生的电压大于设定的电压阈值且其产生的电压使线路电流降低时,分开固定补偿单元中的机械开关。
本发明的有益效果是:本发明提供的混合型的线路间功率转移装置,能够减小装置的总容量,降低成本和占地,同时还具备故障限流能力,提高设备可靠性。
附图说明
图1是本申请提出的一种混合补偿型线路间功率转移装置示意图,包含两组串联补偿装置,每一组串联补偿装置均包含一个串联变压器2、一个旁路开关1和一台电压源换流器3,第二组串联补偿装置还包含一个固定补偿单元4;
图2是本申请所述的模块化多电平换流器的结构图;
图3是本申请另一种较优的混合补偿型线路间功率转移装置示意图,相比图1,增加了直流储能单元5;
图4是本申请又一种较优的混合补偿型线路间功率转移装置示意图,相比图1,增加了一台电压源换流器3和一台并联变压器6;
图5是本申请提出的适用于双回线路的混合补偿型线路间功率转移装置示意图,每一组串联补偿装置均包含两个串联变压器2、两个旁路开关1和一台电压源换流器3;第二组串联补偿装置还包含两个固定补偿单元4;两台电压源换流器的直流侧背靠背连接。
图6是本申请提出的另一种适用于双回线路的混合补偿型线路间功率转移装置示意图,相比图5,增加了一台电压源换流器3和一台并联变压器6;
图7是本申请提出的适用于三组双回线路的混合补偿型线路间功率转移装置示意图,每一组串联补偿装置均包含两个串联变压器2、两个旁路开关1和一台电压源换流器3;第二组串联补偿装置还包含两个固定补偿单元4;三台电压源换流器的直流侧背靠背连接。
具体实施方式
下面结合附图对本发明的具体实施方式进行详细说明。
本发明提出的一种混合补偿型线路间功率转移装置线路间功率转移装置如图1所示,包括两组串联补偿装置,第一组串联补偿装置接入第一个输电线路通道,用于提升第一个输电线路通道的功率,第二组串联补偿装置接入第二个输电线路通道,用于降低第二个输电线路通道的功率;每一组串联补偿装置均包括一个电压源换流器3,至少一个串联变压器2和至少一个旁路开关1,第二组串联补偿装置还包括一个固定补偿单元4。
第一组串联补偿装置的串联变压器的第一侧绕组的两端串联接入第一个输电线路通道,第一侧绕组与一个旁路开关并联连接;第二侧绕组的三相出线与第一组串联补偿装置的电压源换流器的交流侧分相连接。第二组串联补偿装置的串联变压器的第一侧绕组的两端分别串联接入第二个输电线路通道,第一侧绕组与一个旁路开关并联连接;第二侧绕组的三相出线与所述固定补偿单元的第一侧分相连接,固定补偿单元的第二侧与第二组串联补偿装置的电压源换流器的交流侧分相连接。两组串联补偿装置的电压源换流器的直流侧互相连接。前述固定补偿单元包含一个电抗器和一个机械开关,电抗器与机械开关并联连接。
本实施例中,第二组串联补偿装置由电压源换流器和固定补偿单元混合、共同进行串联补偿,从而可以节省该组串联补偿装置的电压源换流器的容量,降低线路间功率转移装置的总体成本和占地。
上述混合补偿型线路间功率转移装置,至少一组串联补偿装置的电压源换流器3为模块化多电平换流器,如图2所示模块化多电平换流器结构,换流器包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N1个半桥子模块单元和N2个全桥子模块单元串联连接构成,N1和N2均为大于等于0的整数,且N1不小于N2。
在实际工程应用时,可将前述混合补偿型线路间功率转移装置的两组串联补偿装置中容量较大的电压源换流器3的每个分支单元采用全桥子模块单元和半桥子模块单元混合的模块化多电平换流器,全桥子模块单元和半桥子模块单元数量的比例,可以根据两组串联补偿装置中电压源换流器3的容量的比值来确定。采用上述由全桥子模块和半桥子模块混合的换流器后,可以降低线路间功率转移装置的内部直流***电压,降低容量较小换流器的成本和占地。
进一步,前述的混合补偿型线路间功率转移装置中的两组串联补偿装置中的旁路开关1包括但不限于机械开关、电力电子器件构成的开关;
如图3所示的另一种较优的混合补偿型线路间功率转移装置,在图1实施例的基础上还包括一个直流储能单元5。直流储能单元5与上述两组串联补偿装置的电压源换流器3的直流侧连接。再一种优选的实施例中,在图1实施例的基础上还包括一个直流储能单元5和一个直流电压变换器,直流电压变换器的第一侧与上述两组串联补偿装置的电压源换流器3的直流侧连接,直流电压变换器的第二侧与一个直流储能单元5连接,采用直流电压变换器后可以降低储能单元的电压,从而节省储能单元的成本。前述直流储能单元5包括电容、储能电池、变流器、UPS不间断电源中至少一种。
如图4所示的又一种较优的混合补偿型线路间功率转移装置中,在图1实施例的基础上还可以包括一组并联补偿装置。并联补偿装置包含有一台电压源换流器3和一台并联变压器6;并联补偿装置的电压源换流器3的直流侧与前述两组串联补偿装置的电压源换流器3的直流侧连接;并联补偿装置的电压源换流器3的交流侧连接与并联变压器6的第一侧连接;并联变压器3的第二侧与任意交流母线连接。
前述的实施例中第二组串联补偿装置的使用方法包括以下几种:
(1)在第二输电线路通道需要降低的功率超过设定的功率阈值时,分开固定补偿单元中的机械开关;在固定补偿单元中的电抗器因故障需要检修时,闭合固定补偿单元中的机械开关。
(2)在第二输电线路通道的线路电流小于设定的电流阈值时,闭合固定补偿单元中的机械开关,在混合补偿型线路间功率转移装置所接入线路的电流大于设定的电流阈值后,分开固定补偿单元中的机械开关。
(3)在交流***处于小运行方式下,闭合固定补偿单元中的机械开关;在交流***处于大运行方式下,分开固定补偿单元中的机械开关。
(4)在检测到第二组串联补偿装置中的电压源换流器产生的电压大于设定的电压阈值且其产生的电压使线路电流降低时,分开固定补偿单元中的机械开关。
本发明的混合补偿型线路间功率转移装置还可以应用于两组多回线路输电通道。如图5所示:第一组串联补偿装置的串联变压器2的数量与第一组多回线路的数量相等,第一组串联补偿装置的旁路开关1的数量不少于第一组多回线路的数量,第一组串联补偿装置包含一个电压源换流器3;每台串联变压器2的第一侧绕组的两端分别串联接入第一组输电通道的各条线路,每台串联变压器2的第一侧绕组均与至少一个旁路开关1并联连接;所有串联变压器2第二侧绕组的三相出线分相并联连接,再与第一组串联补偿装置的电压源换流器3的交流侧分相连接。第二组串联补偿装置的串联变压器2的数量与第二组多回线路的数量相等,第二组串联补偿装置的旁路开关的数量1不少于第二组多回线路的数量,第二组串联补偿装置包含一个电压源换流器3;第二组固定补偿单元4的数量与第二组多回线路的数量相等。第一组串联补偿装置中两个串联变压器2的第二侧绕组的三相出线并联连接后,再与电压源换流器3的交流侧分相连接;第二组串联补偿装置中的两个串联变压器2的第二侧绕组与固定补偿单元4的第一侧分相连接,两个固定补偿单元4的第二侧分相连接后,再与电压源换流器3的交流侧分相连接。
如图6所示的另一种适用于两组多回线路输电通道的混合补偿型线路间功率转移装置,在图5实施例的基础上还可以包括一组并联补偿装置,;并联补偿装置的电压源换流器3的直流侧与两组串联补偿装置的电压源换流器3的直流侧连接;并联补偿装置的电压源换流器3的交流侧连接与并联变压器6的第一侧连接;并联变压器3的第二侧与任意交流母线连接。
本发明的混合补偿型线路间功率转移装置还可以应用于多组输电线路通道,如图7所示。对于N组输电线路通道,包括N组串联补偿装置,每一组串联补偿装置接入一组线路输电通道。每一组串联补偿装置的串联变压器的数量与对应的输电通道中线路的数量相同;每一组串联补偿装置的旁路开关的数量量不少于对应的输电通道中线路的数量;每一组串联补偿装置仅包含一台电压源换流器;最多N-1组串联补偿装置包含固定补偿单元。不包含固定补偿单元的串联补偿装置中,每台串联变压器的第一侧绕组的两端分别串联接入本组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。包含固定补偿单元的串联补偿装置中,固定补偿单元的数量与对应的输电通道中线路的数量相同;每台串联变压器的第一侧绕组的两端分别串联接入本组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;每个串联变压器第二侧绕组的三相出线与一个固定补偿单元的第一侧分相连接,所有固定补偿单元的第二侧分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接。所有串联补偿装置的电压源换流器直流侧并联连接。如图7所示应用于三组双回线路的输电通道的混合补偿型线路间功率转移装置,第二组串联补偿装置中包含固定补偿单元,在第二输电线路通道需要降低线路功率时,分开固定补偿单元中的机械开关;或者需要降低第二输电线路通道的故障电流时,分开固定补偿单元中的机械开关。
最后应该说明的是:结合上述实施例仅说明本发明的技术方案而非对其限制。所属领域的普通技术人员应当理解到:本领域技术人员可以对本发明的具体实施方式进行修改或者等同替换,但这些修改或变更均在申请待批的专利要求保护范围之内。

Claims (14)

1.一种混合补偿型线路间功率转移装置,其特征在于:
包括两组串联补偿装置,第一组串联补偿装置包含一个电压源换流器、至少一个串联变压器和至少一个旁路开关;第二组串联补偿装置包含至少一个电压源换流器、至少一个串联变压器、至少一个旁路开关和至少一个固定补偿单元;第一组串联补偿装置接入第一个输电线路通道,第二组串联补偿装置接入第二个输电线路通道;
第一组串联补偿装置的串联变压器的第一侧绕组的两端串联接入第一个输电线路通道,第一侧绕组与至少一个旁路开关并联连接;第二侧绕组的三相出线与第一组串联补偿装置的电压源换流器的交流侧分相连接;
第二组串联补偿装置的串联变压器的第一侧绕组的两端串联接入第二个输电线路通道,第一侧绕组与至少一个旁路开关并联连接;第二侧绕组的三相出线与所述固定补偿单元的第一侧分相连接,固定补偿单元的第二侧与第二组串联补偿装置的电压源换流器的交流侧分相连接;
两组串联补偿装置的电压源换流器的直流侧互相连接。
2.如权利要求1所述的混合补偿型线路间功率转移装置,其特征在于:至少一组串联补偿装置的电压源换流器为模块化多电平换流器,包括有三个相单元,每个相单元包括两个分支单元,每个分支单元由N1个半桥子模块单元和N2个全桥子模块单元串联构成,N1和N2均为大于等于0的整数,且N1不小于N2。
3.根据权利要求1所述的混合补偿型线路间功率转移装置,其特征在于:所述固定补偿单元包含至少一个电抗器和至少一个机械开关,每一个电抗器与一个机械开关并联连接。
4.如权利要求1所述的混合补偿型线路间功率转移装置,其特征在于:还包括一个直流储能单元,所述直流储能单元与所述两组串联补偿装置的电压源换流器的直流侧连接。
5.如权利要求4所述的混合补偿型线路间功率转移装置,其特征在于:所述储能单元包括电容、储能电池、变流器、UPS不间断电源中至少一种。
6.如权利要求4所述的混合补偿型线路间功率转移装置,其特征在于,还包含直流电压变换器,所述直流电压变换器的第一侧与所述两组串联补偿装置的电压源换流器的直流侧连接,所述直流电压变换器的第二侧与所述直流储能单元连接。
7.如权利要求1所述的混合补偿型线路间功率转移装置,其特征在于:还包括一组并联补偿装置,所述并联补偿装置包括一台电压源换流器和一台并联变压器;
所述并联补偿装置的电压源换流器的直流侧与所述两组串联补偿装置的电压源换流器的直流侧连接;所述并联补偿装置的并联变压器的第一侧与所述并联补偿装置的电压源换流器的交流侧连接,所述并联变压器的第二侧与任意交流母线连接。
8.如权利要求1所述的混合补偿型线路间功率转移装置,其特征在于:所述旁路开关包括机械开关或电力电子器件构成的开关。
9.如权利要求1所述的混合补偿型线路间功率转移装置,其特征在于:所述混合补偿型线路间功率转移装置应用于两组多回线路输电通道时,包括两组串联补偿装置;
第一组串联补偿装置的串联变压器的数量与第一组多回线路的数量相等,第一组串联补偿装置的旁路开关的数量不少于第一组多回线路的数量,第一组串联补偿装置包含一个电压源换流器;每台串联变压器的第一侧绕组的两端分别串联接入第一组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器第二侧绕组的三相出线分相并联连接,再与第一组串联补偿装置的电压源换流器的交流侧分相连接;
第二组串联补偿装置的串联变压器的数量与第二组多回线路的数量相等,第二组串联补偿装置的旁路开关的数量不少于第二组多回线路的数量;第二组固定补偿单元的数量与第二组多回线路的数量相等;第二组串联补偿装置包含一个电压源换流器;每台串联变压器的第一侧绕组的两端分别串联接入第二组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;每个串联变压器第二侧绕组的三相出线与一个固定补偿单元的第一侧分相连接,所有固定补偿单元的第二侧分相并联连接,再与第二组串联补偿装置的电压源换流器的交流侧分相连接。
10.根据权利要求1所述的混合补偿型线路间功率转移装置,其特征在于:所述混合补偿型线路间功率转移装置应用于多组输电线路通道时,对于N组输电线路通道,包括N组串联补偿装置,每一组串联补偿装置接入一组线路输电通道;
每一组串联补偿装置的串联变压器的数量与对应的输电通道中线路的数量相同;每一组串联补偿装置的旁路开关的数量不少于对应的输电通道中线路的数量;每一组串联补偿装置仅包含一台电压源换流器;最多N-1组串联补偿装置包含固定补偿单元;
不包含固定补偿单元的串联补偿装置中,每台串联变压器的第一侧绕组的两端分别串联接入本组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;所有串联变压器第二侧绕组的三相出线分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接;
包含固定补偿单元的串联补偿装置中,固定补偿单元的数量与对应的输电通道中线路的数量相同;每台串联变压器的第一侧绕组的两端分别串联接入本组输电通道的各条线路,每台串联变压器的第一侧绕组均与至少一个旁路开关并联连接;每个串联变压器第二侧绕组的三相出线与一个固定补偿单元的第一侧分相连接,所有固定补偿单元的第二侧分相并联连接,再与本组串联补偿装置的电压源换流器的交流侧分相连接;
所有串联补偿装置的电压源换流器直流侧并联连接。
11.如权利要求1至8任一项所述的混合补偿型线路间功率转移装置的控制方法,其特征在于:在第二输电线路通道需要降低的功率超过设定的功率阈值时,分开固定补偿单元中的机械开关;在固定补偿单元中的电抗器因故障需要检修时,闭合固定补偿单元中的机械开关。
12.如权利要求1至8任一项所述的混合补偿型线路间功率转移装置的控制方法,其特征在于:在第二输电线路通道的线路电流小于设定的电流阈值时,闭合固定补偿单元中的机械开关,在混合补偿型线路间功率转移装置所接入线路的电流大于设定的电流阈值后,分开固定补偿单元中的机械开关。
13.如权利要求1至8任一项所述的混合补偿型线路间功率转移装置的控制方法,其特征在于:在交流***处于小负荷运行方式下,闭合固定补偿单元中的机械开关;在交流***处于大负荷运行方式下,分开固定补偿单元中的机械开关。
14.如权利要求1至8任一项所述的混合补偿型线路间功率转移装置的控制方法,其特征在于:在检测到第二组串联补偿装置中的电压源换流器产生的电压大于设定的电压阈值且其产生的电压使线路电流降低时,分开固定补偿单元中的机械开关。
CN202010039825.XA 2020-01-15 2020-01-15 一种混合补偿型线路间功率转移装置及其控制方法 Active CN111049147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010039825.XA CN111049147B (zh) 2020-01-15 2020-01-15 一种混合补偿型线路间功率转移装置及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010039825.XA CN111049147B (zh) 2020-01-15 2020-01-15 一种混合补偿型线路间功率转移装置及其控制方法

Publications (2)

Publication Number Publication Date
CN111049147A CN111049147A (zh) 2020-04-21
CN111049147B true CN111049147B (zh) 2024-06-18

Family

ID=70244627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010039825.XA Active CN111049147B (zh) 2020-01-15 2020-01-15 一种混合补偿型线路间功率转移装置及其控制方法

Country Status (1)

Country Link
CN (1) CN111049147B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276991B (zh) * 2020-01-15 2024-06-18 南京南瑞继保电气有限公司 一种适用于多组多回线路的线路间功率转移装置
CN113098127B (zh) * 2021-04-12 2022-10-28 广东电网有限责任公司广州供电局 一种配电网应急发电车的多功能无缝转电方法
NL2029006B1 (en) * 2021-08-20 2023-02-24 Mivistan B V Device for control of power exchange in a grid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211456702U (zh) * 2020-01-15 2020-09-08 南京南瑞继保电气有限公司 一种混合补偿型线路间功率转移装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001242B (zh) * 2012-07-13 2016-01-20 中电普瑞科技有限公司 一种基于模块化多电平换流器的hvdc兼upfc***
CN105977973B (zh) * 2016-06-22 2018-03-30 全球能源互联网研究院 一种串联混合型静止同步串联补偿器
CN107947173B (zh) * 2017-12-20 2024-02-02 南京南瑞继保电气有限公司 一种串联补偿器及控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211456702U (zh) * 2020-01-15 2020-09-08 南京南瑞继保电气有限公司 一种混合补偿型线路间功率转移装置

Also Published As

Publication number Publication date
CN111049147A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
EP4131762A1 (en) Interconnected co-phase traction power supply system based on four-port modular multilevel converter
US10608545B2 (en) Power management utilizing synchronous common coupling
CN111049147B (zh) 一种混合补偿型线路间功率转移装置及其控制方法
CN102859861B (zh) 可配置的混合转换器电路
CN113364311B (zh) 一种多中压交流端口固态变压器及其控制方法
JP2017189115A (ja) 電力変換装置
CN104852583A (zh) 一种用于中低压直流配电的高频链多电平直流变压器
CN112383229A (zh) 多端口电力电子变压器拓扑结构及其交直流微电网***
CN108551173B (zh) 一种串并联补偿器及其控制方法和装置
CN104065063A (zh) 一种适用于多条线路的统一潮流控制器
CN116488224A (zh) 多端***直流混合变流装置及多端交直流混合***
CN213585598U (zh) 多端口电力电子变压器拓扑结构及其交直流微电网***
CN111934324B (zh) 适用于多通道双回路的多功能潮流控制器
CN211456702U (zh) 一种混合补偿型线路间功率转移装置
CN111276991B (zh) 一种适用于多组多回线路的线路间功率转移装置
CN211428926U (zh) 适用于多组多回线路的线路间功率转移装置
CN204578373U (zh) 一种用于中低压直流配电的高频链多电平直流变压器
CN115483683A (zh) 柔***流合环装置及***
EP3985821A1 (en) Power grid
CN212085823U (zh) 一种新型基于mmc的交直流多端口柔性多状态开关装置
CN113726137B (zh) 变换装置
CN113328454B (zh) 一种柔性多状态开关、柔***直流互联***以及控制方法
Choudhury et al. High voltage side dc-bus capacitor voltage balancing control of a 350 kW multiport EV charging system
CN108777488B (zh) 一种串联补偿器及其控制方法和装置
CN113544952A (zh) 一种电源***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant