CN111049129A - 一种配电网运行薄弱环节两阶段评估方法 - Google Patents

一种配电网运行薄弱环节两阶段评估方法 Download PDF

Info

Publication number
CN111049129A
CN111049129A CN201911264438.XA CN201911264438A CN111049129A CN 111049129 A CN111049129 A CN 111049129A CN 201911264438 A CN201911264438 A CN 201911264438A CN 111049129 A CN111049129 A CN 111049129A
Authority
CN
China
Prior art keywords
load
transfer
path
line
feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911264438.XA
Other languages
English (en)
Inventor
吴丹
阮胜冬
刘庆节
向东旭
廖爱连
吴昌
徐晓凌
朱礼华
钱敏
何强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshan Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
Changshan Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshan Power Supply Co of State Grid Zhejiang Electric Power Co Ltd filed Critical Changshan Power Supply Co of State Grid Zhejiang Electric Power Co Ltd
Priority to CN201911264438.XA priority Critical patent/CN111049129A/zh
Publication of CN111049129A publication Critical patent/CN111049129A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种配电网运行薄弱环节两阶段评估方法,方法包括以下步骤:S1:收集所有向配电网供电的变电站信息;S2:计算变电站全停时的单路径转供能力;S3:构建每个多路径转移方案所对应的变电站全停时多路径最大转供能力线性规划方程;S4:对步骤S3中的每个方案所对应的变电站全停时多路径最大转供能力线性规划方程;S5:把各方案的最优解的目标函数值进行比较,选择最大目标函数值作为目标方案;S6:对目标方案薄弱环节进行识别;S7:对所有变电站重复S2到S6过程,选出薄弱环节,所有变电站的薄弱环节构成配电网薄弱环节。本发明提供一种能发现配电网薄弱环节并对薄弱环节进行分类的配电网运行薄弱环节两阶段评估方法。

Description

一种配电网运行薄弱环节两阶段评估方法
技术领域
本发明涉及电力控制领域,尤其是涉及一种配电网运行薄弱环节两阶段评估方法。
背景技术
目前为了保障电网的安全可靠性,电网调控需要对不同负荷水平下的电网运行情况有全面掌握,提前识别出相关风险,并制定相关预案,当事故发生时,才能够快速科学应对。运行薄弱环节的分析是制定相关预案的技术基础,目前,对配电网运行薄弱环节的评估技术手段比较薄弱,制定出的预案适应性不强,不能有效把握薄弱环节的变化规律与限制。
发明内容
本发明是为了克服现有技术的不能发现配电网薄弱环节并且不能对薄弱环节进行分类的问题,提供一种能发现配电网薄弱环节并对薄弱环节进行分类的一种配电网运行薄弱环节两阶段评估方法。
为了实现上述目的,本发明采用以下技术方案:
本发明解决其技术问题所采用的技术方案是:一种配电网运行薄弱环节两阶段评估方法,方法包括以下步骤:
S1:收集所有向配电网供电的变电站,将所有变电站加入变电站队列中,收集所有变电站相关主变、母线及相关的馈线参数与联络关系,并进行网络拓扑分析;
S2:从变电站队列中取出一个变电站作为待计算变电站,计算待计算变电站全停时的单路径转供能力;
S3:根据待计算变电站的每一种多路径转移方案,构建每个方案所对应的变电站全停时多路径最大转供能力线性规划方程;
S4:对步骤S3中的每个方案所对应的变电站全停时多路径最大转供能力线性规划方程,应用单纯形法求最优解;
S5:把各方案的最优解的目标函数值进行比较,选择最大目标函数值作为目标方案;
S6:对目标方案薄弱环节进行识别,对于多路径馈线失电前的负荷量大于最优解,并且失电前的负荷量小于对侧线路转移裕量的,认为其薄弱环节是对侧主变;对于多路径馈线失电前的负荷量大于最优解,并且失电前的负荷量大于对侧线路转移裕量的,认为其薄弱环节是对侧线路;对于所有其薄弱环节是对侧线路的,如果其失电前的负荷量全部转移到对侧主变超过主变的转移裕量,则认为其薄弱环节也包括对侧主变,如果不超主变的转移裕量,则认为其薄弱环节仅仅是对侧线路;设置转移裕量阈值,转移裕量阈值为正数,对于馈线失电前的负荷量大于最优解,并且侧线路转移裕量减去馈线失电前的负荷量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧主变的影响微弱薄弱环节,对于馈线失电前的负荷量大于最优解,并且馈线失电前的负荷量减去侧线路转移裕量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧线路的影响微弱薄弱环节,在进行重要评估预测时,影响微弱薄弱环节忽略不计;
S7:判断变电站队列中是否还有没有取出的变电站,若变电站队列中有未被取出的变电站,则返回步骤S2,否则,将每个变电站全停时的单路径馈线薄弱环节与多路径馈线薄弱环节均作为此变电站全停时的薄弱环节,所有变电站的薄弱环节构成配电网薄弱环节。能够有效发现变电站全停时的配电网转供环节,为薄弱环节的进一步改造提升提供量化决策依据,对薄弱环节进行分类,分出薄弱环节和影响微弱薄弱环节,在进行重要评估预测时,影响微弱薄弱环节忽略不计,就可以减少影响微弱薄弱环节对重要评估预测的干扰。
作为优选,所述步骤S1具体过程为:收集所有向配电网供电的变电站,将所有变电站加入变电站队列中,收集所有变电站相关主变、母线及相关的馈线参数与联络关系,并进行网络拓扑分析,获取变电站的网络转供路径,依据线路转供前的负荷与容量限额,计算转供线路的限额约束,依据主变转供前的负荷与容量限额,计算转供主变的限额约束。
作为优选,所述步骤S2包括以下步骤:
S21:从变电站队列中取出一个变电站作为待计算变电站;
S22:待计算变电站单路径转供时线路限额约束公式如下:
Xi≤min(Ri(1-ai),kLi)
Figure BDA0002312453050000021
式中,Xi为单路径馈线i所能恢复的负荷,Xi>0,Ri为对侧的线路容量,ai对侧实际负载率,Li为馈线i的失负荷量,k为馈线i非故障区恢复负荷量占比,其中0<k≤1.Ω3转移到同一条馈线上的所有馈线的集合;
S23:待计算变电站单路径转供时主变限额约束公式如下:
Figure BDA0002312453050000022
式中:Ω1为转移到同一台主变上的所有单路径停电馈线的组合,Ti为转移到同一台主变的限额,限额由运行方式所确定,bi为转移前主变的负载率;
S24:建立以单路径馈线最优解为目标的第一阶段数学模型表达,所述第一阶段数学模型表达建立在以下假设基础上:
a.各停电馈线所带负荷为年度最大值;
b.非故障区恢复负荷量为失电前全部负荷量;
c.对于三双接线的馈线认为其停电前的负荷就是其恢复后的负荷,不考虑因送电时间差异所导致的两条馈线间的负荷转移;
d.不考虑停电变电站母线间互供的运行方式;
第一阶段数学模型表达初始目标函数如下:
Figure BDA0002312453050000031
式中:Xi代表单路径馈线i所能恢复的负荷,n为单路径馈线的数量,F为停电变电站单路径所能恢复的最大负荷量。
S25:对约束条件进行松弛,引入松弛变量将函数不等式约束化为等式约束;
步骤S2和步骤S3中的公式可转换成如下形式:
Xi+X′i=min(Ri(1-ai),kLi)
Figure BDA0002312453050000032
Figure BDA0002312453050000033
式中:X′i,X″i,Xi″′分别松驰变量,
最终步骤S4中的第一阶段目标函数转化成:
Figure BDA0002312453050000041
式中:m为转移主变的数量,p为多种单路径馈线转移至同一条馈线的数量;
S26:建立第一阶段数学模型后,以X′i,X″i,Xi″′,作为数学模型的基变量,得到一个单位矩阵,令非基变量为0,得到初始基可行解,利用单纯形法进行迭代,求出目标函数最大值;
S27:判断单路径最优解数值是否等于停电负荷全部,如果最优解数值等于此变电站全部单路径停电负荷的汇总,则说明此变电站单路径馈线负荷转供不存在薄弱环节,如果小于此变电站全部单路径停电负荷的汇总,则说明此变电站某些单路径馈线存在薄弱环节;
S28:识别单路径馈线薄弱环节:
对于馈线失电前的负荷量大于最优解,并且失电前的负荷量小于对侧线路转移裕量的,认为其薄弱环节是对侧主变。
对于馈线失电前的负荷量大于最优解,并且失电前的负荷量大于对侧线路转移裕量的,认为其薄弱环节是对侧线路。
对于所有其薄弱环节是对侧线路的,如果其失电前的负荷量全部转移到对侧主变超过主变的转移裕量,则认为其薄弱环节也包括对侧主变,如果不超主变的转移裕量,则认为其薄弱环节仅仅是对侧线路。
作为优选,所述步骤S3具体过程为:
S31:把所有单路径负荷全部转移到对侧,排除掉转移后主变裕度为零的主变,建立多路径最大转供能力运行约束;
S32:线路负荷时效限额约束如下:
Xj≤min(Rj(1-aj),kLj)
式中:Xj为多路径馈线转移的某条路径的负荷量,Rj转移侧的线路容量,aj为转移侧目前的负载率,Lj失电前馈线j的负荷量;
S33:主变限额约束如下:
Figure BDA0002312453050000051
其中,Ω2为转移到同一台主变上的所有多路径停电馈线的组合,Tj为转移到同一台主变的限额,限额由运行方式所确定,bj为单路径转移后主变的负载率;
S34:建立多路径馈线最优解为目标的第二阶段数学模型表达,所述第二阶段数学模型表达建立在以下假设基础上:
a.不同多路径馈线可以转移到同一台主变;
b.一条多路径馈线转移路径至少有两条;
所述第二阶段数学模型表达的初始目标函数如下:
Figure BDA0002312453050000052
式中:Xj代表多路径馈线j上所能恢复的负荷,d为多路径馈线的数量,F'为停电变电站所能恢复的最大负荷量;
对约束条件进行松弛,引入松弛变量将步骤S42和步骤S43中的函数不等式约束化为等式约束:
Xj+X'j=min(Rj(1-aj),kLj)
Figure BDA0002312453050000053
其中X'j,X″j分别为对应Xj与Tj的松驰变量;
最终将第二阶段数学模型表达的目标函数转化成:
Figure BDA0002312453050000054
式中:q为转移主变的数量。
作为优选,所述步骤S4具体过程为:对对步骤S3中的每个方案所对应的变电站全停时多路径最大转供能力线性规划方程,应用单纯形法求最优解,建立第二阶段数学模型后,以X′j,X″j作为数学模型的基变量,得到一个单位矩阵,令非基变量为0,得到初始基可行解,利用单纯形法进行迭代,求出目标函数优解。
作为优选,所述设置转移裕量阈值,转移裕量阈值为正数,对于馈线失电前的负荷量大于最优解,并且侧线路转移裕量减去馈线失电前的负荷量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧主变的影响微弱薄弱环节,对于馈线失电前的负荷量大于最优解,并且馈线失电前的负荷量减去侧线路转移裕量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧线路的影响微弱薄弱环节,在进行重要评估预测时,影响微弱薄弱环节忽略不计。对薄弱环节进行分类,分出薄弱环节和影响微弱薄弱环节,在进行重要评估预测时,影响微弱薄弱环节忽略不计,就可以减少影响微弱薄弱环节对重要评估预测的干扰。
作为优选,所述在计算多路径馈线转供能力时,预先排除掉所有单路径失电负荷全部转移到对侧后主变负载率裕度为零的主变。
因此,本发明具有如下有益效果:(1)对薄弱环节进行分类,分出薄弱环节和影响微弱薄弱环节,在进行重要评估预测时,影响微弱薄弱环节忽略不计,就可以减少影响微弱薄弱环节对重要评估预测的干扰;
(2)能够有效发现变电站全停时的配电网转供环节,为薄弱环节的进一步改造提升提供量化决策依据。
具体实施方式
下面结合具体实施方式对本发明做进一步的描述。
实施例:一种配电网运行薄弱环节两阶段评估方法,方法包括以下步骤:
S1:收集所有向配电网供电的变电站,将所有变电站加入变电站队列中,收集所有变电站相关主变、母线及相关的馈线参数与联络关系,并进行网络拓扑分析;
S2:从变电站队列中取出一个变电站作为待计算变电站,计算待计算变电站全停时的单路径转供能力,步骤S2包括以下步骤:
S21:从变电站队列中取出一个变电站作为待计算变电站;
S22:待计算变电站单路径转供时线路限额约束公式如下:
Xi≤min(Ri(1-ai),kLi)
Figure BDA0002312453050000061
式中,Xi为单路径馈线i所能恢复的负荷,Xi>0,Ri为对侧的线路容量,ai对侧实际负载率,Li为馈线i的失负荷量,k为馈线i非故障区恢复负荷量占比,其中0<k≤1.Ω3转移到同一条馈线上的所有馈线的集合;
S23:待计算变电站单路径转供时主变限额约束公式如下:
Figure BDA0002312453050000071
式中:Ω1为转移到同一台主变上的所有单路径停电馈线的组合,Ti为转移到同一台主变的限额,限额由运行方式所确定,bi为转移前主变的负载率;
S24:建立以单路径馈线最优解为目标的第一阶段数学模型表达,所述第一阶段数学模型表达建立在以下假设基础上:
a.各停电馈线所带负荷为年度最大值;
b.非故障区恢复负荷量为失电前全部负荷量;
c.对于三双接线的馈线认为其停电前的负荷就是其恢复后的负荷,不考虑因送电时间差异所导致的两条馈线间的负荷转移;
d.不考虑停电变电站母线间互供的运行方式;
第一阶段数学模型表达初始目标函数如下:
Figure BDA0002312453050000072
式中:Xi代表单路径馈线i所能恢复的负荷,n为单路径馈线的数量,F为停电变电站单路径所能恢复的最大负荷量。
S25:对约束条件进行松弛,引入松弛变量将函数不等式约束化为等式约束;
步骤S2和步骤S3中的公式可转换成如下形式:
Xi+X′i=min(Ri(1-ai),kLi)
Figure BDA0002312453050000073
Figure BDA0002312453050000081
式中:X′i,X″i,Xi″′分别松驰变量,
最终步骤S4中的第一阶段目标函数转化成:
Figure BDA0002312453050000082
式中:m为转移主变的数量,p为多种单路径馈线转移至同一条馈线的数量;
S26:建立第一阶段数学模型后,以X′i,X″i,Xi″′,作为数学模型的基变量,得到一个单位矩阵,令非基变量为0,得到初始基可行解,利用单纯形法进行迭代,求出目标函数最大值;
S27:判断单路径最优解数值是否等于停电负荷全部,如果最优解数值等于此变电站全部单路径停电负荷的汇总,则说明此变电站单路径馈线负荷转供不存在薄弱环节,如果小于此变电站全部单路径停电负荷的汇总,则说明此变电站某些单路径馈线存在薄弱环节;
S28:识别单路径馈线薄弱环节:
对于馈线失电前的负荷量大于最优解,并且失电前的负荷量小于对侧线路转移裕量的,认为其薄弱环节是对侧主变。
对于馈线失电前的负荷量大于最优解,并且失电前的负荷量大于对侧线路转移裕量的,认为其薄弱环节是对侧线路。
对于所有其薄弱环节是对侧线路的,如果其失电前的负荷量全部转移到对侧主变超过主变的转移裕量,则认为其薄弱环节也包括对侧主变,如果不超主变的转移裕量,则认为其薄弱环节仅仅是对侧线路;
设置转移裕量阈值,转移裕量阈值为正数,转移裕量阈值为转移裕量的5千分之1,对于馈线失电前的负荷量大于最优解,并且侧线路转移裕量减去馈线失电前的负荷量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧主变的影响微弱薄弱环节,对于馈线失电前的负荷量大于最优解,并且馈线失电前的负荷量减去侧线路转移裕量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧线路的影响微弱薄弱环节,在进行重要评估预测时,影响微弱薄弱环节忽略不计;
S3:根据待计算变电站的每一种多路径转移方案,构建每个方案所对应的变电站全停时多路径最大转供能力线性规划方程,步骤S3具体过程为:
S31:把所有单路径负荷全部转移到对侧,排除掉转移后主变裕度为零的主变,建立多路径最大转供能力运行约束;
S32:线路负荷时效限额约束如下:
Xj≤min(Rj(1-aj),kLj)
式中:Xj为多路径馈线转移的某条路径的负荷量,Rj转移侧的线路容量,aj为转移侧目前的负载率,Lj失电前馈线j的负荷量;
S33:主变限额约束如下:
Figure BDA0002312453050000091
其中,Ω2为转移到同一台主变上的所有多路径停电馈线的组合,Tj为转移到同一台主变的限额,限额由运行方式所确定,bj为单路径转移后主变的负载率;
S34:建立多路径馈线最优解为目标的第二阶段数学模型表达,所述第二阶段数学模型表达建立在以下假设基础上:
a.不同多路径馈线可以转移到同一台主变;
b.一条多路径馈线转移路径至少有两条;
所述第二阶段数学模型表达的初始目标函数如下:
Figure BDA0002312453050000092
式中:Xj代表多路径馈线j上所能恢复的负荷,d为多路径馈线的数量,F'为停电变电站所能恢复的最大负荷量;
对约束条件进行松弛,引入松弛变量将步骤S42和步骤S43中的函数不等式约束化为等式约束:
Xj+X'j=min(Rj(1-aj),kLj)
Figure BDA0002312453050000101
其中X'j,X″j分别为对应Xj与Tj的松驰变量;
最终将第二阶段数学模型表达的目标函数转化成:
Figure BDA0002312453050000102
式中:q为转移主变的数量;
S4:对步骤S3中的每个方案所对应的变电站全停时多路径最大转供能力线性规划方程,应用单纯形法求最优解,步骤S4具体过程为:对步骤S3中的每个方案所对应的变电站全停时多路径最大转供能力线性规划方程,应用单纯形法求最优解,建立第二阶段数学模型后,以X′j,X″j作为数学模型的基变量,得到一个单位矩阵,令非基变量为0,得到初始基可行解,利用单纯形法进行迭代,求出目标函数优解;
S5:把各方案的最优解的目标函数值进行比较,选择最大目标函数值作为目标方案;
S6:对目标方案薄弱环节进行识别,步骤S6具体过程为:对于多路径馈线失电前的负荷量大于最优解,并且失电前的负荷量小于对侧线路转移裕量的,认为其薄弱环节是对侧主变;对于多路径馈线失电前的负荷量大于最优解,并且失电前的负荷量大于对侧线路转移裕量的,认为其薄弱环节是对侧线路;对于所有其薄弱环节是对侧线路的,如果其失电前的负荷量全部转移到对侧主变超过主变的转移裕量,则认为其薄弱环节也包括对侧主变,如果不超主变的转移裕量,则认为其薄弱环节仅仅是对侧线路,设置转移裕量阈值,转移裕量阈值为正数,转移裕量阈值为转移裕量的5千分之1,对于馈线失电前的负荷量大于最优解,并且侧线路转移裕量减去馈线失电前的负荷量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧主变的影响微弱薄弱环节,对于馈线失电前的负荷量大于最优解,并且馈线失电前的负荷量减去侧线路转移裕量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧线路的影响微弱薄弱环节,在进行重要评估预测时,影响微弱薄弱环节忽略不计;
S7:判断变电站队列中是否还有没有取出的变电站,若变电站队列中有未被取出的变电站,则返回步骤S2,否则,将每个变电站全停时的单路径馈线薄弱环节与多路径馈线薄弱环节均作为此变电站全停时的薄弱环节,所有变电站的薄弱环节构成配电网薄弱环节。能够有效发现变电站全停时的配电网转供环节,为薄弱环节的进一步改造提升提供量化决策依据。
在计算多路径馈线转供能力时,预先排除掉所有单路径失电负荷全部转移到对侧后主变负载率裕度为零的主变。

Claims (7)

1.一种配电网运行薄弱环节两阶段评估方法,其特征是方法包括以下步骤:
S1:收集所有向配电网供电的变电站,将所有变电站加入变电站队列中,收集所有变电站相关主变、母线及相关的馈线参数与联络关系,并进行网络拓扑分析;
S2:从变电站队列中取出一个变电站作为待计算变电站,计算待计算变电站全停时的单路径转供能力;
S3:根据待计算变电站的每一种多路径转移方案,构建每个方案所对应的变电站全停时多路径最大转供能力线性规划方程;
S4:对步骤S3中的每个方案所对应的变电站全停时多路径最大转供能力线性规划方程,应用单纯形法求最优解;
S5:把各方案的最优解的目标函数值进行比较,选择最大目标函数值作为目标方案;
S6:对目标方案薄弱环节进行识别,对于多路径馈线失电前的负荷量大于最优解,并且失电前的负荷量小于对侧线路转移裕量的,认为其薄弱环节是对侧主变;对于多路径馈线失电前的负荷量大于最优解,并且失电前的负荷量大于对侧线路转移裕量的,认为其薄弱环节是对侧线路;对于所有其薄弱环节是对侧线路的,如果其失电前的负荷量全部转移到对侧主变超过主变的转移裕量,则认为其薄弱环节也包括对侧主变,如果不超主变的转移裕量,则认为其薄弱环节仅仅是对侧线路;设置转移裕量阈值,转移裕量阈值为正数,对于馈线失电前的负荷量大于最优解,并且侧线路转移裕量减去馈线失电前的负荷量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧主变的影响微弱薄弱环节,对于馈线失电前的负荷量大于最优解,并且馈线失电前的负荷量减去侧线路转移裕量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧线路的影响微弱薄弱环节,在进行重要评估预测时,影响微弱薄弱环节忽略不计;
S7:判断变电站队列中是否还有没有取出的变电站,若变电站队列中有未被取出的变电站,则返回步骤S2,否则,将每个变电站全停时的单路径馈线薄弱环节与多路径馈线薄弱环节均作为此变电站全停时的薄弱环节,所有变电站的薄弱环节构成配电网薄弱环节。
2.根据权利要求1所述的一种配电网运行薄弱环节两阶段评估方法,其特征是步骤S1具体过程为:收集所有向配电网供电的变电站,将所有变电站加入变电站队列中,收集所有变电站相关主变、母线及相关的馈线参数与联络关系,并进行网络拓扑分析,获取变电站的网络转供路径,依据线路转供前的负荷与容量限额,计算转供线路的限额约束,依据主变转供前的负荷与容量限额,计算转供主变的限额约束。
3.根据权利要求1所述的一种配电网运行薄弱环节两阶段评估方法,其特征是步骤S2包括以下步骤:
S21:从变电站队列中取出一个变电站作为待计算变电站;
S22:待计算变电站单路径转供时线路限额约束公式如下:
Xi≤min(Ri(1-ai),kLi)
Figure FDA0002312453040000021
式中,Xi为单路径馈线i所能恢复的负荷,Xi>0,Ri为对侧的线路容量,ai对侧实际负载率,Li为馈线i的失负荷量,k为馈线i非故障区恢复负荷量占比,其中0<k≤1.Ω3转移到同一条馈线上的所有馈线的集合;
S23:待计算变电站单路径转供时主变限额约束公式如下:
Figure FDA0002312453040000022
式中:Ω1为转移到同一台主变上的所有单路径停电馈线的组合,Ti为转移到同一台主变的限额,限额由运行方式所确定,bi为转移前主变的负载率;
S24:建立以单路径馈线最优解为目标的第一阶段数学模型表达,所述第一阶段数学模型表达建立在以下假设基础上:
a.各停电馈线所带负荷为年度最大值;
b.非故障区恢复负荷量为失电前全部负荷量;
c.对于三双接线的馈线认为其停电前的负荷就是其恢复后的负荷,不考虑因送电时间差异所导致的两条馈线间的负荷转移;
d.不考虑停电变电站母线间互供的运行方式;
第一阶段数学模型表达初始目标函数如下:
Figure FDA0002312453040000023
式中:Xi代表单路径馈线i所能恢复的负荷,n为单路径馈线的数量,F为停电变电站单路径所能恢复的最大负荷量;
S25:对约束条件进行松弛,引入松弛变量将函数不等式约束化为等式约束;
步骤S2和步骤S3中的公式可转换成如下形式:
Xi+X'i=min(Ri(1-ai),kLi)
Figure FDA0002312453040000031
Figure FDA0002312453040000032
式中:X′i,X″i,X′″i分别松驰变量,
最终步骤S4中的第一阶段目标函数转化成:
Figure FDA0002312453040000033
式中:m为转移主变的数量,p为多种单路径馈线转移至同一条馈线的数量;
S26:建立第一阶段数学模型后,以X′i,X″i,X′″i,作为数学模型的基变量,得到一个单位矩阵,令非基变量为0,得到初始基可行解,利用单纯形法进行迭代,求出目标函数最大值;
S27:判断单路径最优解数值是否等于停电负荷全部,如果最优解数值等于此变电站全部单路径停电负荷的汇总,则说明此变电站单路径馈线负荷转供不存在薄弱环节,如果小于此变电站全部单路径停电负荷的汇总,则说明此变电站某些单路径馈线存在薄弱环节;
S28:识别单路径馈线薄弱环节:
对于馈线失电前的负荷量大于最优解,并且失电前的负荷量小于对侧线路转移裕量的,认为其薄弱环节是对侧主变;
对于馈线失电前的负荷量大于最优解,并且失电前的负荷量大于对侧线路转移裕量的,认为其薄弱环节是对侧线路;
对于所有其薄弱环节是对侧线路的,如果其失电前的负荷量全部转移到对侧主变超过主变的转移裕量,则认为其薄弱环节也包括对侧主变,如果不超主变的转移裕量,则认为其薄弱环节仅仅是对侧线路。
4.根据权利要求1所述的一种配电网运行薄弱环节两阶段评估方法,其特征是步骤S3具体过程为:
S31:把所有单路径负荷全部转移到对侧,排除掉转移后主变裕度为零的主变,建立多路径最大转供能力运行约束;
S32:线路负荷时效限额约束如下:
Xj≤min(Rj(1-aj),kLj)
式中:Xj为多路径馈线转移的某条路径的负荷量,Rj转移侧的线路容量,aj为转移侧目前的负载率,Lj失电前馈线j的负荷量;
S33:主变限额约束如下:
Figure FDA0002312453040000041
其中,Ω2为转移到同一台主变上的所有多路径停电馈线的组合,Tj为转移到同一台主变的限额,限额由运行方式所确定,bj为单路径转移后主变的负载率;
S34:建立多路径馈线最优解为目标的第二阶段数学模型表达,所述第二阶段数学模型表达建立在以下假设基础上:
a.不同多路径馈线可以转移到同一台主变;
b.一条多路径馈线转移路径至少有两条;
所述第二阶段数学模型表达的初始目标函数如下:
Figure FDA0002312453040000042
式中:Xj代表多路径馈线j上所能恢复的负荷,d为多路径馈线的数量,F'为停电变电站所能恢复的最大负荷量;
对约束条件进行松弛,引入松弛变量将步骤S42和步骤S43中的函数不等式约束化为等式约束:
Xj+X′j=min(Rj(1-aj),kLj)
Figure FDA0002312453040000051
其中X′j,X″j分别为对应Xj与Tj的松驰变量;
最终将第二阶段数学模型表达的目标函数转化成:
Figure FDA0002312453040000052
式中:q为转移主变的数量。
5.根据权利要求1所述的一种配电网运行薄弱环节两阶段评估方法,其特征是步骤S4具体过程为:对步骤S3中的每个方案所对应的变电站全停时多路径最大转供能力线性规划方程,应用单纯形法求最优解,
建立第二阶段数学模型后,以X′j,X″j作为数学模型的基变量,得到一个单位矩阵,令非基变量为0,得到初始基可行解,利用单纯形法进
行迭代,求出目标函数优解。
6.根据权利要求3所述的一种配电网运行薄弱环节两阶段评估方法,其特征是设置转移裕量阈值,转移裕量阈值为正数,对于馈线失电前的负荷量大于最优解,并且侧线路转移裕量减去馈线失电前的负荷量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧主变的影响微弱薄弱环节,对于馈线失电前的负荷量大于最优解,并且馈线失电前的负荷量减去侧线路转移裕量后的差值在转移裕量阈值和0之间的,认为其薄弱环节是对侧线路的影响微弱薄弱环节,在进行重要评估预测时,影响微弱薄弱环节忽略不计。
7.根据权利要求1所述的一种配电网运行薄弱环节两阶段评估方法,其特征是在计算多路径馈线转供能力时,预先排除掉所有单路径失电负荷全部转移到对侧后主变负载率裕度为零的主变。
CN201911264438.XA 2019-12-11 2019-12-11 一种配电网运行薄弱环节两阶段评估方法 Pending CN111049129A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911264438.XA CN111049129A (zh) 2019-12-11 2019-12-11 一种配电网运行薄弱环节两阶段评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911264438.XA CN111049129A (zh) 2019-12-11 2019-12-11 一种配电网运行薄弱环节两阶段评估方法

Publications (1)

Publication Number Publication Date
CN111049129A true CN111049129A (zh) 2020-04-21

Family

ID=70235577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911264438.XA Pending CN111049129A (zh) 2019-12-11 2019-12-11 一种配电网运行薄弱环节两阶段评估方法

Country Status (1)

Country Link
CN (1) CN111049129A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117839A (zh) * 2015-08-20 2015-12-02 国家电网公司 一种基于连锁故障的电力***薄弱环节辨识方法
CN106921161A (zh) * 2017-04-14 2017-07-04 太原理工大学 电力***薄弱点识别方法及薄弱点电压分布特性分析方法
CN107046284A (zh) * 2017-04-12 2017-08-15 国网浙江省电力公司 一种配电网转供能力薄弱环节评估方法
CN107171312A (zh) * 2017-05-15 2017-09-15 国家电网公司 一种配电网大面积停电快速恢复最优路径选取方法
CN107453354A (zh) * 2017-07-18 2017-12-08 浙江大学华南工业技术研究院 一种配电网的薄弱环节识别方法
CN108448571A (zh) * 2018-03-16 2018-08-24 国网浙江省电力公司绍兴供电公司 一种考虑分布式电源的配电网负荷转移方法
CN110137939A (zh) * 2019-03-27 2019-08-16 国网浙江省电力有限公司绍兴供电公司 一种变电站全停负荷转供方法
CN110146785A (zh) * 2019-05-22 2019-08-20 南京工程学院 一种含风光电源电网脆弱线路识别方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117839A (zh) * 2015-08-20 2015-12-02 国家电网公司 一种基于连锁故障的电力***薄弱环节辨识方法
CN107046284A (zh) * 2017-04-12 2017-08-15 国网浙江省电力公司 一种配电网转供能力薄弱环节评估方法
CN106921161A (zh) * 2017-04-14 2017-07-04 太原理工大学 电力***薄弱点识别方法及薄弱点电压分布特性分析方法
CN107171312A (zh) * 2017-05-15 2017-09-15 国家电网公司 一种配电网大面积停电快速恢复最优路径选取方法
CN107453354A (zh) * 2017-07-18 2017-12-08 浙江大学华南工业技术研究院 一种配电网的薄弱环节识别方法
CN108448571A (zh) * 2018-03-16 2018-08-24 国网浙江省电力公司绍兴供电公司 一种考虑分布式电源的配电网负荷转移方法
CN110137939A (zh) * 2019-03-27 2019-08-16 国网浙江省电力有限公司绍兴供电公司 一种变电站全停负荷转供方法
CN110146785A (zh) * 2019-05-22 2019-08-20 南京工程学院 一种含风光电源电网脆弱线路识别方法

Similar Documents

Publication Publication Date Title
CN107046284B (zh) 一种配电网转供能力薄弱环节评估方法
CN101431238B (zh) 一种计及“n-1”准则的配电***供电能力评估方法
Martins et al. Active distribution network integrated planning incorporating distributed generation and load response uncertainties
CN102522747B (zh) 一种配电***供电能力的计算方法
Jayasankar et al. Estimation of voltage stability index for power system employing artificial neural network technique and TCSC placement
CN110137939B (zh) 一种变电站全停负荷转供方法
CN107221945B (zh) 一种特高压直流线路预想故障辅助决策方法和装置
CN105139095A (zh) 基于属性区间模型的配电网运行状态评估方法
Malachi et al. A genetic algorithm for the corrective control of voltage and reactive power
CN106558876B (zh) 一种交直流混合主动配电网的运行控制方法
CN108808738B (zh) 一种考虑约束优先级的电网安全校正控制方法
CN105470975B (zh) 一种配电网串联电容器配置方法
CN103746368A (zh) 一种电力***静态安全稳定运行极限优化方法
CN108493998B (zh) 考虑需求响应与n-1预想故障的鲁棒输电网规划方法
CN111585273A (zh) 一种配电网故障停电恢复预案生成方法
CN102290798A (zh) 一种基于配电网接线方式的快速供电恢复规则
Nassaj et al. An accelerated preventive agent based scheme for postdisturbance voltage control and loss reduction
CN103345713A (zh) 一种超大规模电力网络同步安全校核***设计方法
CN107453369B (zh) 智能配电网优化节电降损***
CN110148934B (zh) 考虑二次转供的配电网负荷转供方法
CN110783913A (zh) 基于群的计及预想事故集最佳电网拓扑在线优化方法
CN105207226A (zh) 一种高压电网无功补偿优化配置方法
CN111049129A (zh) 一种配电网运行薄弱环节两阶段评估方法
CN112989576A (zh) 基于实时需求响应评估能源信息耦合***可靠性的方法
CN111581777A (zh) 一种影响配电网故障恢复的转供电薄弱环量化识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200421

RJ01 Rejection of invention patent application after publication