CN111003686B - Room-temperature hydrogen storage material and preparation method thereof - Google Patents

Room-temperature hydrogen storage material and preparation method thereof Download PDF

Info

Publication number
CN111003686B
CN111003686B CN201911239623.3A CN201911239623A CN111003686B CN 111003686 B CN111003686 B CN 111003686B CN 201911239623 A CN201911239623 A CN 201911239623A CN 111003686 B CN111003686 B CN 111003686B
Authority
CN
China
Prior art keywords
hydrogen storage
room temperature
hydrogen
storage material
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911239623.3A
Other languages
Chinese (zh)
Other versions
CN111003686A (en
Inventor
水江澜
刘世媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201911239623.3A priority Critical patent/CN111003686B/en
Publication of CN111003686A publication Critical patent/CN111003686A/en
Application granted granted Critical
Publication of CN111003686B publication Critical patent/CN111003686B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

The invention discloses a novel room temperature hydrogen storage material, the expression is Ti2CTx,Ti2CTxIs a two-dimensional layered material with a volume fraction of 60%The high-density lamellar gaps and the adjustable interlayer spacing of 0.68nm to 0.9 nm; a large number of fluorine functional groups and oxygen-containing functional groups are connected between layers; 1 to 15 percent of Al atoms left after etching are left between the layers. The room temperature hydrogen storage material Ti prepared by the invention2CTxThe first hydrogen storage capacity can reach 8.44 wt% and the circulated hydrogen storage capacity is 7.5 wt% at room temperature of 25 deg.C and 50bar (5 MPa). More than 95 percent of stored hydrogen can be rapidly removed (within 5 min) under the conditions of 95 ℃ and 0bar, and the dehydrogenation amount and the dehydrogenation rate are controllable.

Description

Room-temperature hydrogen storage material and preparation method thereof
Technical Field
The invention belongs to the field of hydrogen storage, and particularly relates to a room-temperature hydrogen storage material and a preparation method thereof.
Background
Hydrogen is the most ideal secondary energy source for future human society, and has good combustion performance and high calorific value, so that the hydrogen has attracted extensive attention of international society. The utilization of hydrogen energy relates to three technical links of hydrogen production, hydrogen storage, hydrogen utilization and the like, and the storage and transportation of hydrogen are the key points of hydrogen energy utilization due to the characteristics of dispersibility and intermittence of hydrogen during utilization, wherein the hydrogen storage is a bottleneck technology. The hydrogen storage system has the characteristics of high energy density, high safety, high hydrogen charging and discharging speed, low cost and the like. The most common storage method at present is to use high pressure gas tanks to store hydrogen as a compressed gas at a pressure in the range of 350 to 700 bar. However, the high pressure tank stores low density hydrogen, and in practical applications (such as hydrogen powered vehicles), excessive pressure is dangerous. Liquid hydrogen, while having a higher power density, is costly to produce at high pressures and low temperatures. At present, the most concerned hydrogen storage method is solid material hydrogen storage, and a large number of researches prove that metal hydrides, porous carbon materials, MOFs, noble metals, composite materials thereof and the like have better hydrogen storage performance. Wherein, most metal hydrides need to store and release hydrogen at higher temperature (200-; by using the material for storing hydrogen by physical adsorption, the capacity of 5 wt% or more can be obtained at the temperature of liquid nitrogen, but the material is limited by low-temperature working conditions; metal/intermetallic compounds such as LaNi5FeTi can store hydrogen under normal temperature and pressure conditions, but this is the caseThe mass hydrogen storage density of these materials is typically less than 2 wt%; noble metals Pd, Pt and their composites have high hydrogen storage density, but noble metals are expensive and have the problem of slow dehydrogenation kinetics. The solid hydrogen storage materials reported at present cannot meet the requirements of practical application.
MXene is a novel two-dimensional layered material which is widely concerned in recent years, is carbide or nitride consisting of transition metals, can be obtained by mainly dissociating MAX phase of a layered ceramic material through hydrofluoric acid (HF), has excellent mechanical, electronic, magnetic and other properties, and is mainly applied to the fields of lithium ion battery energy storage, catalysis, sensors, electromagnetic application such as electromagnetic shielding and the like. Although the current related topic groups have studied Ti using local density approximation functional and molecular dynamics simulation methods2C、Sc2C and V2C, etc., but until now, the research of MXene hydrogen storage application is limited to theoretical prediction, and no experimental result reports that the material with actual hydrogen storage performance can be successfully prepared.
Disclosure of Invention
The invention aims to provide a solid room-temperature hydrogen storage material and a preparation method thereof, wherein MAX phase Ti is subjected to chemical etching2Removing partial Al atoms in layered distribution in AlC to obtain a two-dimensional layered MXene material Ti with a large number of lamellar gaps, wherein 1-15% of Al is remained2CTx
At present, there is Ti2CTxIs mainly prepared by using HF to block MAX phase Ti2Etching and washing AlC ceramic, reacting Al atomic layer in precursor MAX with hydrofluoric acid in solution, allowing acid-etched Al to enter solution, leaving a layer of Al atomic gap in original bulk material, and stripping by means of ultrasound to obtain lamellar Ti2CTxThe materials are regularly stacked, so that the material shows higher specific mass capacity and cycling stability in the test of the electrode material of the supercapacitor. Thus, the prior art mainly utilized HF to transform the MAX phase Ti2All Al atoms in the AlC ceramic are etched away and the layered Ti is obtained by peeling2CTxThe material can obtain excellent electrochemical performance. In the process of researching the hydrogen storage performance of the two-dimensional layered MXene material, the invention unexpectedly discovers that the HF is utilized to react with massive MAX phase Ti2When the AlC ceramic is etched, Ti is added2When Al atoms in the AlC ceramic are reserved by 1 to 15 percent, the incompletely etched Al atoms can be in Ti2CTxThe interlayer of the material plays the role of a bridge and can maintain Ti2CTxThe distance of the layered voids of the material and the stability of the structure provide the possibility of storing hydrogen, as shown in fig. 1.
The invention provides a room temperature hydrogen storage material, the expression is Ti2CTx,Ti2CTxThe material is a two-dimensional layered MXene material, has a stacked book-page-shaped layered morphology structure, and has high-density layered gaps with volume fraction of more than 60% and adjustable interlamellar spacing of 0.68-0.9 nm; a large number of fluorine functional groups and oxygen-containing functional groups are connected between layers; 1 to 15 percent of Al atoms left after etching are left between the layers.
Further, Ti2CTxThe first hydrogen storage capacity reaches 8.44 wt% at room temperature of 25 ℃ and 50 bar.
Further, Ti2CTxThe circulating hydrogen storage capacity was 7.5 wt.% at room temperature 25 ℃ and 50 bar.
Further, Ti2CTxAt 95 deg.C and 0bar, over 95% of stored hydrogen is removed within 5 min.
Furthermore, Ti can be realized by changing the external temperature of 25-95 ℃ and the pressure of 0-15 bar2CTxThe dehydrogenation amount and the dehydrogenation rate can be controlled.
The invention also provides a preparation method of the room-temperature hydrogen storage material, which comprises the following steps:
1) adding a MAX phase Ti2After sieving AlC powder by a sieve of less than or equal to 200 meshes, pouring the powder into hydrofluoric acid with the concentration of 12 wt%, and fully stirring for t to perform etching reaction, wherein t is more than or equal to 6h and less than 12 h;
2) separating particles obtained after etching from hydrofluoric acid, and washing the particles obtained after separation to be neutral by using deionized water;
3) washing the granulesDrying the granules in a vacuum oven at 40 ℃ to obtain Ti2CTx
The invention has the beneficial effects that:
1) the whole synthesis process is simple, and large-scale production can be realized;
2) the precursor MAX used in the invention belongs to titanium aluminum carbide ceramics, does not contain noble metal and has low cost;
3) the room temperature hydrogen storage material Ti prepared by the invention2CTxThe first hydrogen storage capacity can reach 8.44 wt% and the circulated hydrogen storage capacity is 7.5 wt% at room temperature of 25 deg.C and 50 bar. More than 95% of stored hydrogen can be rapidly removed (within 5 min) at the temperature of 95 ℃ and at the pressure of 0bar, and the control of dehydrogenation amount and dehydrogenation rate can be realized by changing the external temperature (25-95 ℃ at room temperature) and the pressure (0-15 bar).
Drawings
FIG. 1 shows Ti of the present invention2CTxSchematic diagram of preparation and hydrogen storage;
FIG. 2 shows Ti etched in example 1 of the present invention2CTxSEM picture (upper left corner picture) and HADDF-STEM picture of (A);
FIG. 3 shows Ti etched in example 1 of the present invention2CTxA HADDF-STEM map with different layer spacings;
and 4 are Ti obtained by etching in example 1 of the present invention2CTxHADDF-STEM map with incompletely etched Al atoms between layers;
FIG. 5 shows Ti etched in example 1 of the present invention2CTxXPS test result of Al element (b);
FIG. 6 shows Ti etched in example 1 of the present invention2CTxXPS test result of Ti element(s);
FIG. 7 shows Ti etched in example 1 of the present invention2CTxXPS test result of F element(s);
FIG. 8 shows Ti etched in example 1 of the present invention2CTxXPS test result of C element(s);
FIG. 9 shows Ti etched in example 1 of the present invention2CTxXRD curve of (1) and its standardPDF card;
FIG. 10 shows Ti etched in example 1 of the present invention2CTxThe hydrogen adsorption-desorption cycle curve of (a);
FIG. 11 shows Ti etched according to example 1 of the present invention2CTxA low angle XRD profile of the change in the interlayer spacing before and after hydrogen storage;
FIG. 12 shows Ti etched in example 1 of the present invention2CTxHydrogen desorption curves at different pressures and temperatures;
FIG. 13 shows Ti etched in example 1 of the present invention2CTxThe hydrogen storage stability test result of (1);
FIG. 14 shows Ti etched in examples 1 and 2 of the present invention2CTxComparing XRD curves of the two parts;
FIG. 15 shows Ti etched in examples 1 and 2 of the present invention2CTxThe hydrogen storage test results are compared with the figure.
Detailed Description
The invention is further described below with reference to the figures and examples.
Example 1
The preparation method of the room-temperature hydrogen storage material comprises the following steps:
1) preparing a dilute hydrofluoric acid solution with the concentration of 12 wt% by using 40 wt% concentrated hydrofluoric acid, and placing the dilute hydrofluoric acid solution in a plastic beaker;
2) 2g of Ti2After sieving the AlC powder by a 200-mesh sieve, slowly pouring the powder into the hydrofluoric acid solution obtained in the step 1);
3) the mixed solution is continuously stirred, so that the phenomenon that the liquid is boiled and splashed due to over violent reaction heat release is avoided;
4) fully stirring for 8 hours at room temperature, and separating the etched particles from an acid solution;
5) repeatedly washing the particles obtained by separation with deionized water until the particles are washed to be neutral;
6) drying the washed particles in a vacuum oven at 40 ℃ to obtain the room-temperature hydrogen storage material Ti2CTxHaving a layer spacing of 0.68 nm; 2.64% of Al atoms remained after etching are left between the layers.
The Ti produced in the present example will be described below with reference to the accompanying drawings2CTxStructural characteristics and hydrogen storage dehydrogenation performance.
FIGS. 2-4 show room temperature hydrogen storage materials Ti prepared in example 12CTxAs is apparent from the SEM image of fig. 2, the Ti produced2CTxHas a stacked book-page-shaped layered morphology structure, and the interval indicated by white arrows in a HADDF-STEM diagram is the formed uneven interlayer interval. As can be seen from the black arrows in fig. 3, a smaller interlayer spacing of about 0.68nm can be formed in this embodiment, and in addition, the white arrows in fig. 3 indicate the large-sized interlayer spacing formed by completely etching away the interlayer Al atoms.
FIGS. 5 to 8 show Ti2CTxXPS test results of Al, Ti, F and C elements of (A) show that Ti is produced2CTxA large number of functional groups, mainly fluorine functional groups and oxygen-containing functional groups, are connected between the layers.
In order to maintain proper interlayer spacing, the embodiment 1 of the invention adopts specific etching conditions to enable Ti to be adopted2CTxPart of interlayer Al atoms are not completely removed, the existence of Al compounds can be seen from the XRD test result of figure 9, and the interlayer spacing value of the layered structure can be calculated according to the position of the peak in the dotted line frame.
FIG. 10 shows the results of 5 cycles of hydrogen absorption and desorption, Ti, at room temperature at 25 ℃ and a pressure of 50bar2CTx7.5 wt% of hydrogen can be reversibly stored, and the XRD result of FIG. 11 also shows Ti2CTxThe layered structure of (a) is not destroyed during the hydrogen storage process. And in 5 rounds of hydrogen adsorption-desorption experiments, no significant performance decay was found.
As can be seen from FIG. 12, the Ti produced can be controlled by using different temperatures and pressures2CTxWherein the temperature influences the amount of dehydrogenation (whether the absorbed hydrogen is completely released) and the dehydrogenation rate, and under the conditions of low-temperature heating at 95 ℃ and a pressure of 0bar, Ti2CTxCan be released within 5 minutesMore than 90% of the adsorbed hydrogen is evolved, and the pressure affects the dehydrogenation rate.
FIG. 13 shows Ti2CTxThe test result of the hydrogen storage stability shows that no obvious gas leakage exists after the hydrogen storage stability test device is placed at room temperature for 7 days, and the storage stability reaches the aim of 2020 of the United states department of energy. Thus, Ti of the present invention2CTxHas good hydrogen storage stability.
Example 2
The preparation method of the room-temperature hydrogen storage material comprises the following steps:
1) preparing a dilute hydrofluoric acid solution with the concentration of 12 wt% by using 40 wt% concentrated hydrofluoric acid, and placing the dilute hydrofluoric acid solution in a plastic beaker;
2) 2g of Ti2After sieving the AlC powder by a 200-mesh sieve, slowly pouring the powder into the hydrofluoric acid solution obtained in the step 1);
3) the mixed solution is continuously stirred, so that the phenomenon that the liquid is boiled and splashed due to over violent reaction heat release is avoided;
4) fully stirring for 12 hours at room temperature, and separating the etched particles from an acid solution;
5) repeatedly washing the particles obtained by separation with deionized water until the particles are washed to be neutral;
6) drying the washed particles in a vacuum oven at 40 ℃ to obtain the room-temperature hydrogen storage material Ti2CTxIt has only a 0.78nm interlayer spacing; at this time, the interlayer Al atoms can be considered to have been completely removed by etching (content)<0.1%)。
The invention can obtain Ti with different interlayer spacing by adjusting the etching time or adjusting the concentration of hydrofluoric acid used in etching2CTxTi with smaller interlayer spacing2CTxThe hydrogen storage material Ti prepared in example 1 has better hydrogen storage performance2CTxAlthough having a non-uniform interlayer spacing, a smaller interlayer spacing of about 0.68nm was used for hydrogen storage, while the hydrogen storage material Ti prepared in example 2 was used2CTxIt had only a layer spacing of 0.78nm, and thus it was inferior in hydrogen storage performance to example 1. This is evident from a comparison of fig. 14 and 15, which are shownXRD comparison of 14 shows that the longer etching time, i.e., lower Al content between layers of L-Ti from example 22CTxTi obtained in example 12CTxWith a larger interlayer spacing. The hydrogen storage test comparison of fig. 15 shows that the example 1 sample having a smaller interlayer distance has a larger hydrogen storage amount.
It will be apparent to those skilled in the art that various modifications and improvements can be made to the embodiments of the present invention without departing from the inventive concept thereof, and these modifications and improvements are intended to be within the scope of the invention.

Claims (7)

1. A room temperature hydrogen storage material, the expression is Ti2CTxCharacterized by being Ti2CTxThe material is a two-dimensional layered MXene material, has a stacked book-page-shaped layered morphology structure, and has high-density layered gaps with volume fraction of more than 60% and adjustable interlamellar spacing of 0.68-0.9 nm; the interlayer is connected with a fluorine functional group and an oxygen-containing functional group; 1 to 15 percent of Al atoms left after etching are left between the layers.
2. Use of a hydrogen storage material at room temperature according to claim 1, for storing hydrogen at room temperature.
3. Use according to claim 2, characterized in that Ti2CTxThe first hydrogen storage capacity reaches 8.44 wt% at room temperature of 25 ℃ and 50 bar.
4. Use according to claim 2, characterized in that Ti2CTxThe circulating hydrogen storage capacity was 7.5 wt.% at room temperature 25 ℃ and 50 bar.
5. Use according to claim 2, characterized in that Ti2CTxMore than 95 percent of hydrogen storage capacity is removed within 5min under the conditions of 95 ℃ and 0 bar.
6. According to claim 2The application is characterized in that Ti is realized by changing the external temperature of 25-95 ℃ and the pressure of 0-15 bar2CTxThe dehydrogenation amount and the dehydrogenation rate can be controlled.
7. A method for preparing a hydrogen storage material at room temperature according to claim 1, comprising the steps of:
1) adding a MAX phase Ti2After sieving AlC powder by a sieve of less than or equal to 200 meshes, pouring the powder into hydrofluoric acid with the concentration of 12 wt%, and fully stirring for t to perform etching reaction, wherein t is more than or equal to 6h and less than 12 h;
2) separating particles obtained after etching from hydrofluoric acid, and washing the particles obtained after separation to be neutral by using deionized water;
3) drying the washed particles in a vacuum oven at 40 ℃ to obtain Ti2CTx
CN201911239623.3A 2019-12-06 2019-12-06 Room-temperature hydrogen storage material and preparation method thereof Active CN111003686B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911239623.3A CN111003686B (en) 2019-12-06 2019-12-06 Room-temperature hydrogen storage material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911239623.3A CN111003686B (en) 2019-12-06 2019-12-06 Room-temperature hydrogen storage material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN111003686A CN111003686A (en) 2020-04-14
CN111003686B true CN111003686B (en) 2021-10-29

Family

ID=70114867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911239623.3A Active CN111003686B (en) 2019-12-06 2019-12-06 Room-temperature hydrogen storage material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN111003686B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380945B (en) * 2021-05-21 2022-10-14 电子科技大学 Magnetic heterostructure based on electric field regulation and control and preparation method thereof
CN113149659A (en) * 2021-05-21 2021-07-23 北京航空航天大学 Nitrogen-containing medium-entropy or high-entropy MAX phase material and preparation method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304154A (en) * 2014-07-03 2016-02-03 中国科学院宁波材料技术与工程研究所 Application of two-dimensional transitional metal carbide nanosheet as radionuclide adsorbent
KR101807390B1 (en) * 2016-03-02 2017-12-08 성균관대학교산학협력단 METHOD OF MANUFACTURING A 2-DIMENSIONAL MXene THIN LAYER, METHOD OF MANUFACTURING AN ELECTRIC ELEMENT, AND ELECTRIC ELEMENT
CN106185937B (en) * 2016-07-13 2017-12-29 西北工业大学 A kind of preparation method of carbon nano-particle/two-dimensional layer carbonization titanium composite material
CN106450205B (en) * 2016-11-02 2020-02-21 南京工业大学 Two-dimensional transition group metal carbon/nitride and nano sulfur particle composite material and preparation and application thereof
EP3613094B1 (en) * 2017-04-20 2023-11-01 Auburn University Electrochemical systems comprising mxenes and max phase compositions and methods of using the same
CN108375564B (en) * 2017-07-03 2021-03-02 天津大学 Preparation method of self-supporting layered material MXenes and application of self-supporting layered material MXenes as Raman substrate
CN109876838B (en) * 2017-12-06 2021-07-23 中国科学院金属研究所 Titanium-based MXene phase heterogeneous catalytic material and preparation method and application thereof
KR20190094037A (en) * 2018-02-02 2019-08-12 주식회사 엘지화학 PREPARATION METHOD OF MXene HAVING HIGH PURITY
CN109467047A (en) * 2018-10-24 2019-03-15 东莞理工学院 A kind of Ti3C2The preparation method of MXene composite hydrogen storage material

Also Published As

Publication number Publication date
CN111003686A (en) 2020-04-14

Similar Documents

Publication Publication Date Title
Zhang et al. Development and application of hydrogen storage
Lu et al. Two-dimensional vanadium carbide for simultaneously tailoring the hydrogen sorption thermodynamics and kinetics of magnesium hydride
Liu et al. Advanced materials for energy storage
Zhang et al. Remarkable synergistic catalysis of Ni-doped ultrafine TiO2 on hydrogen sorption kinetics of MgH2
CN103318871B (en) Preparation method for synthesizing graphite porous carbon material with activated carbon serving as raw material
CN111003686B (en) Room-temperature hydrogen storage material and preparation method thereof
CN110540236A (en) MXene material and preparation method and application thereof
CN105033241A (en) Ultrathin metallic nickel nanosheet, manufacturing method thereof and application of nanosheets as electrode materials
Ianni et al. Synthesis of NaAlH4/Al composites and their applications in hydrogen storage
Pedicini et al. Progress in polymeric material for hydrogen storage application in middle conditions
CN109748282B (en) Method for preparing nano silicon carbide at low temperature
CN108380227B (en) Hydrogen evolution electrocatalytic material and preparation method thereof
Song et al. Recent advances of magnesium hydride as an energy storage material
CN111313029A (en) Closely-combined high-performance silicon/graphitized carbon composite material with hollow structure and preparation method and application thereof
CN101817520A (en) Method for manufacturing carbon microspheres by using waste macromolecules
CN109473649B (en) Composite negative electrode material of sodium-ion battery and preparation method thereof
CN112593247A (en) MOF @ graphene/foamed nickel composite material and preparation method and application thereof
Er et al. Tunable hydrogen storage in magnesium–transition metal compounds: First-principles calculations
Zhang et al. Engineering the oxygen vacancies in Na2Ti3O7 for boosting its catalytic performance in MgH2 hydrogen storage
Zhu et al. Novel agaric-derived olive-like yolk–shell structured MnO@ C composites for superior lithium storage
CN110729132B (en) Metaborate column support alpha-Ni (OH) applied to super capacitor2Method for synthesizing material
CN113802139B (en) Nickel sulfide based electrocatalytic material with core-shell structure and preparation method and application thereof
CN113241260A (en) Preparation method and application of hollow hyperbranched carbon material
Wang et al. In Situ Deformation Topology of COFs with Shortened Channels and High Redox Properties for Li–S Batteries
CN100457946C (en) Vanadium-based solid solution hydrogen-storage alloy with long circulation life

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant