CN110993557A - 用于在半导体主体中形成绝缘层的方法和晶体管器件 - Google Patents

用于在半导体主体中形成绝缘层的方法和晶体管器件 Download PDF

Info

Publication number
CN110993557A
CN110993557A CN201910933727.8A CN201910933727A CN110993557A CN 110993557 A CN110993557 A CN 110993557A CN 201910933727 A CN201910933727 A CN 201910933727A CN 110993557 A CN110993557 A CN 110993557A
Authority
CN
China
Prior art keywords
insulating layer
trench
semiconductor body
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910933727.8A
Other languages
English (en)
Inventor
H·韦伯
C·法赫曼
F·赫勒
W·凯因德尔
M·罗赫尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies Austria AG
Original Assignee
Infineon Technologies Austria AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102018124418.5A external-priority patent/DE102018124418A1/de
Application filed by Infineon Technologies Austria AG filed Critical Infineon Technologies Austria AG
Publication of CN110993557A publication Critical patent/CN110993557A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76837Filling up the space between adjacent conductive structures; Gap-filling properties of dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/765Making of isolation regions between components by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • H01L21/76813Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving a partial via etch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Element Separation (AREA)

Abstract

公开了一种方法和一种晶体管器件。所述方法包括:在半导体主体(100)的边缘区域(120)中的第一表面(101)中形成沟槽(130);在所述沟槽(130)中并且在所述半导体主体(100)的第一表面(101)上形成绝缘层(20);以及使所述绝缘层(20)平面化,从而保留填充所述沟槽(130)的沟槽绝缘层(21),其中,形成所述绝缘层包括热氧化工艺。

Description

用于在半导体主体中形成绝缘层的方法和晶体管器件
技术领域
本公开总体上涉及一种用于在半导体主体中形成绝缘层的方法。
背景技术
诸如热氧化物层的绝缘层是诸如MOSFET(金属氧化物半导体场效应晶体管)的功率半导体器件中的重要特征。例如,在功率半导体器件的边缘终端结构中,可以使用绝缘层使导电场电极与半导体主体隔离。形成这样的绝缘层可以包括在半导体主体的表面上选择性地生长绝缘层的热生长工艺、和/或在半导体主体的表面上沉积绝缘层的沉积工艺。然而,在半导体主体的表面上在边缘区域中沉积绝缘层将在绝缘层表面和处于内侧区域中的半导体主体表面之间产生台阶,所述内侧区域往往被称为有源区域并且可以包括多个晶体管单元。由绝缘层产生的台阶使得难以使用平面化工艺来形成晶体管单元(如果不是不可能的话)。
因此,需要一种用于形成这样的绝缘层的改进的工艺。
发明内容
一个示例涉及一种方法。所述方法包括:在半导体主体的边缘区域中的第一表面中形成沟槽;在所述沟槽中并且在所述半导体主体的第一表面上形成绝缘层;以及使所述绝缘层平面化,从而保留填充所述沟槽的沟槽绝缘层,其中,形成所述绝缘层包括热氧化工艺。
另一个示例涉及一种晶体管器件。所述晶体管器件包括:处于半导体主体的内侧区域中的多个超结晶体管单元;以及布置在所述半导体主体的边缘区域中并且沿半导体主体的垂直方向从半导体主体的第一表面延伸到半导体主体中的沟槽绝缘层。
下文将参考附图解释示例。附图用来对某些原理进行举例说明,因而仅示出了用于理解这些原理所需的各方面。附图未按比例绘制。在附图中,相同的附图标记表示类似的特征。
附图说明
图1A到图1C示出了用于在半导体主体中形成沟槽绝缘层的方法的一个示例;
图2示出了图1A中所示的半导体主体的顶视图;
图3示出了包括多个半导体主体的晶片的顶视图;
图4A和图4B示出了用于在半导体主体中形成沟槽的方法的一个示例;
图5示出了图4A和图4B中所示的方法中的任选注入工艺;
图6示出了用于在半导体主体中形成沟槽的方法的另一示例;
图7示出了包括两个子层的绝缘层的一个示例;
图8示出了相对于半导体主体的第一表面的垂直位置的沟槽绝缘层的表面的垂直位置的不同示例;
图9A到图9D示出了平面化工艺的一个示例;
图10A和图10B示出了对图9A到图9D中所示的方法的修改;
图11A到图11C示出了对图10A和图10B中所示的方法的修改;
图12A到图12C示出了对图9A到图9D中所示的方法的进一步的修改;
图13A到图13C示出了对图9A到图9D中所示的方法的又一额外修改;
图14示出了根据一个示例的在半导体主体中形成注入区域;
图15示出了对图14中所示的方法的修改;
图16示出了在形成沟槽绝缘层之后的根据图14和图15之一的半导体主体;
图17示出了图16中所示的半导体主体的水平截面图;
图18示出了根据一个示例的超结晶体管器件的垂直截面图;
图19示出了根据另一示例的超结晶体管器件的垂直截面图。
图20详细地示出了包括沟槽绝缘层的边缘终端结构的一个示例;并且
图21示出了对图20中所示的边缘终端结构的修改。
具体实施方式
在下文的详细描述中将参考附图。附图构成了说明书的部分,并且出于举例说明的目的示出了可以如何使用和实施本发明的示例。应当理解,可以使本文描述的各种实施例的特征相互结合,除非做出另外的具体指示。
图1A到图1C示出了用于在半导体主体100的沟槽130中形成沟槽绝缘层21的方法的一个示例。图1A到图1C中的每者示出了在其中形成沟槽绝缘层21的半导体主体100的一个部分的垂直截面图。“垂直截面图”是垂直于半导体主体100的第一表面101的截面平面。根据一个示例,半导体主体100包括单晶半导体材料。半导体材料的示例包括但不限于硅(Si)、碳化硅(SiC)、氮化镓(GaN)或砷化镓(GaAs)等。
参考图1A,所述方法包括在半导体主体100的第一表面101中形成沟槽130。根据一个示例,在半导体主体100的边缘区域120中形成沟槽130,其中,边缘区域120在半导体主体100的水平平面中包围内侧区域110。在示出了根据一个示例的半导体主体100的顶视图的图2中对此给出了例示。
参考图2,可以形成沟槽130,以使得沟槽130包围内侧区域110。也就是说,沟槽130在第一表面101中形成了围绕内侧区域110的闭合环。仅仅出于举例说明目的,图2所示的示例中的沟槽130所形成的闭合环是矩形的。然而,这只是示例。根据其他示例(未示出),闭合环130可以是具有圆化角的矩形或者多边形等等。半导体主体100可以是晶体管器件的部分。在该情况下,可以在半导体主体的顶部上在靠近半导体主体100的边缘表面处形成栅极焊盘(未示出),其中,所述边缘表面沿横向方向终结所述半导体主体。在该情况下,沟槽可以被实施为使得栅极焊盘(可以是在沟槽130之后产生的)被布置在沟槽和边缘表面之间。换言之,栅极焊盘位于由沟槽形成的闭合环之外。
参考图1A,沟槽130具有底部131和侧壁132。根据一个示例,沟槽130被形成为使得底部131基本上平行于半导体主体100的第一表面101。根据一个示例,侧壁132基本上垂直于第一表面101。根据另一示例,如图1A所示,沟槽130被形成为使得侧壁132倾斜,以使得沟槽130从底部131向第一表面101变宽。
根据一个示例,沟槽130的宽度w是沟槽130的底部131处的侧壁132之间的最短距离,并且沟槽130的深度d是底部131与第一表面101所处的平面之间的最短距离。根据一个示例,作为沟槽深度d与沟槽宽度w之间的比的深宽比d:w小于1(1:1),特别是小于0.1(1:10),小于0.025(1:40),乃至小于0.01(1:100)。根据一个示例,沟槽130被形成为使得深度d处于250纳米(nm)和4微米(μm)之间,特别是处于500nm和2μm之间。根据一个示例,宽度w处于40微米和250微米之间。
参考图1B,所述方法还包括在沟槽130中以及在半导体主体100的第一表面101的顶部上形成绝缘层20。根据一个示例,绝缘层20被形成为使得绝缘层20完全覆盖半导体主体100的第一表面101以及沟槽130的底部131和侧壁132。根据一个示例,形成绝缘层20包括热氧化工艺。
参考图1B,形成于第一表面101上和沟槽130中的绝缘层20复现了沟槽130。也就是说,具有半导体主体100和绝缘层20的布置包括沟槽133,其中,该沟槽133的位置和几何形状是由半导体主体100中的先前沟槽130限定的。
参考图1C,所述方法还包括基于绝缘层20形成沟槽绝缘层21,使得绝缘层20被平面化,并且所得到的包括沟槽绝缘层21和半导体主体100的结构具有基本上平面的表面。这包括:绝缘层20被至少部分地从第一表面101去除,并且保留在沟槽130中,其中,保留在沟槽130中的绝缘层20的部分形成了沟槽绝缘层21。在图1C所示的示例中,平面表面是由沟槽绝缘层21的表面22以及半导体主体100的第一表面101形成的。也就是说,在该示例中,绝缘层被完全从第一表面101上去除。然而,这只是示例。根据另一示例(如图1C中的虚线所示),绝缘层20的部分23保留在第一表面101的顶部上。在该示例中,保留在第一表面101上的部分23和沟槽绝缘层21的表面22形成了平面表面。因而,半导体主体100的表面101和沟槽绝缘层的表面22被布置在同一水平平面中。根据另一示例,处于第一表面101的顶部上的绝缘层23不是绝缘层20的部分,而是在平面化工艺期间形成的另一层。下面将在本文中进一步解释其示例。
参考图1A到图1C,所述方法包括三个主要工艺序列:形成沟槽130(参见图1A);在沟槽130中以及在第一表面101的顶部上形成绝缘层20(参见图1B);以及平面化工艺(参见图1C)。下文将解释这些主要工艺序列的更加详细的示例。
尽管图1A到图1C示出了一个半导体主体1090的一个部分,但是应当指出,图1A到图1C所示的工艺步骤可以被应用于包括多个半导体主体的晶片。也就是说,当半导体主体100是最终可以被切割成块从而形成多个半导体主体的晶片的部分时,可以执行这些工艺步骤。图3示意性地示出了包括多个半导体主体100的晶片1的顶视图。图3中的虚线示出了一些线,能够沿着这些线对晶片1进行分割,以获得多个单个的半导体主体100(也可以被称为半导体管芯)。
图4A和图4B示出了用于形成沟槽130的方法的一个示例。图4A和图4B中的每者示出了在其中产生沟槽130的半导体主体100的一个部分的垂直截面图。参考图4A,所述方法包括在第一表面101的顶部上形成蚀刻掩模200,以使得蚀刻掩模200包括开口230。开口230不覆盖第一表面101的将在其中产生沟槽130的部分。
参考图4B,形成沟槽130还包括在由于未被开口230覆盖而被保留的那些区域中对半导体主体100进行蚀刻。根据一个示例,蚀刻工艺是各向同性蚀刻工艺。在该情况下,沟槽130可能沿开口230的侧壁231对蚀刻掩模200进行底切。形成沟槽130还包括去除蚀刻掩模200,以获得如图1A所示的半导体结构。
任选地,图4A和图4B所示的方法还包括在形成蚀刻掩模200之前执行的图5所示的损伤注入工艺。在该损伤注入工艺中,损伤粒子被注入到半导体主体100的第一表面101中,以沿第一表面形成损伤区域102。在图4A和图4B中以虚线示出了该任选的损伤区域102。损伤粒子是惰性气体离子,例如氩(Ar)离子。例如,注入计量是从1E13cm-3和5E15cm-3之间选择的,并且例如,注入能量是从20keV和80keV之间选择的。
在图4A和图4B所示的蚀刻工艺中,与半导体主体100的非损伤区域相比,损伤区域102被更快地蚀刻。这增强了沟槽130的倾斜侧壁的形成。
参考图4B,蚀刻工艺可以是各向同性蚀刻工艺。根据图6所示的另一示例,蚀刻工艺可以是各向异性蚀刻工艺。在该示例中,沟槽130的侧壁132基本上垂直于第一表面101。
参考上文,形成绝缘层20可以包括热氧化工艺。根据一个示例,绝缘层20完全由热氧化工艺形成。
根据图7所示的另一示例,形成绝缘层20包括通过热氧化工艺形成第一子层201以及通过沉积工艺在第一子层201的顶部上形成第二子层202。由于热氧化工艺的性质的原因,第一子层201是氧化物层,例如在半导体主体100由硅构成时是氧化硅(SiO2)层。根据一个示例,第二子层202是与第一子层201相同类型的氧化物层。例如,可以基于TEOS(四乙氧基硅烷)通过沉积工艺形成氧化硅层。根据一个示例,第一子层201被形成为使得其厚度处于200纳米(nm)和1微米(μm)之间,特别是处于300纳米和700纳米之间。形成第一子层201包括在氧化气氛下的第一温度工艺。根据一个示例,该第一温度工艺的持续时间是从20分钟和10小时(600分钟)之间选择的,并且所述温度是从800℃和1250℃之间选择的,特别是从950℃和1150℃之间选择的。
参考下文所做的进一步的解释,通过热氧化工艺形成氧化物层“消耗”半导体主体100的半导体材料。根据一个示例,第一子层201通过热氧化工艺形成,使得其厚度小于沟槽深度d的两倍。具体而言,第一子层的厚度可以处于沟槽深度的0.2倍和1.3倍之间,更具体而言,处于沟槽深度的0.3倍和1.1倍之间。任选地,所述方法还可以包括在沉积第二子层202之后执行的第二温度工艺,其中,该第二温度工艺可以有助于“压紧”所沉积的第二子层202
参考上文,绝缘层20至少部分地通过热氧化工艺形成。通过该工艺形成的热氧化物层“消耗”半导体主体100的半导体材料。形成具有特定厚度的热氧化物层将沿第一表面101消耗具有热氧化物层的大约一半的厚度的半导体层。例如,形成具有600纳米的厚度的热氧化物层将消耗大约300纳米的厚度的半导体层。也就是说,热氧化工艺之前的半导体主体100的第一表面101不同于热氧化工艺之后的半导体主体100的第一表面101。换言之,热氧化工艺之前的第一表面101的垂直位置不同于半导体主体100与热氧化工艺之后的热氧化物层之间的界面的垂直位置。尽管如此,在下文中,“第一表面101”仍然表示热氧化工艺之前的半导体主体100的表面和热氧化工艺之后的半导体主体100的表面(半导体主体100与热氧化物层之间的界面)。同理,“沟槽绝缘层21的表面22”表示平面化工艺之前和之后的表面22,其中,在平面化工艺中可以去除沟槽绝缘层21的一部分。
参考上文,所述方法包括平面化工艺,其中,按照形成基本上平面的表面的方式使绝缘层20平面化。取决于半导体主体100的第一表面101在平面化工艺之前相对于沟槽绝缘层21的表面22的垂直位置所处的垂直位置,关于在平面化工艺中去除绝缘层20的哪些部分(即,平面化工艺何时可以停止),可能存在不同情形。在下文中将参考图8对此加以解释。图8示出了第一表面101的垂直位置和沟槽绝缘层21的表面22的垂直位置可以相对于彼此如何定位的不同情形。在图8中,示出了沟槽绝缘层21的表面22相对于第一表面101的三种不同垂直位置。
在通过实线示出的第一种情形中,沟槽绝缘层21的表面22的垂直位置朝背离第一表面101的方向与半导体主体100的第一表面101隔开,使得沟槽绝缘层21的表面22处于第一表面101上方。在通过点划线示出的第二种情形中,沟槽绝缘层21的表面22的垂直位置基本上等于第一表面101的垂直位置。在通过划线示出的第三种情形中,沟槽绝缘层21的表面22的垂直位置在从第一表面101面向半导体主体100中的方向上与第一表面101的垂直位置隔开,使得沟槽绝缘层21的表面22处于半导体主体100的第一表面101下方。可以通过适当地调整沟槽130的深度和绝缘层20的厚度并且考虑在热氧化工艺中沿第一表面101对半导体层的“消耗”来调整沟槽绝缘层的表面22相对于第一表面101的位置的位置。
在第一种情形中,平面化工艺可以使得从第一表面101上方去除绝缘层20的材料,以使得绝缘层的部分保留在第一表面101上,并且剩余部分和沟槽绝缘层21形成了基本上平面的表面。任选地,绝缘层20被从第一表面101上方完全去除。在该情况下,沟槽绝缘层21被部分地去除,以使得沟槽绝缘层21的表面22与半导体主体100的第一表面101形成基本上平面的表面。
在第二种情形中,绝缘层20被从第一表面101上方完全去除。在该情况下,沟槽绝缘层21的表面22与半导体主体100的第一表面101形成基本上平面的表面。
在第三种情形中,平面化工艺可以使得其从第一表面101上方完全去除绝缘层20,并且沿第一表面101去除半导体主体的一部分。在该情况下,沟槽绝缘层21的表面22与半导体主体100的第一表面101形成基本上平面的表面。
该平面化工艺可以包括蚀刻工艺、抛光工艺或其组合。根据一个示例,平面化工艺仅包括抛光工艺。基于图1B中所示的结构,抛光工艺磨蚀绝缘层20的材料并任选地磨蚀半导体主体100的材料,直到获得平面表面为止。根据一个示例,抛光工艺包括CMP(化学机械抛光)工艺。一旦获得了平面表面就可以停止抛光工艺。下文将解释平面化工艺的其他示例。
在图9A到图9D所示的示例中,平面化工艺包括在沟槽绝缘层21的顶部上形成蚀刻掩模310。根据一个示例,如图9A所示,蚀刻掩模310被形成为使得其与形成在第一表面101的顶部上的绝缘层20的部分重叠。
参考图9B,所述方法还包括蚀刻工艺,其中将去除未被蚀刻掩模310覆盖的绝缘层20的那些部分。根据一个示例,蚀刻工艺是各向同性蚀刻工艺,以使蚀刻掩模310可以受到底切,也就是说,可以去除绝缘层20的处于蚀刻掩模310下方的部分。在蚀刻工艺之后,留下了沟槽绝缘层21和处于第一表面101顶部上的绝缘层20的残留物23。
参考图9C和图9D,所述方法还包括去除蚀刻掩模310以及至少去除残留物23的抛光工艺。抛光工艺可以包括CMP工艺。
在图9C所示的示例中,半导体主体100的第一表面101和沟槽绝缘层21的表面22形成了平面表面。取决于参考图8解释的三种情形中的哪种情形适用,存在关于抛光工艺可以何时停止的不同情形。在第一种情形中,在残留物23已被向下去除至半导体主体100的第一表面101时并且在沟槽绝缘层21的部分已被去除以使得沟槽绝缘层21的表面22和第一表面101形成平面表面时,抛光工艺停止。在第二种情形中,当残留物23已被向下去除至第一表面101时,抛光工艺停止。在第三种情形中,当残留物23已被去除并且半导体主体100的部分已被去除以使得沟槽绝缘层21的表面22与第一表面101形成平面表面时,抛光工艺停止。
在第一种情形中,半导体主体100可以充当抛光工艺的停止层。在抛光工艺中,可以使用具有抛光垫的电抛光工具,其中,随着残留物23被去除并且抛光垫到达半导体主体的表面,抛光工具的功耗可以增大。根据一个示例,对功耗进行监测,并且在功耗达到预定义阈值时,抛光工艺停止。除了抛光垫之外,抛光工艺可以使用浆料,其包括液体连同处于所述液体中的磨蚀颗粒。
图10A和图10B示出了对图9A到图9D所示的方法的修改。参考图10A,该方法包括在去除了蚀刻掩模310之后(如图10A所示)或者去除了蚀刻掩模310之前的另一氧化工艺。该热氧化工艺使得另一氧化物层24生长在半导体主体100的第一表面101的未被覆盖的部分上。
图10B示出了在抛光工艺之后的图10A中所示的结构。在该示例中,抛光工艺被控制为使得抛光工艺在残留物23和沟槽绝缘层21已经被向下平面化到另一氧化物层24的表面25时停止。在该示例中,另一氧化物层24的表面25和沟槽绝缘层21的表面22形成平面表面。沟槽绝缘层21可以被形成为使得其表面22具有等于另一氧化物层24的表面25的垂直位置的垂直位置。在该情况下,抛光工艺仅对残留物23平面化(侵蚀)。根据另一示例,沟槽绝缘层21被形成为使得其表面22在抛光工艺之前具有处于另一氧化物层24的表面25的垂直位置上方的垂直位置。在该示例中,抛光工艺还去除沟槽绝缘层21的部分。在这些工艺的每者中,另一氧化物层24充当抛光工艺的停止层,并且保护半导体主体免受可能在抛光工艺中发生的损伤。
图11A示出了对图10A和图10B所示的方法的修改。参考图11A,该方法包括在另一氧化物层24的顶部上以及残留物23和沟槽绝缘层21的顶部上形成氮化物层31。在该示例中,绝缘层20被形成为使得沟槽绝缘层21的表面22的垂直位置处于氮化物层31的覆盖另一氧化物层24的那些部分的表面32的垂直位置上方或与之相等。
参考图11B,所述方法还包括抛光工艺。根据一个示例,抛光工艺被执行为使得氮化物层31充当抛光工艺的停止层。也就是说,残留物23和沟槽绝缘层21被平面化直到沟槽绝缘层21的表面22和氮化物层31的表面32形成基本上平面的表面为止。
参考图11C,所述方法还包括去除氮化物层31。在该工艺之后,整个表面可以略微不平滑。然而,这是可接受的,或者可以通过蚀刻绝缘层21的表面的蚀刻工艺来消除。
图12A到图12C示出了对图9A到图9D所示的方法的进一步的修改。参考图12A,该方法包括:在绝缘层20上形成氮化物层31,在处于沟槽绝缘层21的顶部上的氮化物层31上形成蚀刻掩模320,以及去除氮化物层31的未被蚀刻掩模320覆盖的那些部分。参考图12C,所述方法还包括抛光工艺,其中,处于沟槽绝缘层21的顶部上的氮化物层32充当停止层。
在图13A到图13C中示出了对图9A到图9D所示的方法的另一修改。图13A到图13C中所示的方法与图9A到图9D所示方法的不同之处在于损伤注入工艺发生在形成蚀刻掩模310之前。
图13A示出了在损伤注入工艺期间的具有半导体主体100和绝缘层20的布置。在该工艺中,绝缘层的与其表面邻接的那些区域受到损伤。损伤区域进入绝缘层20多深将取决于损伤注入工艺中的注入能量。基本上注入能量越高,损伤区域进入绝缘区域20就越深。参考图13A,损伤颗粒被沿基本上垂直于半导体主体100的表面101的方向注入到绝缘层20中。根据一个示例,注入能量被选择为使得损伤颗粒不在绝缘层20的覆盖第一表面101和沟槽底部的那些部分中穿过绝缘层20。在该情况下,绝缘层20的非损伤区域至少沿沟槽侧壁保留下来,在沟槽侧壁处,在注入方向上,绝缘层20比在第一表面101和底部131上方更厚。
参考图13B,在绝缘层20的覆盖沟槽的底部131和侧壁132的那些部分上形成保护层310。此外,保护层310在横向方向上略微延伸超过绝缘层20的覆盖侧壁132的部分。
图13A到图13B所示的方法还包括蚀刻工艺,例如,各向同性蚀刻工艺。在该工艺中,与非损伤区域相比,绝缘层20的损伤区域被更快地蚀刻。保护层310宽泛地保护其覆盖的绝缘层20的那些部分以使其不被蚀刻。然而,在各向同性蚀刻工艺中,保护层310被底切,使得在保护层310的边缘下方,绝缘层20被去除。根据一个示例,蚀刻工艺的持续时间使得所述工艺在绝缘层20已被从表面101的顶部去除时停止。在该情况下,对绝缘层20的覆盖侧壁132的非损伤区域的蚀刻能够基本上被防止,因而在蚀刻工艺之后,绝缘层20已被从表面101去除,但是仍然填充沟槽。根据一个示例,在该工艺中不需要抛光工艺。根据一个示例,沟槽绝缘层21是超结晶体管器件的边缘终端结构的部分。参考图14,形成超结晶体管器件包括在半导体主体100中形成一个在另一个上方的多个第一注入区域11’,已经在半导体主体100中形成一个在另一个上方的多个第二注入区域12’。第一注入区域11’包括第一掺杂类型的掺杂剂原子,并且第二注入区域12’包括与第一掺杂类型互补的第二掺杂类型的掺杂剂原子。参考图14,可以在半导体主体100中形成均包括多个第一注入区域11’的多个结构以及均包括多个第二注入区域12’的多个结构。形成这些第一注入区域11’和第二注入区域12’可以包括在半导体衬底140的顶部上形成一个在另一个上方的多个外延层1501-150N,以及使用相应的注入掩模将第一掺杂类型的掺杂剂原子和第二掺杂类型的掺杂剂原子注入到多个外延层1501-150N中的每者中。该类型的工艺通常被称为多外延多注入(MEMI)工艺,这是一种众所周知的工艺,因而就此而言不再需要做进一步的解释。
如图14所示的包括被形成为一个在另一个上方的多个外延层1501-150N的半导体主体100是单晶半导体主体100。也就是说,在各个外延层1501-150N之间没有可见的边界或界面。然而,出于例示的目的,在图14中通过虚线示出了各个外延层1501-150N
参考上文,第一注入区11’和第二注入区12’可以通过MEMI工艺形成。根据另一示例,形成第一注入区11’和第二注入区12’可以包括在外延层1501-150N的每者中形成沟槽以及向这些沟槽的第一侧壁中注入第一类型掺杂剂原子并且向这些沟槽的第二侧壁中注入第二类型掺杂剂原子,以获得第一注入区域11’和第二注入区域12’。图16示出了包括通过这种方式形成的多个第一注入区域和第二注入区域的半导体主体100的垂直截面图。根据一个示例,第一类型掺杂剂原子包括砷(As)原子和锑(Sb)原子之一,并且第二类型掺杂剂原子包括扩散速度比As原子或Sb原子快的硼(B)原子。As和Sb是硅半导体主体中的n型掺杂剂,并且B是硅半导体主体中的p型掺杂剂。
在边缘区域120中形成沟槽130以及在沟槽130中和第一表面101的顶部上形成绝缘层20之前,在半导体主体100中形成第一注入区域11’和第二注入区域12’。图16示出了当在边缘区域120中形成沟槽130并且形成绝缘层20之后,也就是说在执行参考图1A和图1B所解释的方法步骤之后,根据图14和图15之一的半导体主体100。在图16中,仅示出了边缘区域120的部分,因而仅示出了沟槽130和沟槽绝缘层21的部分。
参考上文,形成沟槽绝缘层20包括热氧化工艺。在图14和图15所示的示例中,该氧化工艺不仅用于形成绝缘层20,还用于扩散和激活第一注入区域11’中包含的第一类型掺杂剂原子和第二注入区域12’中包含的第二类型掺杂剂原子,以形成多个第一掺杂类型的第一区域11和第二掺杂类型的第二区域12,其中,这些第一区域11和第二区域12中的每者沿半导体主体100的垂直方向延伸。
可以将参考图15解释的方法修改为第一类型掺杂剂原子和第二类型掺杂剂原子都被注入到第一侧壁和第二侧壁的每者中。在该示例中,使用具有不同扩散系数的第一类型掺杂剂原子和第二类型掺杂剂原子,从而在热氧化工艺结束时实现如图16所示的第一区域11和第二区域12。
在该热氧化工艺中绝缘层20的至少部分的生长与绝缘层20和半导体主体100之间的界面处的填隙原子的生成相关联。这些填隙原子在半导体主体100中快速扩散,并且可以促进一种类型的掺杂剂原子的扩散。例如,填隙原子促进硼(B)原子的扩散,与此同时它们阻碍砷(As)或锑(Sb)的扩散。这样做有助于形成相互隔开的第一区域11和第二区域12,特别是在第一类型掺杂剂原子和第二类型掺杂剂原子被注入到外延层1501-150N中的沟槽的相同侧壁中的情况下。将第一类型掺杂剂原子和第二类型掺杂剂原子注入到相同侧壁中可以包括两种注入工艺,一种注入工艺用于一种掺杂剂类型,或者可以包括一种注入工艺,其中注入包括第一类型和第二类型两者的掺杂剂原子的分子。根据一个示例,例如,氧化发生在存在水蒸气的湿氧化环境中。根据另一示例,氧化发生在干氧化环境中。
在图16所示的示例中,其中布置沟槽绝缘层21的沟槽侧壁位于第一区域11之一这。然而,这只是示例。根据另一示例(未示出),侧壁位于第二区域12之一中,或者跨越第一区域11和第二区域12之间的pn结。
图17示出了图16中所示的半导体100的水平截面图。参考该示例,第一区域11和第二区域12可以被形成为使得它们是沿半导体主体100的水平方向的细长区域。“水平方向”是平行于第一表面101的方向。
图18示出了基于图16所示的结构的超结晶体管器件的垂直截面图。形成该超结晶体管器件包括本文之前解释的平面化工艺中的任一种以获得平面化表面,并且包括形成多个晶体管单元。多个晶体管单元中的每者包括第二掺杂类型的主体区域13、嵌入在主体区域13中的第一掺杂类型的源极区14以及与主体区域13相邻并且通过栅极电介质16与主体区域13介电绝缘的栅极电极15。主体区域13的每者可以与第二区域12之一以及第一区域11的至少其中之一邻接。各个晶体管单元并联连接,其中,各个晶体管单元的栅极电极15连接至栅极节点G,并且各个晶体管单元的源极区14和主体区域13连接至公共源极电极41,其中,源极电极41连接至晶体管器件的源极节点S或者形成晶体管器件的源极节点S。在该示例中,晶体管器件的漏极区17是由半导体衬底140形成的。根据一个示例,衬底140具有第一掺杂类型。
参考图10A和图10B以及图11A到图11C,可以在平面化工艺之前在半导体主体100的第一表面101上形成氧化物层24。可以在平面化工艺之后去除该氧化物层24,或者可以在形成晶体管单元的工艺中使用该氧化物层24。
可以通过在栅极节点G和源极节点S之间施加驱动电压而按照常规方式对图18所示的晶体管器件进行控制,其中,当驱动电压在源极区14和第一区域11之间沿栅极电介质16在主体区域13中产生导电沟道时,晶体管器件处于导通状态。第一区域11是该晶体管器件中的漂移区。当驱动电压使得导电沟道中断时,晶体管器件处于截止状态。在截止状态下,当在源极节点和漏极节点之间施加对主体区域13和漂移区11之间的pn结进行反向偏置的电压时,耗尽区在漂移区11和作为晶体管器件中的补偿区域的第二区域12中扩大。
参考图18,具有沟槽绝缘层21的边缘终端结构还可以包括形成在沟槽绝缘层21的顶部上的场电极(场板)51。该场电极51连接至栅极节点G(如所示)或者连接至源极节点S(未示出)。通过沟槽绝缘层与半导体主体100电绝缘的该场电极51可以有助于在截止状态下对出现在边缘区域120中的电场进行塑形,以使得边缘区域中的电压阻挡能力不低于内侧区域中的电压阻挡能力。根据一个示例,第一区域11和第二区域12还形成在沟槽绝缘层21下方的边缘区域120中。
在图18所示的示例中,栅极电极15是形成在第一表面101的顶部上的平面电极。然而,这只是一个示例。根据图19所示的另一示例,栅极电极15是形成在从第一表面101延伸到半导体主体100中的沟槽中的沟槽电极。
如参考图18和图19解释的那样形成晶体管单元可以包括一种或多种平面化工艺。由于在形成晶体管单元之前具有半导体主体100和沟槽绝缘层21的结构的平面表面的原因,能够容易地执行这种平面化工艺。在根据图18的形成晶体管器件的工艺中,平面化工艺可以发生在(例如)形成接触孔之前或之后,源极电极41(之后)将在所述接触孔中连接至主体区域13和源极区14。在根据图19的形成晶体管器件的工艺中,平面化工艺可以发生在(例如)将栅极电极41形成在沟槽中之后。
参考图10A-图10B、图11A-图11C以及图12A-图12C,例如,可以在形成沟槽绝缘层21的工艺中使用平面化工艺来去除绝缘层20的残留物23。根据一个示例,使用同一平面化工艺去除绝缘层20的残留物23以及使内侧区域110上方的半导体主体100平面化。也就是说,可以从半导体主体100的表面101上方去除绝缘层20,可以至少部分地形成晶体管单元,并且之后可以发生平面化工艺。
在根据图18和图19的超结晶体管器件中,主体区域13或者如所示的经修改的主体区域13’可以与沟槽绝缘层21邻接。经修改的主体区域13’可以具有与主体区域13相同的掺杂浓度,并且经修改的主体区域13’连接至源极电极41,但不包括/毗邻源极区14。与主体区域13或者经修改的主体区域13’相比,沟槽绝缘层21可以延伸到半导体主体100中的更深处。
在图18和图19所示的超结晶体管器件中,沟槽绝缘层21是边缘终端结构的部分。在这些示例中,边缘区域120中的漂移区11和补偿区域12延伸至沟槽绝缘层21。然而,这只是示例。根据图20所示的另一示例,JTE(结终端扩展)结构60在沟槽绝缘层21下方延伸。JTE结构60连接至源极电极41,并且具有第二掺杂类型的有效掺杂浓度,其中,掺杂浓度朝背离内侧区域110的方向下降。JTE结构经由主体区域13或者经修改的主体区域13’连接至源极电极41,如图20所示。JTE结构60的下降的掺杂浓度可以是通过实施具有与经修改的主体区域13’邻接的第二掺杂类型的第一区域61和与第一区域61邻接并且在朝向背离内侧区域110的方向上与经修改的主体区域13’隔开的第一掺杂类型的第二区域62的JTE结构60来获得的。
参考图20,边缘终端结构还可以包括在垂直方向上从第一表面101延伸至漏极区(图20中未示出)的第一掺杂类型的沟道停止部71。沟道停止部71被布置在沟槽绝缘层21和沿横向方向使半导体主体100终止的边缘表面102之间。沟道停止部可以被实施为使其形成围绕内侧区域110的闭合环。此外,导电场板72可以布置在半导体主体100的表面101上的沟道停止部71的顶部上。根据一个示例,沟道停止部71的掺杂浓度使得沟道停止部不能被完全耗尽。然而,具有处于沟道停止部71和内侧区域110之间的JTE区域60以及漂移区11和补偿区域12的半导体结构可以被完全耗尽。
根据一个示例,沟槽绝缘层21的深度大于0.1微米,大于0.2微米,或甚至大于0.5微米。“深度”是沟槽绝缘层21在垂直方向上的尺寸,所述垂直方向是垂直于第一表面101的方向。根据一个示例,所述深度小于2微米或小于1.5微米。
在图18到图20所示的示例中,场电极51被布置在沟槽绝缘层21上,其中,沟槽绝缘层21和半导体主体100形成了基本上平面的表面。根据图21所示的另一示例,另一绝缘层81(例如,氧化物层)被形成在沟槽绝缘层21上,并且场电极51被形成在另一绝缘层81上。参考图21,另一绝缘层81也可以覆盖半导体主体100的平面表面101的部分。此外,场电极72可以被布置在另一绝缘层81的顶部上,并且场电极72可以通过延伸穿过另一绝缘层81的导电过孔而连接至沟道停止部71。
另一绝缘层81可以在沉积工艺中形成。取决于另一绝缘层81的形成方式,在沟槽绝缘层21和另一绝缘层81之间可以不存在可见边界。然而,出于例示目的,在图21中示出了这样的边界。
尽管本公开不受此限制,但是下文还是通过带有编号的示例展示了本公开的一个或多个方面。
示例1:一种方法,包括:在半导体主体的边缘区域中的第一表面中形成沟槽;在所述沟槽中和所述半导体主体的第一表面上形成绝缘层;以及使所述绝缘层平面化,从而保留填充所述沟槽的沟槽绝缘层,其中,形成所述绝缘层包括热氧化工艺。
示例2:根据示例1所述的方法,其中,形成所述沟槽包括将所述沟槽形成为使得其包围邻接所述边缘区域的内侧区域。
示例3:根据示例1或示例2所述的方法,其中,使所述绝缘层平面化包括至少部分地从所述半导体主体的第一表面上方去除所述绝缘层。
示例4:根据示例3所述的方法,其中,至少部分地从半导体主体的第一表面上方去除所述绝缘层包括从所述半导体主体的第一表面上方完全去除所述绝缘层。
示例5:根据示例3或示例4所述的方法,其中,至少部分地从半导体主体的第一表面上方去除所述绝缘层包括抛光工艺。
示例6:根据示例3或示例4所述的方法,其中,至少部分地从半导体主体的所述第一表面上方去除所述绝缘层包括:通过蚀刻工艺从所述第一表面上方去除所述绝缘层的部分,从而保留从所述半导体主体伸出的所述绝缘层的残留物;通过抛光工艺至少部分地去除所述残留物。
示例7:根据示例6所述的方法,还包括:在抛光工艺之前在所述第一表面的未被覆盖的部分上形成另一氧化物层和氮化物层的至少其中之一,其中,所述另一氧化物层和氮化物层的至少其中之一充当所述抛光工艺的停止层。
示例8:根据示例6或示例7所述的方法,其中,所述抛光工艺部分地去除所述沟槽绝缘层。
示例9:根据前述示例中的任何一项所述的方法,还包括:在形成所述绝缘层之前,在所述半导体主体中形成多个第一注入区域和多个第二注入区域,所述多个第一注入区域均包括第一掺杂类型的掺杂剂原子,所述多个第二注入区域均包括第二掺杂类型的掺杂剂原子。
示例10:根据示例9所述的方法,其中,形成所述多个第一注入区域和所述多个第二注入区域包括:形成一个在另一个上方的多个外延层;在形成所述多个半导体层中的相应的下一半导体层之前在所述多个半导体层中的至少一些半导体层中形成多个沟槽;以及将第一类型掺杂剂原子至少引入到所述多个沟槽的第一侧壁中以及将第二类型掺杂剂原子至少引入到所述多个沟槽的第二侧壁中。
示例11:根据示例10所述的方法,其中,将第一类型掺杂剂原子至少引入到所述多个沟槽的第一侧壁中包括将第一类型掺杂剂原子引入到所述多个沟槽的所述第一侧壁和所述第二侧壁两者中,并且其中,将第二类型掺杂剂原子至少引入到所述多个沟槽的第二侧壁中包括将第二类型掺杂剂原子引入到所述多个沟槽的所述第一侧壁和所述第二侧壁两者中。
示例12:根据前述示例中的任何一项所述的方法,还包括:在与所述边缘区域邻接的内侧区域中形成多个晶体管单元。
示例13:根据前述示例中的任何一项所述的方法,还包括:在沟槽绝缘层上形成场电极。
示例14:根据前述示例中的任何一项所述的方法,其中,所述第一表面在所述热氧化工艺中被完全氧化。
示例15:根据前述示例中的任何一项所述的方法,其中,通过所述热氧化工艺形成的热氧化物层的厚度处于所述沟槽的深度的0.2倍和1.3倍之间或者处于所述沟槽的深度的0.3倍和1.1倍之间。
示例16:根据前述示例中的任何一项所述的方法,其中,所述沟槽的深宽比小于1,小于0.1,小于0.025,或者小于0.01。
示例17:一种晶体管器件,包括:处于半导体主体的内侧区域中的多个超结晶体管单元;以及布置在所述半导体主体的边缘区域中并且沿半导体主体的垂直方向从半导体主体的第一表面延伸到半导体主体中的沟槽绝缘层。
示例18:根据示例17所述的晶体管器件,其中,所述绝缘层在垂直方向上的深度处于0.1微米和0.5微米之间。
示例19:根据示例17或示例18所述的晶体管器件,还包括:形成在所述沟槽绝缘层的顶部上的另一绝缘层。
示例20:根据示例17所述的晶体管器件,还包括:处于所述沟槽绝缘层的表面的顶部上或者处于所述另一绝缘层的表面的顶部上的导电场板,其中,所述场板连接至所述晶体管器件的源极节点或栅极。
示例21:根据示例17到示例20中的任何一项所述的晶体管器件,其中,所述沟槽绝缘层形成了围绕所述内侧区域的闭合环。
尽管已经参考说明性示例描述了本发明,但是不应从限定的意义上来理解这种描述。在参考了所述描述之后,说明性示例的各种修改和组合、以及本发明的其他示例对于本领域技术人员而言将是显而易见的。因此,意在使所附权利要求包含任何这样的修改或示例。

Claims (21)

1.一种方法,包括:
在半导体主体(100)的边缘区域(120)中的第一表面(101)中形成沟槽(130);
在所述沟槽(130)中并且在所述半导体主体(100)的所述第一表面(101)上形成绝缘层(20);以及
使所述绝缘层(20)平面化,从而保留填充所述沟槽(130)的沟槽绝缘层(21),
其中,形成所述绝缘层包括热氧化工艺。
2.根据权利要求1所述的方法,其中,形成所述沟槽(130)包括将所述沟槽形成为使其包围与所述边缘区域(120)邻接的内侧区域(110)。
3.根据权利要求1或权利要求2所述的方法,
其中,使所述绝缘层(20)平面化包括至少部分地从所述半导体主体(100)的所述第一表面(101)上方去除所述绝缘层(20)。
4.根据权利要求3所述的方法,其中,至少部分地从半导体主体(100)的所述第一表面(101)上方去除所述绝缘层(20)包括从半导体主体(100)的所述第一表面(101)上方完全去除所述绝缘层(20)。
5.根据权利要求3或权利要求4所述的方法,其中,至少部分地从所述半导体主体(100)的所述第一表面(101)上方去除所述绝缘层(20)包括抛光工艺。
6.根据权利要求3或权利要求4所述的方法,其中,至少部分地从所述半导体主体(100)的所述第一表面(101)上方去除所述绝缘层(20)包括:
通过蚀刻工艺从所述第一表面(101)上方去除所述绝缘层(20)的部分,从而保留所述绝缘层(20)的从所述半导体主体(100)伸出的残留物(23);
通过抛光工艺至少部分地去除所述残留物(23)。
7.根据权利要求6所述的方法,还包括:
在所述抛光工艺之前在所述第一表面(101)的未被覆盖的部分上形成另一氧化物层(24)和氮化物层(31)的至少其中之一,
其中,所述另一氧化物层(24)和氮化物层(31)的至少其中之一充当所述抛光工艺的停止层。
8.根据权利要求6或权利要求7所述的方法,其中,所述抛光工艺部分地去除所述沟槽绝缘层。
9.根据前述权利要求中的任何一项所述的方法,还包括:
在形成所述绝缘层之前,在所述半导体主体中形成多个第一注入区域(11’)和多个第二注入区域(12’),所述多个第一注入区域均包括第一掺杂类型的掺杂剂原子,所述多个第二注入区域均包括第二掺杂类型的掺杂剂原子。
10.根据权利要求9所述的方法,其中,形成所述多个第一注入区域(11’)和所述多个第二注入区域(12’)包括:
形成一个在另一个上方的多个外延层(1501-150N);
在形成所述多个半导体层(1501-150N)中的相应的下一半导体层之前,在所述多个半导体层(1501-150N)中的至少一些半导体层中形成多个沟槽;以及
将第一类型掺杂剂原子至少引入到所述多个沟槽的第一侧壁中以及将第二类型掺杂剂原子至少引入到所述多个沟槽的第二侧壁中。
11.根据权利要求10所述的方法,
其中,将第一类型掺杂剂原子至少引入到所述多个沟槽的第一侧壁中包括将第一类型掺杂剂原子引入到所述多个沟槽的第一侧壁和第二侧壁两者中,并且
其中,将第二类型掺杂剂原子至少引入到所述多个沟槽的第二侧壁中包括将第二类型掺杂剂原子引入到所述多个沟槽的第一侧壁和第二侧壁两者中。
12.根据前述权利要求中的任何一项所述的方法,还包括:
在与所述边缘区域(120)邻接的内侧区域(110)中形成多个晶体管单元。
13.根据前述权利要求中的任何一项所述的方法,还包括:
在所述沟槽绝缘层(21)上形成场电极(51)。
14.根据前述权利要求中的任何一项所述的方法,其中,所述第一表面(101)在所述热氧化工艺中被完全氧化。
15.根据前述权利要求中的任何一项所述的方法,其中,通过所述热氧化工艺形成的热氧化物层(201)的厚度处于所述沟槽(130)的深度的0.2倍和1.3倍之间或者处于所述沟槽(130)的深度的0.3倍和1.1倍之间。
16.根据前述权利要求中的任何一项所述的方法,
其中,所述沟槽(130)的深宽比小于1,小于0.1,小于0.025,或者小于0.01。
17.一种晶体管器件,包括:
多个超结晶体管单元(10),位于半导体主体(100)的内侧区域(110)中;
沟槽绝缘层(21),布置在所述半导体主体(100)的边缘区域(120)中并且沿所述半导体主体(100)的垂直方向从所述半导体主体(100)的第一表面(101)延伸到所述半导体主体(100)中。
18.根据权利要求17所述的晶体管器件,其中,所述沟槽绝缘层(21)在所述垂直方向上的深度大于0.1微米。
19.根据权利要求17或权利要求18所述的晶体管器件,还包括:
形成在所述沟槽绝缘层(21)的顶部上的另一绝缘层(81)。
20.根据权利要求17所述的晶体管器件,还包括:
处于所述沟槽绝缘层(21)的表面(22)的顶部上或者处于所述另一绝缘层(81)的表面的顶部上的导电场板(51),
其中,所述场板(51)连接至所述晶体管器件的源极节点(S)或栅极(G)。
21.根据权利要求17到权利要求20中的任何一项所述的晶体管器件,其中,所述沟槽绝缘层(21)形成了围绕所述内侧区域(110)的闭合环。
CN201910933727.8A 2018-10-02 2019-09-29 用于在半导体主体中形成绝缘层的方法和晶体管器件 Pending CN110993557A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102018124418.5A DE102018124418A1 (de) 2018-10-02 2018-10-02 Verfahren zum herstellen einer isolationsschicht in einem halbleiterkörper und halbleiterbauelement
DE102018124418.5 2018-10-02
DE102018125340.0 2018-10-12
DE102018125340 2018-10-12

Publications (1)

Publication Number Publication Date
CN110993557A true CN110993557A (zh) 2020-04-10

Family

ID=68136160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910933727.8A Pending CN110993557A (zh) 2018-10-02 2019-09-29 用于在半导体主体中形成绝缘层的方法和晶体管器件

Country Status (4)

Country Link
US (2) US11211483B2 (zh)
EP (1) EP3633712B1 (zh)
KR (1) KR20200038419A (zh)
CN (1) CN110993557A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118073403A (zh) * 2024-04-18 2024-05-24 深圳大学 一种超结器件终端结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993557A (zh) * 2018-10-02 2020-04-10 英飞凌科技奥地利有限公司 用于在半导体主体中形成绝缘层的方法和晶体管器件

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1348604A (zh) * 1999-12-24 2002-05-08 皇家菲利浦电子有限公司 埋置绝缘层上硅晶片顶层中制作有半导体元件的半导体器件的制造方法
US20020135025A1 (en) * 2001-03-23 2002-09-26 Samsung Electronics Co., Ltd. Semiconductor device having a trench isolation structure and method for fabricating the same
US20100032791A1 (en) * 2008-08-08 2010-02-11 Sony Corporation Semiconductor device and method of manufacturing the same
US20110049614A1 (en) * 2009-08-27 2011-03-03 Vishay-Siliconix Super junction trench power mosfet devices
US20110147830A1 (en) * 2009-12-21 2011-06-23 Alpha And Omega Semiconductor Incorporated Method of forming a self-aligned charge balanced power dmos
CN102468276A (zh) * 2010-11-04 2012-05-23 大中积体电路股份有限公司 功率半导体组件的终端结构及其制作方法
CN103022088A (zh) * 2011-09-21 2013-04-03 株式会社东芝 具有沟道结构体的半导体装置及其制造方法
CN103035673A (zh) * 2011-10-06 2013-04-10 飞兆半导体公司 用于功率半导体装置的边缘终端结构
US20140097491A1 (en) * 2012-10-05 2014-04-10 Texas Instruments Incorporated Dielectrically Terminated Superjunction FET
US20160013267A1 (en) * 2011-07-19 2016-01-14 Yeeheng Lee Termination of high voltage (hv) devices with new configurations and methods
US20160020308A1 (en) * 2014-07-18 2016-01-21 International Rectifier Corporation Edge Termination Structure Having a Termination Charge Region Below a Recessed Field Oxide Region
JP2016134546A (ja) * 2015-01-21 2016-07-25 トヨタ自動車株式会社 半導体装置と、その製造方法
US20170154956A1 (en) * 2015-11-26 2017-06-01 Infineon Technologies Austria Ag Method of Manufacturing Superjunction Semiconductor Devices with a Superstructure in Alignment with a Foundation
CN106935645A (zh) * 2015-12-30 2017-07-07 节能元件控股有限公司 具有底部栅极的金氧半场效晶体管功率元件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873837B1 (en) * 2006-06-28 2013-03-27 STMicroelectronics Srl Semiconductor power device having an edge-termination structure and manufacturing method thereof
JP5671966B2 (ja) * 2010-11-17 2015-02-18 富士電機株式会社 半導体装置の製造方法および半導体装置
JP5999748B2 (ja) * 2011-08-12 2016-09-28 ルネサスエレクトロニクス株式会社 パワーmosfet、igbtおよびパワーダイオード
US9698256B2 (en) 2014-09-24 2017-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Termination of super junction power MOSFET
US9620585B1 (en) * 2016-07-08 2017-04-11 Semiconductor Components Industries, Llc Termination for a stacked-gate super-junction MOSFET
DE102017115412A1 (de) 2016-07-14 2018-01-18 Infineon Technologies Austria Ag Verfahren zur Herstellung eines Supberjunctionbauelements
WO2018029951A1 (ja) 2016-08-08 2018-02-15 三菱電機株式会社 半導体装置
DE102016120300A1 (de) 2016-10-25 2018-04-26 Infineon Technologies Austria Ag Hochspannungsabschlussstruktur einer Leistungshalbleitervorrichtung
CN110993557A (zh) * 2018-10-02 2020-04-10 英飞凌科技奥地利有限公司 用于在半导体主体中形成绝缘层的方法和晶体管器件

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1348604A (zh) * 1999-12-24 2002-05-08 皇家菲利浦电子有限公司 埋置绝缘层上硅晶片顶层中制作有半导体元件的半导体器件的制造方法
US20020135025A1 (en) * 2001-03-23 2002-09-26 Samsung Electronics Co., Ltd. Semiconductor device having a trench isolation structure and method for fabricating the same
US20100032791A1 (en) * 2008-08-08 2010-02-11 Sony Corporation Semiconductor device and method of manufacturing the same
US20110049614A1 (en) * 2009-08-27 2011-03-03 Vishay-Siliconix Super junction trench power mosfet devices
US20110147830A1 (en) * 2009-12-21 2011-06-23 Alpha And Omega Semiconductor Incorporated Method of forming a self-aligned charge balanced power dmos
CN102468276A (zh) * 2010-11-04 2012-05-23 大中积体电路股份有限公司 功率半导体组件的终端结构及其制作方法
US20160013267A1 (en) * 2011-07-19 2016-01-14 Yeeheng Lee Termination of high voltage (hv) devices with new configurations and methods
CN103022088A (zh) * 2011-09-21 2013-04-03 株式会社东芝 具有沟道结构体的半导体装置及其制造方法
CN103035673A (zh) * 2011-10-06 2013-04-10 飞兆半导体公司 用于功率半导体装置的边缘终端结构
US20140097491A1 (en) * 2012-10-05 2014-04-10 Texas Instruments Incorporated Dielectrically Terminated Superjunction FET
US20160020308A1 (en) * 2014-07-18 2016-01-21 International Rectifier Corporation Edge Termination Structure Having a Termination Charge Region Below a Recessed Field Oxide Region
JP2016134546A (ja) * 2015-01-21 2016-07-25 トヨタ自動車株式会社 半導体装置と、その製造方法
US20170154956A1 (en) * 2015-11-26 2017-06-01 Infineon Technologies Austria Ag Method of Manufacturing Superjunction Semiconductor Devices with a Superstructure in Alignment with a Foundation
CN106935645A (zh) * 2015-12-30 2017-07-07 节能元件控股有限公司 具有底部栅极的金氧半场效晶体管功率元件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118073403A (zh) * 2024-04-18 2024-05-24 深圳大学 一种超结器件终端结构

Also Published As

Publication number Publication date
EP3633712A1 (en) 2020-04-08
US20200105918A1 (en) 2020-04-02
US20220077309A1 (en) 2022-03-10
US11869966B2 (en) 2024-01-09
EP3633712B1 (en) 2024-06-26
US11211483B2 (en) 2021-12-28
KR20200038419A (ko) 2020-04-13

Similar Documents

Publication Publication Date Title
JP5395309B2 (ja) 半導体装置およびその製造方法
JP4928947B2 (ja) 超接合デバイスの製造方法
JP5143567B2 (ja) 高電圧超接合端子の製造方法
JP5439763B2 (ja) 半導体装置および半導体装置の製造方法
US9899477B2 (en) Edge termination structure having a termination charge region below a recessed field oxide region
TWI442569B (zh) 包含具有超接面之溝渠金屬氧化物半導體場效應電晶體之半導體裝置
CN108807168B (zh) 功率整流器件
US20120018800A1 (en) Trench Superjunction MOSFET with Thin EPI Process
US10580775B2 (en) Dual deep trenches for high voltage isolation
US11961904B2 (en) Semiconductor device including trench gate structure and buried shielding region and method of manufacturing
CN105321824B (zh) 半导体装置的制造方法
US11869966B2 (en) Method for forming an insulation layer in a semiconductor body and transistor device
US8455318B2 (en) Process for manufacturing a power semiconductor device having charge-balance columnar structures on a non-planar surface, and corresponding power semiconductor device
US20210242319A1 (en) Silicon carbide trench semiconductor device
US6887760B2 (en) Fabrication process of a trench gate power MOS transistor with scaled channel
JP2010045335A (ja) 半導体基材内に材料層を製造する方法
WO2012105170A1 (ja) 半導体装置およびその製造方法
CN113257889B (zh) Ldmos器件和形成ldmos器件的方法
TWI429080B (zh) 誘電體分離型半導體裝置之製造方法
CN109216256B (zh) 沟槽隔离结构及其制造方法
TWI460823B (zh) 製造溝槽式金屬氧化物半導體場效電晶體的方法
CN114078767A (zh) 用于生产超结器件的方法
JP5671777B2 (ja) 半導体装置の製造方法
JP2022075117A (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination