CN110979105B - 一种贯通双边牵引供电***外部电源接入方案设计方法 - Google Patents

一种贯通双边牵引供电***外部电源接入方案设计方法 Download PDF

Info

Publication number
CN110979105B
CN110979105B CN201911348665.0A CN201911348665A CN110979105B CN 110979105 B CN110979105 B CN 110979105B CN 201911348665 A CN201911348665 A CN 201911348665A CN 110979105 B CN110979105 B CN 110979105B
Authority
CN
China
Prior art keywords
power supply
traction
external power
node
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911348665.0A
Other languages
English (en)
Other versions
CN110979105A (zh
Inventor
智慧
邓云川
林宗良
李剑
袁勇
宋梦容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Eryuan Engineering Group Co Ltd CREEC
Original Assignee
China Railway Eryuan Engineering Group Co Ltd CREEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Eryuan Engineering Group Co Ltd CREEC filed Critical China Railway Eryuan Engineering Group Co Ltd CREEC
Priority to CN201911348665.0A priority Critical patent/CN110979105B/zh
Publication of CN110979105A publication Critical patent/CN110979105A/zh
Application granted granted Critical
Publication of CN110979105B publication Critical patent/CN110979105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了电气化铁路牵引供电***规划领域的一种贯通双边牵引供电***外部电源接入方案设计方法,步骤包括:S1,获取贯通双边牵引供电***负荷过程数据,并且获取输入牵引变电所的位置信息合集和外部电源节点位置信息合集,构建初始位置信息合集;S2,建立贯通双边牵引供电***外部电源规划优化模型的目标函数,建立优化模型的约束条件;S3,根据目标函数和约束条件,对优化模型进行求解。本发明能有效降低外部电源间输电网线路投资成本,能有效降低治理三相电压电压不平衡所需的治理工程投资费用,为贯通双边牵引供电***运行损耗期节约投资成本。

Description

一种贯通双边牵引供电***外部电源接入方案设计方法
技术领域
本发明涉及电气化铁路牵引供电***规划领域,特别是涉及一种贯通双边牵引供电***外部电源接入方案设计方法。
背景技术
由于电气化铁路途径的部分区域无电网覆盖或缺乏有力电源支撑,通过单一外部电源供电难以满足高速动车组和货运列车对功率的巨大需求,严重时引起接触网电压跌落,危及行车安全。另一方面,在牵引变电所和末端分区所设置的电分相造成列车严重的速度损失,增大***能耗,在经过在坡度为30‰的电分相时可能使列车无法通过电分相。因此需要构建贯通双边牵引供电***,其优势是至少取消一半数量的电分相、大幅提升牵引供电***供电能力,降低损耗,达到双赢的目标。
但是贯通双边牵引供电***亟待解决的关键技术问题是如何解决牵引网穿越电流问题和严重的三相电压不平衡问题。因此在开展外部电源接入方案规划时应同时解决上述关键技术问题。
发明内容
本发明针对现有技术存在的问题而提供一种贯通双边牵引供电***外部电源接入方案设计方法,旨在能获得一个满足供电需求的外部电源接入方案,同时使得外部电源间输电网线路投资成本、治理三相电压电压不平衡所需的治理工程投资费用、贯通双边牵引供电***运行损耗和牵引网穿越电流有效降低。
为了实现上述发明目的,本发明提供了以下技术方案:
一种贯通双边牵引供电***外部电源接入方案设计方法,步骤包括:
S1,获取贯通双边牵引供电***负荷过程数据,并且获取输入牵引变电所的位置信息合集和外部电源节点位置信息合集;
S2,根据贯通双边牵引供电***负荷过程数据、输入牵引变电所的位置信息合集和外部电源节点位置信息合集,建立贯通双边牵引供电***外部电源规划优化模型的目标函数,所述目标函数为:使输电网线路投资成本、三相电压不平衡治理工程投资和贯通双边牵引供电***运行损耗期望值之和为最小;
根据贯通双边牵引供电***负荷过程数据和三相电压不平衡限值,建立优化模型的约束条件;
S3,对目标函数和约束条件进行求解,得到优化后的贯通双边牵引供电***外部电源接入方案。
作为本发明的优选方案,目标函数为,
Figure GDA0003632163930000021
其中,下标l代表外部电源的线路编号,g代表牵引变电所三相电压不平衡治理装置编号,tt代表牵引变电所牵引变压器编号,q代表相邻两个牵引变电所之间的牵引网编号,ΩL代表外部电源新建线路合集,ΩG代表牵引变电所三相电压不平衡治理装置合集,ΩT代表牵引变电所牵引变压器合集,ΩQN代表相邻两个牵引变电所之间的牵引网合集。cl为新建线路l的投资成本,ul为线路l的投建决策变量,ul=1为投资建设线路l,ul=0为不投资建设线路l,bg为新建牵引变电所三相电压不平衡治理装置g的投资成本,vg为三相电压不平衡治理装置g的投建决策变量,vg=1为投资建设三相电压不平衡治理装置g,vg=0为不投资建设三相电压不平衡治理装置g,
Figure GDA0003632163930000031
为线路l运行时有功功率损耗,
Figure GDA0003632163930000032
为牵引变电所单相牵引变压器tt运行时有功功率损耗,
Figure GDA0003632163930000033
为牵引网q运行时有功功率损耗,
Figure GDA0003632163930000034
表示贯通双边牵引供电***运行损耗期望值,σ1、σ2和σ3分别为输电网线路投资成本、三相电压不平衡治理工程投资和贯通双边牵引供电***运行损耗期望值的权重系数。
作为本发明的优选方案,约束条件包括:节点有功功率平衡约束、输电线路传输容量约束、牵引网穿越电流约束、牵引变电所三相电压不平衡约束和接触网工作电压波动约束。
作为本发明的优选方案,节点有功功率平衡约束的公式为,
Figure GDA0003632163930000035
其中,pts为连接外部电源i节点的牵引变电所ts的负荷有功功率,pd为外部电源i节点上其他负荷d的有功功率,ΩTS,i代表位于外部电源i节点处的牵引变电所合集,ΩD,i代表位于外部电源i节点处的其他负荷合集,ΩL,i代表以节点i为首端,节点j为末端的输电线路合集,ΩL,j代表以节点j为首端,节点i为末端的输电线路合集,pl,ij和pl,ji为输电线路l上传输的有功功率,其首末端外部电源节点分别为节点i和节点j,ij表示从首端外部电源节点i到末端外部电源节点j,ji表示从末端外部电源节点j到首端外部电源节点i。
作为本发明的优选方案,输电线路传输容量约束用公式表示为,
Figure GDA0003632163930000036
其中,fl为输电线路传输容量,-fl min、fl max分别为输电线路l的功率潮流下限和上限,ul为线路l的投建决策变量,ΩL代表外部电源新建线路合集,下标l代表外部电源的线路编号。
作为本发明的优选方案,将输电线路传输容量约束通过Big-M法转换为易于求解的混合整数线性约束表达式:
-ulM1≤fl≤ulM2
其中,M1和M2为的正数,ul为线路l的投建决策变量。
作为本发明的优选方案,牵引网穿越电流约束用公式表示为,
Figure GDA0003632163930000041
其中,下标x和x'均表示相序a,b,c的某一相,满足x≠x',
Figure GDA0003632163930000042
Figure GDA0003632163930000043
分别为流过牵引网的实际穿越电流和穿越电流允许值,
Figure GDA0003632163930000044
Figure GDA0003632163930000045
分别表示流入单相牵引变压器tt的两相电流,ε为单相牵引变压器tt的高压侧电压与牵引测电压的比值,Zs,i为牵引变电所ts接入的外部电源节点i处的等效阻抗,Ztt为牵引变压器单相牵引变压器tt的阻抗,Zq为牵引网阻抗,Zl,tsi为连接牵引变电所ts和外部电源节点i之间的线路阻抗。
作为本发明的优选方案,牵引变电所三相电压不平衡约束用公式表示为,
Figure GDA0003632163930000046
其中,
Figure GDA0003632163930000047
为牵引变电所ts产生的负序电流,VUF*为三相电压不平衡限值,Uq为牵引网网压,Sdc为牵引变电所处的短路容量,ε为单相牵引变压器tt的高压侧电压与牵引测电压的比值。
作为本发明的优选方案,接触网工作电压波动约束用公式表示为,
Figure GDA0003632163930000051
其中,
Figure GDA0003632163930000052
Figure GDA0003632163930000053
分别为牵引供电***正常运行时接触网允许的最低电压和最高电压,Uq为接触网工作电压。
基于相同的构思,本发明还提出了一种贯通双边牵引供电***外部电源接入方案设计***,包括至少一个处理器,以及与至少一个处理器通信连接的存储器;存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述任一项的方法。
与现有技术相比,本发明的有益效果:
(1)本发明提出了一种贯通双边牵引供电***外部电源规划的优化模型,使得所提出的外部电源接入方案能有效降低外部电源间输电网线路投资成本,能有效降低治理三相电压电压不平衡所需的治理工程投资费用,为贯通双边牵引供电***运行损耗期节约投资成本。
(2)本发明通过建立混合整数线性规划模型,便于利用优化求解器直接求解,避免了混合整数非线性模型求解的复杂性。
附图说明
图1为本发明一种贯通双边牵引供电***外部电源接入方案设计方法的流程图;
图2为本发明实施例2中贯通双边牵引供电***和外部电源示意图;
图3为本发明实施例2中通过本发明优化得到的贯通双边牵引供电***外部电源方案示意图;
图4为本发明实施例2中通过本发明优化得到的单边牵引供电***外部电源方案示意图。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1
本发明一种贯通双边牵引供电***外部电源接入方案设计方法的流程图如图1所示,具体步骤包括:
步骤1:利用专业的牵引负荷过程仿真平台,例如ELBAS/WEBANET软件或OpenPowerNet,输入铁路线路、列车与时刻表参数,仿真得到贯通双边牵引供电***负荷过程数据。输入牵引变电所和外部电源节点位置信息合集,得到一个初始位置信息合集。
步骤2:建立一个贯通双边牵引供电***外部电源规划优化模型的目标函数如下:目标函数是使输电网线路投资成本c、三相电压不平衡治理工程投资g和贯通双边牵引供电***运行损耗期望值F之和为最小。
Figure GDA0003632163930000061
公式(1)中,下标l代表外部电源的线路编号,g代表牵引变电所三相电压不平衡治理装置编号,tt代表牵引变电所牵引变压器编号,t代表相邻两个牵引变电所之间的牵引网编号。ΩL代表外部电源新建线路合集,ΩG代表牵引变电所三相电压不平衡治理装置合集,ΩT代表牵引变电所牵引变压器合集,ΩQN代表相邻两个牵引变电所之间的牵引网合集。cl为新建线路l的投资成本,ul为线路l的投建决策变量,ul=1为投资建设线路l,ul=0为不投资建设线路l,bg为新建牵引变电所三相电压不平衡治理装置g的投资成本,vg为三相电压不平衡治理装置g的投建决策变量,vg=1为投资建设三相电压不平衡治理装置g,vg=0为不投资建设三相电压不平衡治理装置g。
Figure GDA0003632163930000071
为线路l运行时有功功率损耗,
Figure GDA0003632163930000072
为牵引变电所单相牵引变压器tt运行时有功功率损耗,
Figure GDA0003632163930000073
为牵引网q运行时有功功率损耗,
Figure GDA0003632163930000074
表示贯通双边牵引供电***运行损耗期望值。σ1、σ2和σ3分别为输电网线路投资成本、三相电压不平衡治理工程投资和贯通双边牵引供电***运行损耗期望值的权重系数。
步骤3:根据外部电源和贯通双边牵引供电***的运行参数,三相电压不平衡限值,建立优化模型的约束条件。
其中包括节点功率平衡约束、输电线路传输容量约束、牵引网穿越电流约束、牵引变电所三相电压不平衡约束、接触网工作电压约束。
节点有功功率平衡约束:
Figure GDA0003632163930000075
公式(2)中,pts为连接外部电源i节点的牵引变电所ts的负荷有功功率,pd为外部电源i节点上其他负荷d的有功功率;下标ts代表连接外部电源i节点的牵引变电所负荷,d代表外部电源i节点上其他负荷。ΩTS,i代表位于外部电源i节点处的牵引变电所合集,ΩD,i代表位于外部电源i节点处的其他负荷,ΩLi代表以节点i为首端,节点j为末端的输电线路合集,ΩL,j代表以节点j为首端,节点i为末端的输电线路合集。pl,ij和pl,ji为输电线路l上传输的有功功率,其首末端外部电源节点分别为节点i和节点j,ij表示从首端外部电源节点i到末端外部电源节点j,ji表示从末端外部电源节点j到首端外部电源节点i。
输电线路传输容量约束:
Figure GDA0003632163930000081
公式(3)中,fl为输电线路传输容量,-fl min、fl max分别为输电线路l的功率潮流下限和上限,ul为线路l的投建决策变量,ΩL代表外部电源新建线路合集,下标l代表外部电源的线路编号。
牵引网穿越电流约束:
Figure GDA0003632163930000082
公式(4)中,下标x和x'均表示相序a,b,c的某一相,但二者取值不能同时一致,即满足x≠x',
Figure GDA0003632163930000083
Figure GDA0003632163930000084
分别为流过牵引网的实际穿越电流和穿越电流允许值,
Figure GDA0003632163930000085
Figure GDA0003632163930000086
分别表示流入单相牵引变压器tt的两相电流,ε为单相牵引变压器tt的高压侧电压与牵引测电压的比值,Zs,i为牵引变电所ts接入的外部电源节点i处的等效阻抗,Ztt为牵引变压器单相牵引变压器tt的阻抗,Zq为牵引网阻抗,Zl,tsi为连接牵引变电所ts和外部电源节点i之间的线路阻抗。
牵引变电所三相电压不平衡约束
Figure GDA0003632163930000087
公式(5)中,
Figure GDA0003632163930000091
为牵引变电所ts产生的负序电流,VUF*为《三相电压不平衡三相电压不平衡》(GB/T 15543-2008)中所规定的三相电压不平衡限值,Uq为牵引网网压,Sdc为牵引变电所处的短路容量,ε为单相牵引变压器tt的高压侧电压与牵引测电压的比值。
接触网工作电压波动约束
Figure GDA0003632163930000092
公式(6)中,根据《铁路电力牵引供电设计规范》(TB 10009-2016),
Figure GDA0003632163930000093
Figure GDA0003632163930000094
分别为牵引供电***正常运行时接触网允许的最低电压和最高电压。
步骤4:根据步骤2得到的目标函数和步骤3得到的约束条件,建立优化模型,进一步将优化模型中的混合整数非线性约束进行处理,将其转换为易于求解的混合整数线性规划模型。利用混合整数优化求解器(如CUROBI)对其进行求解,计算最优潮流分布,得到最终的贯通双边牵引供电***外部电源接入方案。
由于存在0-1变量ul和连续变量fl的乘积,公式(3)为非线性约束,采用Big-M法,将其转换为易于求解的混合整数线性约束表达式:
-ulM1≤fl≤ulM2 (7)
其中,M1和M2为足够大的正数。
实施例2
本发明中实施例以某条采用贯通双边牵引供电***的电气化铁路外部电源接入方案优化为例,其外部电源拓扑结构如图2所示。假设各220kV变电站短路容量为1500MVA。9个牵引变电所采用单相牵引变压器。σ1、σ2和σ3分别赋值0.4、0.3、0.3。通过使用专业牵引负荷仿真平台(如OpenPowerNet、ELBAS/WEBANET等)分别仿真得到贯通双边牵引供电***中9座牵引变电所的平均负荷数据,如表1所示。
表1.牵引变电所平均负荷(双边供电)
牵引变电所 平均负荷/MVA 牵引变电所 平均负荷/MVA
ZBQ 63.2225 SQQ 64.4
GJQ 85.4975 BDQ 95.87
KDQ 45.43 XLQ 37.34
CYQ 41.305 LLQ 45.02
CDQ 56.88
将表1中的负荷数据带入优化模型,得到如图3所示的贯通双边牵引供电***外部电源接入方案,图中S1~S5为计划新建的220kV电源点编号,LLQ~ZBQ为9座新建牵引变电所名称。输电线路里程如表2所示,总里程为812公里,220kV变电站配套16个间隔。根据测算,外部电源输电线路总投资约100亿元。应注意,为满足牵引网穿越电流约束,全线必须设置2个电分相。
表2.牵引变电所接入方案(双边供电)
Figure GDA0003632163930000101
牵引变电所三相电压不平衡治理装置安装容量结果如表3所示,全线三相电压不平衡补偿装置安装容量为185.06MVA。根据调查所得目前变流器造价为500元/kVA,初步投资费用为0.9253亿元。
表3.牵引变电所三相电压不平衡度与治理装置安装容量(双边供电)
Figure GDA0003632163930000102
Figure GDA0003632163930000111
当采用单边供电时,9座牵引变电所的平均负荷数据,如表4所示。
表4.牵引变电所平均负荷(单边供电)
牵引变电所 平均负荷/MVA 牵引变电所 平均负荷/MVA
ZBQ 86.05 SQQ 106.85
GJQ 124.60 BDQ 80.44
KDQ 46.59 XLQ 39.62
CYQ 38.14 LLQ 59.04
CDQ 90.75
在单边供电情况下,虽然无牵引网穿越电流约束,但限于牵引供电***结构影响,全线电分相数量仍达到9个。将表4中的负荷数据带入优化模型,由于采用单边供电,机车所需功率仅由单个牵引变电所供给,采用双边供电牵引供电***的网架结构时,牵引网末端电压难以满足约束条件,因此需要在电网侧新建两处220kV变电站S2-1和S2-2,得到如图4所示的单边牵引供电***外部电源接入方案,图中S1~S5为计划新建的220kV电源点编号,LLQ~ZBQ为9座新建牵引变电所名称。输电线路里程如表5所示,输电线路建设总里程为1161公里,同时新建220kV变电站两座,220kV变电站配套16个间隔。根据测算,外部电源输电线路总投资约120亿元。
表5.牵引变电所接入方案(单边供电)
Figure GDA0003632163930000112
Figure GDA0003632163930000121
牵引变电所三相电压不平衡治理装置安装容量结果如表6所示,全线三相电压不平衡补偿装置安装容量为86.34MVA。根据调查所得目前变流器造价为500元/kVA,初步投资费用为0.431亿元。
表6.牵引变电所三相电压不平衡度与治理装置安装容量(单边供电)
Figure GDA0003632163930000122
经综合比选可知,在外部电源薄弱的长大坡道区段,较使用单边牵引供电***,贯通双边牵引供电***不仅能有效降低外部电源投资费用,还能大幅减少电分相数量。

Claims (9)

1.一种贯通双边牵引供电***外部电源接入方案设计方法,其特征在于,包括以下步骤:
S1,获取贯通双边牵引供电***负荷过程数据,并且获取输入牵引变电所的位置信息合集和外部电源节点位置信息合集;
S2,根据所述贯通双边牵引供电***负荷过程数据、所述输入牵引变电所的位置信息合集和所述外部电源节点位置信息合集,建立贯通双边牵引供电***外部电源规划优化模型的目标函数,所述目标函数为:使输电网线路投资成本、三相电压不平衡治理工程投资和贯通双边牵引供电***运行损耗期望值之和为最小;
根据所述贯通双边牵引供电***负荷过程数据和三相电压不平衡限值,建立优化模型的约束条件;
S3,对所述目标函数和所述约束条件进行求解,得到优化后的贯通双边牵引供电***外部电源接入方案;
所述目标函数为,
Figure FDA0003632163920000011
其中,下标l代表外部电源的线路编号,g代表牵引变电所三相电压不平衡治理装置编号,tt代表牵引变电所牵引变压器编号,q代表相邻两个牵引变电所之间的牵引网编号,ΩL代表外部电源新建线路合集,ΩG代表牵引变电所三相电压不平衡治理装置合集,ΩT代表牵引变电所牵引变压器合集,ΩQN代表相邻两个牵引变电所之间的牵引网合集;cl为新建线路l的投资成本,ul为线路l的投建决策变量,ul=1为投资建设线路l,ul=0为不投资建设线路l,bg为新建牵引变电所三相电压不平衡治理装置g的投资成本,vg为三相电压不平衡治理装置g的投建决策变量,vg=1为投资建设三相电压不平衡治理装置g,vg=0为不投资建设三相电压不平衡治理装置g,
Figure FDA0003632163920000021
为线路l运行时有功功率损耗,
Figure FDA0003632163920000022
为牵引变电所单相牵引变压器tt运行时有功功率损耗,
Figure FDA0003632163920000023
为牵引网q运行时有功功率损耗,
Figure FDA0003632163920000024
表示贯通双边牵引供电***运行损耗期望值,σ1、σ2和σ3分别为输电网线路投资成本、三相电压不平衡治理工程投资和贯通双边牵引供电***运行损耗期望值的权重系数。
2.如权利要求1所述的一种贯通双边牵引供电***外部电源接入方案设计方法,其特征在于,所述约束条件包括:节点有功功率平衡约束、输电线路传输容量约束、牵引网穿越电流约束、牵引变电所三相电压不平衡约束和接触网工作电压波动约束。
3.如权利要求2所述的一种贯通双边牵引供电***外部电源接入方案设计方法,其特征在于,所述节点有功功率平衡约束的公式为,
Figure FDA0003632163920000025
其中,pts为连接外部电源i节点的牵引变电所ts的负荷有功功率,pd为外部电源节点i上其他负荷d的有功功率,ΩTS,i代表位于外部电源i节点处的牵引变电所合集,ΩD,i代表位于外部电源i节点处的其他负荷合集,ΩL,i代表以节点i为首端,节点j为末端的输电线路合集,ΩL,j代表以节点j为首端,节点i为末端的输电线路合集,pl,ij和pl,ji为输电线路l上传输的有功功率,其首末端外部电源节点分别为节点i和节点j,ij表示从首端外部电源节点i到末端外部电源节点j,ji表示从末端外部电源节点j到首端外部电源节点i。
4.如权利要求2所述的一种贯通双边牵引供电***外部电源接入方案设计方法,其特征在于,所述输电线路传输容量约束用公式表示为,
Figure FDA0003632163920000031
其中,fl为输电线路传输容量,-fl min、fl max分别为输电线路l的功率潮流下限和上限,ul为线路l的投建决策变量,ΩL代表外部电源新建线路合集,下标l代表外部电源的线路编号。
5.如权利要求4所述的一种贯通双边牵引供电***外部电源接入方案设计方法,其特征在于,将所述输电线路传输容量约束通过Big-M法转换为易于求解的混合整数线性约束表达式:
-ulM1≤fl≤ulM2
其中,M1和M2为的正数,ul为线路l的投建决策变量。
6.如权利要求2所述的一种贯通双边牵引供电***外部电源接入方案设计方法,其特征在于,所述牵引网穿越电流约束用公式表示为,
Figure FDA0003632163920000032
其中,下标x和x'均表示相序a,b,c的某一相,x≠x',
Figure FDA0003632163920000033
Figure FDA0003632163920000034
分别为流过牵引网的实际穿越电流和穿越电流允许值,
Figure FDA0003632163920000035
Figure FDA0003632163920000036
分别表示流入单相牵引变压器tt的两相电流,ε为单相牵引变压器tt的高压侧电压与牵引测电压的比值,Zs,i为牵引变电所ts接入的外部电源节点i处的等效阻抗,Ztt为牵引变压器单相牵引变压器tt的阻抗,Zq为牵引网阻抗,Zl,tsi为连接牵引变电所ts和外部电源节点i之间的线路阻抗。
7.如权利要求2所述的一种贯通双边牵引供电***外部电源接入方案设计方法,其特征在于,所述牵引变电所三相电压不平衡约束用公式表示为,
Figure FDA0003632163920000041
其中,
Figure FDA0003632163920000042
为牵引变电所ts产生的负序电流,VUF*为三相电压不平衡限值,Uq为牵引网网压,Sdc为牵引变电所处的短路容量,ε为单相牵引变压器tt的高压侧电压与牵引测电压的比值。
8.如权利要求2所述的一种贯通双边牵引供电***外部电源接入方案设计方法,其特征在于,所述接触网工作电压波动约束用公式表示为,
Figure FDA0003632163920000043
其中,
Figure FDA0003632163920000044
Figure FDA0003632163920000045
分别为牵引供电***正常运行时接触网允许的最低电压和最高电压,Uq为接触网工作电压。
9.一种贯通双边牵引供电***外部电源接入方案设计***,其特征在于,包括至少一个处理器,以及与所述至少一个处理器通信连接的存储器;所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1至8中任一项所述的方法。
CN201911348665.0A 2019-12-24 2019-12-24 一种贯通双边牵引供电***外部电源接入方案设计方法 Active CN110979105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911348665.0A CN110979105B (zh) 2019-12-24 2019-12-24 一种贯通双边牵引供电***外部电源接入方案设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911348665.0A CN110979105B (zh) 2019-12-24 2019-12-24 一种贯通双边牵引供电***外部电源接入方案设计方法

Publications (2)

Publication Number Publication Date
CN110979105A CN110979105A (zh) 2020-04-10
CN110979105B true CN110979105B (zh) 2022-06-14

Family

ID=70074860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911348665.0A Active CN110979105B (zh) 2019-12-24 2019-12-24 一种贯通双边牵引供电***外部电源接入方案设计方法

Country Status (1)

Country Link
CN (1) CN110979105B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113076660B (zh) * 2021-04-28 2023-01-31 中铁二院工程集团有限责任公司 一种混合电源***双边供电方式电气化铁路环流计算方法
CN113258579B (zh) * 2021-06-28 2023-01-31 中铁二院工程集团有限责任公司 混合电源模式双边供电***电气化铁路短路电流计算方法
CN114336641B (zh) * 2022-03-17 2022-05-24 西南交通大学 一种三相供电穿越功率利用***及控制方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310279A (ja) * 1995-05-18 1996-11-26 Nissin Electric Co Ltd 無効電力補償装置
JP2000069763A (ja) * 1998-08-24 2000-03-03 Nissin Electric Co Ltd 電鉄用電力供給装置
JP2007215314A (ja) * 2006-02-09 2007-08-23 Tokyo Electric Power Co Inc:The 分散型電源を配電ネットワークに連系する際の条件を決定する支援システム及びプログラム
CN103368173A (zh) * 2013-05-21 2013-10-23 南方电网科学研究院有限责任公司 含柔性直流输电的交直流并列***有功潮流优化分配方法
CN103490410A (zh) * 2013-08-30 2014-01-01 江苏省电力设计院 一种基于多目标优化的微电网规划和容量配置方法
CN203592908U (zh) * 2013-11-18 2014-05-14 中铁第一勘察设计院集团有限公司 一种直流-交流牵引供电***
US8772954B1 (en) * 2013-04-15 2014-07-08 Caterpillar Inc. Power balancing for a dual generator single DC link configuration for electric drive propulsion system
EP2942855A1 (en) * 2014-05-08 2015-11-11 Rheinisch-Westfälisch-Technische Hochschule Aachen Method and system for monitoring distribution systems
CN105071377A (zh) * 2015-07-17 2015-11-18 华中科技大学 一种供电岛
CN105790274A (zh) * 2016-03-09 2016-07-20 西南交通大学 一种贯通供电***变流器型牵引变电所潮流调控装置及其调控方法
CN106410817A (zh) * 2016-09-29 2017-02-15 湘潭大学 一种牵引供电***负序无功和电压波动综合优化补偿方法
CN106505593A (zh) * 2016-10-14 2017-03-15 国网信通亿力科技有限责任公司 一种基于大数据的配变三相不平衡分析与负荷调整的方法
CN107404115A (zh) * 2017-09-05 2017-11-28 山东鼎维数字技术有限公司 一种远程分布式直流供电***及其控制方法
CN108767891A (zh) * 2018-03-15 2018-11-06 国网浙江象山县供电有限公司 中压配电网单条中压馈线光伏消纳模型
CN109435783A (zh) * 2018-10-25 2019-03-08 中铁二院工程集团有限责任公司 用于电气化铁路牵引供电***at供电方式的负序治理***
CN109659980A (zh) * 2019-01-22 2019-04-19 西南交通大学 集成混合储能与光伏装置的牵引供电***能量管理优化方法
CN109687484A (zh) * 2019-01-22 2019-04-26 西南交通大学 一种电气化铁路外部电网接入方案优化设计方法
CN110103779A (zh) * 2019-05-13 2019-08-09 西南交通大学 一种电缆贯通交流供电***的牵引变电所设计方法
CN110247365A (zh) * 2019-06-20 2019-09-17 西南交通大学 一种电气化铁路贯通供电***及其故障区段识别方法
CN110365039A (zh) * 2018-03-26 2019-10-22 北京天诚同创电气有限公司 微电网逆变器的控制方法、控制装置以及微电网逆变器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2505386A (en) * 2011-06-13 2014-02-26 Gridpoint Inc Valuating energy management systems
US8977524B2 (en) * 2012-03-06 2015-03-10 Siemens Aktiengesellschaft Interior point method for reformulated optimal power flow model
EP2831972B1 (en) * 2012-03-30 2016-02-03 Sony Corporation Energy storage
EP2806520A1 (en) * 2013-05-22 2014-11-26 Vito NV Power supply network control system and method
US10218179B2 (en) * 2014-03-07 2019-02-26 The Regents Of The University Of California Method and system for dynamic intelligent load balancing
CN104210385B (zh) * 2014-08-19 2016-09-07 吉林大学 全程无负序间歇无供电网的电气化铁路电网***
CN107104443B (zh) * 2017-06-21 2023-05-23 西南交通大学 一种电力电子变压器

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08310279A (ja) * 1995-05-18 1996-11-26 Nissin Electric Co Ltd 無効電力補償装置
JP2000069763A (ja) * 1998-08-24 2000-03-03 Nissin Electric Co Ltd 電鉄用電力供給装置
JP2007215314A (ja) * 2006-02-09 2007-08-23 Tokyo Electric Power Co Inc:The 分散型電源を配電ネットワークに連系する際の条件を決定する支援システム及びプログラム
US8772954B1 (en) * 2013-04-15 2014-07-08 Caterpillar Inc. Power balancing for a dual generator single DC link configuration for electric drive propulsion system
CN103368173A (zh) * 2013-05-21 2013-10-23 南方电网科学研究院有限责任公司 含柔性直流输电的交直流并列***有功潮流优化分配方法
CN103490410A (zh) * 2013-08-30 2014-01-01 江苏省电力设计院 一种基于多目标优化的微电网规划和容量配置方法
CN203592908U (zh) * 2013-11-18 2014-05-14 中铁第一勘察设计院集团有限公司 一种直流-交流牵引供电***
EP2942855A1 (en) * 2014-05-08 2015-11-11 Rheinisch-Westfälisch-Technische Hochschule Aachen Method and system for monitoring distribution systems
CN105071377A (zh) * 2015-07-17 2015-11-18 华中科技大学 一种供电岛
CN105790274A (zh) * 2016-03-09 2016-07-20 西南交通大学 一种贯通供电***变流器型牵引变电所潮流调控装置及其调控方法
CN106410817A (zh) * 2016-09-29 2017-02-15 湘潭大学 一种牵引供电***负序无功和电压波动综合优化补偿方法
CN106505593A (zh) * 2016-10-14 2017-03-15 国网信通亿力科技有限责任公司 一种基于大数据的配变三相不平衡分析与负荷调整的方法
CN107404115A (zh) * 2017-09-05 2017-11-28 山东鼎维数字技术有限公司 一种远程分布式直流供电***及其控制方法
CN108767891A (zh) * 2018-03-15 2018-11-06 国网浙江象山县供电有限公司 中压配电网单条中压馈线光伏消纳模型
CN110365039A (zh) * 2018-03-26 2019-10-22 北京天诚同创电气有限公司 微电网逆变器的控制方法、控制装置以及微电网逆变器
CN109435783A (zh) * 2018-10-25 2019-03-08 中铁二院工程集团有限责任公司 用于电气化铁路牵引供电***at供电方式的负序治理***
CN109659980A (zh) * 2019-01-22 2019-04-19 西南交通大学 集成混合储能与光伏装置的牵引供电***能量管理优化方法
CN109687484A (zh) * 2019-01-22 2019-04-26 西南交通大学 一种电气化铁路外部电网接入方案优化设计方法
CN110103779A (zh) * 2019-05-13 2019-08-09 西南交通大学 一种电缆贯通交流供电***的牵引变电所设计方法
CN110247365A (zh) * 2019-06-20 2019-09-17 西南交通大学 一种电气化铁路贯通供电***及其故障区段识别方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
基于LCC的外部电源薄弱地区同相贯通牵引供电方案优化;陈民武等;《中国铁道科学》;20190515(第03期);104-111页 *
电气化铁路牵引变电所位置及安装容量优化设计;陈宏伟等;《电力***及其自动化学报》;20161115(第11期);104-110页 *
贯通式同相供电方案优化设计;蒋俊等;《电气化铁道》;20171015(第05期);31-34页 *
高速铁路牵引变压器容量与配置方案优化研究;陈民武等;《中国铁道科学》;20130915(第05期);70-75页 *

Also Published As

Publication number Publication date
CN110979105A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN110979105B (zh) 一种贯通双边牵引供电***外部电源接入方案设计方法
He et al. Harmonic resonance assessment to traction power-supply system considering train model in China high-speed railway
CN101752870B (zh) 中压配电网可用供电能力分析方法
CN103839116B (zh) 一种基于不同供电区域的变电站容量配置方法
Chen Criteria to estimate the voltage unbalances due to high-speed railway demands
CN202026095U (zh) 一种用于高压直流输电工程的数模混合式的仿真试验平台
CN103236023B (zh) 一种交直流输电适用范围的获取方法
CN110611323B (zh) 一种电气化铁路同相供电综合补偿装置及其综合补偿方法
Pilo et al. A simulation tool for the design of the electrical supply system of high-speed railway lines
Cui et al. High‐frequency resonance suppression of high‐speed railways in China
CN210224973U (zh) 一种电气化铁路同相供电综合补偿装置
CN107176063B (zh) 一种电气化铁路外部电网供电构造
CN106033894A (zh) 判断特高压直流多落点电网稳定性的方法
Bader et al. Adaptation of a traction DC power system for high-speed traffic
CN106651168A (zh) 一种评估电铁对电网影响的方法及装置
CN116054126A (zh) 一种电气化铁路贯通供电***的等效方法
Chen et al. Systematized short-circuit analysis of a 2× 25 kV electric traction network
CN109359344B (zh) 考虑普铁和高铁客货混跑影响的建模方法
Kilter et al. Modelling of high-speed electrical railway system for transmission network voltage quality analysis: Rail Baltic case study
Ghanizadeh et al. Harmonic disturbance compensating and monitoring in electric traction system
Hosseini et al. Power quality improvement of DC electrified railway distribution systems using hybrid filters
Panda et al. Cost‐effective upgrade of the Dutch traction power network: Moving to Bi‐directional and controllable 3 kV DC substations for improved performance
Kilter et al. Assessment of transmission network voltage unbalance in connection of high-speed electrical railway connection
Battistelli et al. Short circuit modelling and simulation of 2× 25 kV high speed railways
Khudonogov et al. Assessment of the Repair Modes Impact on the System of External Power Supply System on Throughput Capacity of Traction Power Supply System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant