CN110975865B - 高导光率高吸附性能净化空气用光催化复合剂的制备方法 - Google Patents

高导光率高吸附性能净化空气用光催化复合剂的制备方法 Download PDF

Info

Publication number
CN110975865B
CN110975865B CN201911329235.4A CN201911329235A CN110975865B CN 110975865 B CN110975865 B CN 110975865B CN 201911329235 A CN201911329235 A CN 201911329235A CN 110975865 B CN110975865 B CN 110975865B
Authority
CN
China
Prior art keywords
photocatalytic
composite
parts
tio
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911329235.4A
Other languages
English (en)
Other versions
CN110975865A (zh
Inventor
金小燕
曾亮亮
方桂煌
张国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoxing Lanzhu New Material Technology Co ltd
Original Assignee
Shaoxing Lanzhu New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoxing Lanzhu New Material Technology Co ltd filed Critical Shaoxing Lanzhu New Material Technology Co ltd
Priority to CN201911329235.4A priority Critical patent/CN110975865B/zh
Publication of CN110975865A publication Critical patent/CN110975865A/zh
Application granted granted Critical
Publication of CN110975865B publication Critical patent/CN110975865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

本发明公开一种高导光率高吸附性能净化空气用光催化复合剂的制备方法,包括以下步骤:1)合成复合吸附载体;2)合成Pd/TiO2复合胶体溶液:其中Pd/TiO2复合胶体溶液中Pd含量控制在0.001‑0.1wt%;3)将步骤1)制备的复合吸附载体浸入步骤2)制备的Pd/TiO2复合胶体溶液中10‑120min,取出25‑100℃烘干即可制备得到高导光率净化空气用光催化复合剂;本发明兼具高净化效率、良好的耐水性能以及高吸附性能。

Description

高导光率高吸附性能净化空气用光催化复合剂的制备方法
技术领域
本发明涉及空气净化材料技术领域,具体讲是一种高导光率高吸附性能净化空气用光催化复合剂的制备方法。
背景技术
目前市场上存在各种净化空气用产品如活性炭、光触媒(光催化)、除醛剂等产品,但涉及光催化活性炭颗粒或光催化复合多孔吸附产品相对较少,而部分光催化复合产品制备也主要以含钛基液体或二氧化钛溶胶液体为前驱液经浸泡、烘干、高温处理等工序,有些光催化净化空气效果不是很理想,光催化负载方法主要有粉体烧结法、浸渍提拉法、溶胶-凝胶法、化学气相沉积法等。虽然这些方法制备的TiO2粒度小但稳定差,纳米粒子容易团聚,光催化活性会下降,制备工艺复杂,技术应用推广难,费用高,尤其是通过500℃-800℃以上高温晶化烧结其能耗大,烧制晶化处理不当易导致二氧化钛膜与基材结合牢固性差而脱落或掉粉,且该类工艺制作的将光催化剂沉积在活性炭、沸石和分子筛等多孔吸附载体表面上,光催化剂很难沉积在吸附载体里面的小孔或微孔道中,如溶胶-凝胶法制备光催化活性炭颗粒,二氧化钛膜主要沉积在活性炭载体中孔(孔径约在2-50nm范围)、大孔(孔直径≥50nm)和活性炭表面,很少能进入活性炭吸附内层小孔或微孔道中,且该类方法设备成本和工艺条件导致推广应用难度大。而活性炭载体在空气净化处理甲醛小分子时吸附饱和后甲醛分子停留吸附在小微孔道内,从而影响光催化降解甲醛效率,甲醛分子只能通过扩散方式转移到大孔或载体外表面的光催化剂上被分解。
将二氧化钛粉末与活性炭粉末混合制光催化剂或活性炭颗粒催化剂可以将二氧化钛催化剂与活性炭吸附剂充分接触制成光催化剂,但该工艺存在高温处理工序,成本高。如CN108722388A公开了一种空气净化的光催剂。此催化剂是通过氧化锌、活性炭和二氧化钛粉末混合后高温烧制。同时,市场上活性炭颗粒存在耐水性差、或机械强度低或光利用率低等弊端。耐水性差的活性炭颗粒碰到水或长期暴露在潮湿环境中,活性炭表面会出现开裂粉化而影响活性炭外表层光催化膜。
光催化降解有机物需要有空气中氧气分子(O2)或水分子(H2O)参与,产生具有强氧化性能的自由基如氧自由基(·O2)和氢氧自由基(·OH)。这些自由基能灭菌或抑菌、分解有机污染物,最终将有机物分解矿化成无毒的水(H2O)和二氧化碳(CO2),因而具有极强的杀菌、除臭、防霉和净化空气功能,充足的氧分子或水分子能大大提高分解有机物净化空气效率。因此,活性炭颗粒对水分子吸附性能将影响光催化降解有机污染物效率。
发明内容
本发明所要解决的技术问题是,克服以上现有技术的缺点:提供一种高净化效率且兼具良好的耐水性能以及高效利用光源的具有高吸附性能的高导光率净化空气用光催化复合剂的制备方法。
通过吸附剂和光催化剂混合均匀制成光催化净化产品可以避免如浸渍提拉法、溶胶-凝胶法、液相沉积等方法制得光催化剂主要沉积在吸附颗粒外表面和大孔孔道弊端,但如何将光源引入到净化产品吸附内层进行光催化反应,提高光催化效率值得研究,本发明通过玻璃纤维和硅胶引入到吸附剂和光催化剂混合制备光催化净化产品中,达到光线在吸附颗粒载体内通过光透射或反射到达载体内部的光催化剂表面进行光催化反应。
本发明的技术解决方案如下:一种高导光率高吸附性能净化空气用光催化复合剂的制备方法,包括以下步骤:
1)合成复合吸附载体:将以下重量份的各组分充分混合搅匀后造粒成型、30-100℃烘干:竹质活性炭粉 30-50份,纳米二氧化钛粉10-30份,玻璃纤维 5-10份,浮石粉20-40份,固含量为20%的硅溶胶 10-20份,质量分数为30%的双氧水 1-10份;
2)合成Pd/TiO2复合胶体溶液:首先将硝酸钯溶解在浓硝酸中,搅拌均匀并加热到25-80℃,在搅拌下滴加钛盐前驱物,继续搅拌30-60min,加水控制pH值低于5;然后连续搅拌10-24h,波长254nm紫外灯光照射下继续搅拌24-48h,制备得到TiO2含量为0.2-5.0wt%的Pd/TiO2复合胶体溶液,其中Pd/TiO2复合胶体溶液中Pd含量控制在0.001-0.1wt%;
3)将步骤1)制备的复合吸附载体浸入步骤2)制备的Pd/TiO2复合胶体溶液中10-120min,取出25-100℃烘干即可制备得到高导光率净化空气用光催化复合剂。
所述硝酸钯中Pd的质量百分含量为39.5%。
所述浓硝酸的质量分数为65-68%。
所述紫外灯的功率10-50W。
所述钛盐前驱物为钛酸乙酯、钛酸丁酯、异丙醇钛和化工中间体产物硝酸氧钛中的一种或几种。
所述竹质活性炭粉的粒度范围为1-150um,平均粒径40um。
所述纳米二氧化钛粉为锐钛矿晶型,粒径不大于100nm,最佳平均粒径范围5-10nm。
所述玻璃纤维尺寸为长度200-400um,直径20-40um。
所述玻璃纤维为石英玻璃纤维。
所述浮石粉的粒径为100-200目。
所述造粒成型的粒度为5-20mm。
本发明的有益效果是:本发明涉及的光催化复合剂的制备方法步骤分为两方面,高吸附性光催化复合吸附载体合成和钯掺杂二氧化钛溶胶合成。
第一步骤,通过低温制备光催化剂复合吸附载体颗粒,引入玻璃纤维和浮石粉,制备的吸附载体质量轻,吸附性能好,耐水性和强度较好。其中将光催化剂纳米二氧化钛粉与活性炭粉和浮石粉吸附剂充分混合,避免目前市场上常规光催化剂沉积制备工艺中光催化剂主要沉积在吸附载体中孔、大孔和载体表面,可将纳米二氧化钛粉体可以进入吸附载体内部及微孔中,同时通过玻璃纤维光折射和透射效应提高光吸收率,促进光线在载体内部空间多次反射进而有利于载体内部纳米二氧化钛的光催化反应,促进光催化净化空气效率提高。
第二步骤制备钯掺杂二氧化钛溶胶中由钛盐直接水解,减少了传统溶胶-凝胶法引入大量有机物弊端,通过254nm紫外灯产生臭氧与光化学氧化相结合工艺进行钯沉积与二氧化钛复合制得Pd/TiO2胶体,上述制备过程中是通过光化学氧化纯化胶体,避免了渗析法需要使用大量水并产生一定废水,且设备成本高。
通过Pd/TiO2胶体溶液浸泡可以在复合吸附载体表面和大孔道上沉积一定量Pd/TiO2膜,进一步提高了复合载体对紫外-可见光利用率,提高光催化效率。因为二氧化钛胶体提高了纳米钯与载体结合力。若载体直接单纯浸泡硝酸钯溶液烘干,纳米钯金与载体中活性炭或浮石或玻纤结合不牢,而将纳米钯沉积在纳米二氧化钛胶体中,再浸泡载体,提高了纳米钯金在载体上附着力。此外,钯掺杂二氧化钛可以提高二氧化钛可见光光催化活性,促进有机物吸附、抗菌杀菌和光催化分解有机物等功能。本发明的制备方法操作简单,原材料易得,制作成本低,在空气净化领域具有广阔的应用前景。
具体实施方式
下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。
实施例1
1)合成复合吸附载体:将以下重量份的各组分混合搅匀后造粒成型、100℃烘干:竹质活性炭粉 50份,纳米二氧化钛粉20份,玻璃纤维 10份,浮石粉30份,固含量为20%的硅溶胶 15份,质量分数为30%的双氧水 2份;所述竹质活性炭粉的粒度范围为1-150um,平均粒径40um;所述纳米二氧化钛粉为锐钛矿晶型,粒径小于5nm;所述玻璃纤维尺寸为长度200-400um,直径20-40um;所述玻璃纤维为石英玻璃纤维;所述浮石粉的粒径为100-200目;所述造粒成型的粒度为5-20mm。
2)合成Pd/TiO2复合胶体溶液:首先将硝酸钯溶解在浓硝酸中,搅拌均匀并加热到60℃,在搅拌下滴加钛盐前驱物,继续搅拌60min,加水控制pH值低于5;然后连续搅拌24h,254nm紫外灯光照射下继续搅拌48h,最终控制制备得到TiO2含量为3.0wt%的Pd/TiO2复合胶体溶液,其中Pd/TiO2复合胶体溶液中Pd含量控制在0.1wt%;所述硝酸钯中Pd的质量百分含量为39.5%;所述浓硝酸的质量分数为65%;所述紫外灯的功率25W;所述钛盐前驱物为钛酸乙酯。
3)将步骤1)制备的复合吸附载体浸入步骤2)制备的Pd/TiO2复合胶体溶液中120min,取出90℃烘干即可制备得到高导光率净化空气用光催化复合剂。
对比例1
制备不含光催化剂的吸附载体
将以下重量份的各组分混合搅匀后造粒成型、100℃烘干:竹质活性炭粉 50份,玻璃纤维 10份,浮石粉30份,固含量为20%的硅溶胶 15份,质量分数为30%的双氧水 2份;所述竹质活性炭粉的粒度范围为1-150um,平均粒径40um;所述玻璃纤维尺寸为长度200-400um,直径20-40um;所述玻璃纤维为石英玻璃纤维;所述浮石粉的粒径为100-200目;所述造粒成型的粒度为5-20mm。
对比例2
制备无玻璃纤维的含光催化剂的复合载体
将以下重量份的各组分混合搅匀后造粒成型、100℃烘干:竹质活性炭粉 50份,纳米二氧化钛粉20份,浮石粉30份,固含量为20%的硅溶胶 15份,质量分数为30%的双氧水 2份;所述竹质活性炭粉的粒度范围为1-150um,平均粒径40um;所述纳米二氧化钛粉为锐钛矿晶型,粒径小于5nm;所述浮石粉的粒径为100-200目;所述造粒成型的粒度为5-20mm。
对比例3
制备未经Pd/TiO2复合胶体溶液浸泡处理的含光催化剂的复合载体
将以下重量份的各组分混合搅匀后造粒成型、100℃烘干:竹质活性炭粉 50份,纳米二氧化钛粉20份,玻璃纤维 10份,浮石粉30份,固含量为20%的硅溶胶 15份,质量分数为30%的双氧水 2份;所述竹质活性炭粉的粒度范围为1-150um,平均粒径40um;所述纳米二氧化钛粉为锐钛矿晶型,粒径小于5nm;所述玻璃纤维尺寸为长度200-400um,直径20-40um;所述玻璃纤维为石英玻璃纤维;所述浮石粉的粒径为100-200目;所述造粒成型的粒度为5-20mm。
性能测试
称取对比例1制得的吸附载体200g,将该载体颗粒均匀平铺在方形不锈钢盒子(盒子尺寸为长20cm、宽20cm、高4cm),将盛有该吸附载体的盒子置于1m3内设循环风扇的密封评价测试舱中,并在不锈钢盒子中间上方均匀安装条形荧光灯(阳光牌型号T5灯2盏、功率8w),关闭测试舱门密封;通过测试舱进样孔用滴管将甲醛溶液滴加到铝合金加热电板上(加热板温度范围60-100℃),迅速密封进样孔,待甲醛检测仪上呈现的上升浓度变化趋缓和,浓度变化趋于平衡后,记录甲醛浓度值。开启测试舱内的循环风扇和荧光灯,加速舱内空气流动,同时记录甲醛浓度随时间的变化情况;
称取与实施例1相同方法制得的高导光率净化空气用光催化复合剂200g,按上述对比例1的吸附载体测试甲醛随时间的变化情况方法经历同样的的评价过程。
在无吸附载体和光催化复合剂的情况下,在测试舱内加甲醛经历相同条件下进行空白试验。
表1两种载体在测试舱内除甲醛效果对比
Figure 809277DEST_PATH_IMAGE001
从表1中数据表明,按对比例1制备的载体可以去除甲醛,对甲醛有一定吸附性能。实施例1载体上复合了光催化剂所以甲醛去除率高于对比例1的载体。空白数据波动可能因甲醛自然衰减或器壁吸附影响。
催化剂的性能对比评价
将对比例1-3的三种载体和按实施例1制得光催化复合剂,分别填满内径为5cm,长度20cm的透明管,所述透明管两端开口且通过滤网对颗粒进行限位,载体颗粒粒径为2-5mm,从所述透明管一端持续通入一定浓度甲醛气体,测试另一端出口甲醛浓度变化,进口甲醛浓度Cin与出口甲醛浓度Cout基本趋于一致时,即载体颗粒甲醛吸附饱和,开启环形紫外灯(功率25w,波长为365nm)对置于其中心处的所述透明管照射,进行光催化除甲醛效率评价,同时开始记录甲醛浓度随时间的变化情况,当出口处甲醛浓度趋于稳定时,测得出口甲醛浓度Cout,计算出甲醛去除率。
甲醛去除率计算公式:
x=(Cin-Cout)/Cin × 100%
式中,x为甲醛去除率;Cin和Cout分别为进口和出口的甲醛浓度。
表2 四种载体在连续流动装置中除甲醛效率
Figure DEST_PATH_IMAGE002
由上表2可知:未添加纳米二氧化钛光催化剂的吸附载体当甲醛吸附饱和后开灯无法进行光催化降解甲醛,甲醛去除率变化可忽略。在吸附载体颗粒中引入玻璃纤维后能明显提高甲醛去除率,玻纤引入使得光的在载体内部进行多次反射或折射提高了光利用率,有利于光催化反应。实施例1中光催化复合载体颗粒经过Pd/TiO2复合胶体溶液处理后,纳米钯掺杂二氧化钛沉积在光催化复合载体颗粒上,进一步强化了载体中孔和大孔道等表面光催化剂量,同时纳米钯掺杂改性二氧化钛可提高二氧化钛光催化活性,促进光催化除甲醛效率提高,该光催化复合剂具有了更好的分解有害气体功能。
将实施例1制得的光催化复合剂,按照上述复合催化载体在1m3密封评价测试舱中测试甲醛方法,在相同条件下经历相同评价过程,测试光催化复合剂去除氨气效果。测试结果发现1m3测试舱内氨气浓度1.50mg/m3,经过2h后,浓度降低到0.12mg/m3,去除率92%。
以上仅是本发明的特征实施范例,对本发明保护范围不构成任何限制。凡采用同等交换或者等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (5)

1.一种高导光率高吸附性能净化空气用光催化复合剂的制备方法,其特征在于,包括以下步骤:
1)合成复合吸附载体:将以下重量份的各组分混合搅匀后造粒成型、30-100℃烘干:竹质活性炭粉 30-50份,纳米二氧化钛粉10-30份,玻璃纤维 5-10份,浮石粉20-40份,固含量为20%的硅溶胶 10-20份,质量分数为30%的双氧水 1-10份;
2)合成Pd/TiO2复合胶体溶液:首先将硝酸钯溶解在浓硝酸中,搅拌均匀并加热到25-80℃,在搅拌下滴加钛盐前驱物,继续搅拌30-60min,加水控制pH值低于5;然后连续搅拌10-24h,波长254nm紫外灯光照射下继续搅拌24-48h,制备得到TiO2含量为0.2-5.0wt%的Pd/TiO2复合胶体溶液,其中Pd/TiO2复合胶体溶液中Pd含量控制在0.001-0.1wt%;
3)将步骤1)制备的复合吸附载体浸入步骤2)制备的Pd/TiO2复合胶体溶液中10-120min,取出25-100℃烘干即可制备得到高导光率净化空气用光催化复合剂;
所述竹质活性炭粉的粒度范围为1-150um,平均粒径40um;
所述纳米二氧化钛粉为锐钛矿晶型,粒径不大于100nm;
所述玻璃纤维的尺寸为长度200-400um,直径20-40um;
所述玻璃纤维为石英玻璃纤维,所述浮石粉的粒径为100-200目;
所述造粒成型的粒度为5-20mm。
2.根据权利要求1所述的高导光率高吸附性能净化空气用光催化复合剂的制备方法,其特征在于,硝酸钯中Pd的质量百分含量为39.5%。
3.根据权利要求1所述的高导光率高吸附性能净化空气用光催化复合剂的制备方法,其特征在于,所述浓硝酸的质量分数为65-68%。
4.根据权利要求1所述的高导光率高吸附性能净化空气用光催化复合剂的制备方法,其特征在于,所述紫外灯的功率10-50W。
5.根据权利要求1所述的高导光率高吸附性能净化空气用光催化复合剂的制备方法,其特征在于,所述钛盐前驱物为钛酸乙酯、钛酸丁酯、异丙醇钛和化工中间体产物硝酸氧钛中的一种或几种。
CN201911329235.4A 2019-12-20 2019-12-20 高导光率高吸附性能净化空气用光催化复合剂的制备方法 Active CN110975865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911329235.4A CN110975865B (zh) 2019-12-20 2019-12-20 高导光率高吸附性能净化空气用光催化复合剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911329235.4A CN110975865B (zh) 2019-12-20 2019-12-20 高导光率高吸附性能净化空气用光催化复合剂的制备方法

Publications (2)

Publication Number Publication Date
CN110975865A CN110975865A (zh) 2020-04-10
CN110975865B true CN110975865B (zh) 2022-09-02

Family

ID=70073703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911329235.4A Active CN110975865B (zh) 2019-12-20 2019-12-20 高导光率高吸附性能净化空气用光催化复合剂的制备方法

Country Status (1)

Country Link
CN (1) CN110975865B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525544B (zh) * 2022-02-24 2023-04-25 青岛创启新能催化科技有限公司 一种pem水电解析氧催化剂铱钌合金的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125703A (ja) * 1983-01-06 1984-07-20 Sumitomo Electric Ind Ltd 光伝送用ガラスフアイバ
CN1410159A (zh) * 2002-11-13 2003-04-16 武汉理工大学 高吸附性光催化剂及载体材料
CN1410151A (zh) * 2002-11-18 2003-04-16 武汉理工大学 高吸附性光催化空气处理器
CN102847561A (zh) * 2012-09-19 2013-01-02 合肥工业大学 微孔玻璃负载TiO2 纳米复合光催化剂及其制备方法
CN103933976A (zh) * 2014-05-08 2014-07-23 伊文涛 高效可见光响应的贵金属-Bi-TiO2纳米异质结光催化剂及其制备方法
CN104437371A (zh) * 2014-11-20 2015-03-25 安徽天泰环保科技有限公司 一种复合多孔活性炭烟气吸附剂及其制备方法
CN105080526A (zh) * 2014-12-30 2015-11-25 云南大学 一种生物模板制备的室内光催化降解甲醛的二氧化钛-硅藻泥复合材料方法
CN108855018A (zh) * 2018-07-02 2018-11-23 安庆丰源化工有限公司 一种精细化工废气吸附剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7316313A (nl) * 1973-11-29 1975-06-02 Philips Nv Werkwijze voor de vervaardiging van lichtgevoelig materiaal.
CN100594978C (zh) * 2008-08-22 2010-03-24 中国石化扬子石油化工有限公司 用于对羧基苯甲醛加氢过程的Pd/TiO2催化剂的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125703A (ja) * 1983-01-06 1984-07-20 Sumitomo Electric Ind Ltd 光伝送用ガラスフアイバ
CN1410159A (zh) * 2002-11-13 2003-04-16 武汉理工大学 高吸附性光催化剂及载体材料
CN1410151A (zh) * 2002-11-18 2003-04-16 武汉理工大学 高吸附性光催化空气处理器
CN102847561A (zh) * 2012-09-19 2013-01-02 合肥工业大学 微孔玻璃负载TiO2 纳米复合光催化剂及其制备方法
CN103933976A (zh) * 2014-05-08 2014-07-23 伊文涛 高效可见光响应的贵金属-Bi-TiO2纳米异质结光催化剂及其制备方法
CN104437371A (zh) * 2014-11-20 2015-03-25 安徽天泰环保科技有限公司 一种复合多孔活性炭烟气吸附剂及其制备方法
CN105080526A (zh) * 2014-12-30 2015-11-25 云南大学 一种生物模板制备的室内光催化降解甲醛的二氧化钛-硅藻泥复合材料方法
CN108855018A (zh) * 2018-07-02 2018-11-23 安庆丰源化工有限公司 一种精细化工废气吸附剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis, characterization and photocatalytic activity of PdO/TiO2 and Pd/TiO2 nanocomposites;Hossein Khojasteh et al.;《J Mater Sci: Mater Electron》;20151016(第27期);正文第1262页第2栏第5段 *

Also Published As

Publication number Publication date
CN110975865A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
Liu et al. Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite
Shiraishi et al. A rapid treatment of formaldehyde in a highly tight room using a photocatalytic reactor combined with a continuous adsorption and desorption apparatus
CN102198405B (zh) 一种净化室内甲醛用的复合催化剂及其制备方法
KR101319064B1 (ko) 포름알데히드, 일산화탄소, 메탄올 및 수소 산화 제거용 백금 촉매의 제조 방법
WO2017117861A1 (zh) 空气杀菌消毒净化用催化剂及其制备方法
CN102658115B (zh) 用于空气净化的掺铈纳米二氧化钛/活性炭纤维复合光催化剂及其制备方法
WO1998023374A1 (fr) Photocatalyseur ayant une activite lumineuse visible et utilisation de ce dernier
CN113262808A (zh) 室温高效去除甲醛的水溶性石墨相氮化碳纳米片催化剂及其制备方法
CN110975865B (zh) 高导光率高吸附性能净化空气用光催化复合剂的制备方法
CN113908875A (zh) 一种可见光催化材料的制备方法、以及降解空气污染物的方法
CN110560051A (zh) 一种二氧化钛修饰的活性炭负载银单原子催化剂及其在氧化甲醛中的应用
KR20160039135A (ko) 혼합 가스에 대한 제거 성능이 우수한 광촉매 필터 및 그 제조 방법
Sun et al. Adsorption coupling photocatalytic removal of gaseous n-hexane by phosphorus-doped g-C3N4/TiO2/Zn (OAc) 2-ACF composites
CN108212148B (zh) 一种去除甲醛的凹凸棒石黏土复合催化剂及其制备方法和应用
CN113813915B (zh) 一种双功能吸附剂及其制备方法与应用
CN110898832A (zh) 一种净化空气用光催化活性炭颗粒的制备方法
CN110479233B (zh) 用于净化空气的高紫外光利用率的光触媒颗粒及制备方法
Fu et al. Preparation of TiO2 photocatalyst anchored on activated carbon fibers and its photodegradation of methylene blue
CN108479840B (zh) 一种具有可见光响应的光催化剂及其制备方法
CN109225346B (zh) 一种含氧化锌的纳米光触媒乳液及其制备方法
CN113441001A (zh) 一种复合光催化材料在光催化降解甲醛中的应用
CN108714422B (zh) 一种混合钛酸盐纳米带负载金属钯纳米颗粒整体式催化剂及其制备方法与应用
CN107469762B (zh) 一种微负载型氧化钛与硅胶的复合材料及其制备方法
CN116371424B (zh) 一种异质结复合光催化纳米材料及制备方法和应用
CN115090304B (zh) F-TiO2-x/Pt纳米光催化剂薄膜的制备方法及其在净化空气中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant