CN110955035A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
CN110955035A
CN110955035A CN201911338900.6A CN201911338900A CN110955035A CN 110955035 A CN110955035 A CN 110955035A CN 201911338900 A CN201911338900 A CN 201911338900A CN 110955035 A CN110955035 A CN 110955035A
Authority
CN
China
Prior art keywords
lens
lens group
group
zoom
optical power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911338900.6A
Other languages
Chinese (zh)
Inventor
邹文镔
白兴安
范家永
张德伦
宋光明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunny Optics Zhongshan Co Ltd
Original Assignee
Sunny Optics Zhongshan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunny Optics Zhongshan Co Ltd filed Critical Sunny Optics Zhongshan Co Ltd
Priority to CN201911338900.6A priority Critical patent/CN110955035A/en
Publication of CN110955035A publication Critical patent/CN110955035A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

The present invention relates to a zoom lens, including: the lens comprises a first lens group with positive focal power, a second lens group with negative focal power, a diaphragm, a third lens group with positive focal power, a fourth lens group with positive focal power and a fifth lens group with positive focal power, wherein the first lens group, the third lens group and the fifth lens group are fixed lens groups, the second lens group is a zoom group, and the fourth lens group is a focusing group; when the second lens group moves along the optical axis, the magnification is changed from the wide-angle end to the telephoto end; when the fourth lens group moves along the optical axis, the correction and focusing of image surface variation along with zooming are realized; the ratio of the focal length f1 of the first lens group, the focal length f2 of the second lens group, the focal length f3 of the third lens group, the focal length f4 of the fourth lens group, the focal length f5 of the fifth lens group and the focal length fw of the zoom lens at the wide-angle end sequentially satisfies the following ranges: f1, fw is 1.5-10, f2, fw is-3-0.7, f3, fw is 1-6, f4, fw is 1.5-5.5, and f5, fw is 2-8.

Description

Zoom lens
Technical Field
The invention relates to the field of optical imaging, in particular to a zoom lens.
Background
In the security monitoring industry, the pursuit of definition is an important driving force for the development of the industry. From the initial standard definition to the current high definition, full high definition and even ultra high definition, video security monitoring from 'visible' to 'quasi' to the final 'AI identification' is recorded, and the realization of the whole monitoring process depends on the information acquisition of an optical lens, the information transmission of an ultra-large data stream and the image processing at the rear end.
With the rapid development of the commercial 5G technology and the image processing technology, the rapid popularization of 4K monitoring is certainly realized in the near future. The zoom lens with the resolution of 4K can collect monitoring information which is several times higher than that of a conventional fixed-focus lens due to the special working mode of the zoom lens, and the monitoring information is bound to be greatly increased in the field of future security monitoring. However, the existing zoom lens meets the requirement of 4K ultrahigh resolution, and meanwhile, the problems of infrared confocal performance, small aperture value, poor full-focus 4K capability, poor temperature adaptability and the like generally exist.
Disclosure of Invention
The present invention is directed to solving the above problems and to providing a zoom lens.
To achieve the above object, the present invention provides a zoom lens including: the zoom lens comprises a first lens group with positive focal power, a second lens group with negative focal power, a diaphragm, a third lens group with positive focal power, a fourth lens group with positive focal power and a fifth lens group with positive focal power which are sequentially arranged from the object side to the image side along an optical axis, wherein the first lens group, the third lens group and the fifth lens group are fixed lens groups, the second lens group is a zoom group, and the fourth lens group is a focusing group;
when the second lens group moves along the optical axis, the magnification is changed from the wide-angle end to the telephoto end;
when the fourth lens group moves along the optical axis, the correction and focusing of image surface variation along with zooming are realized;
the ratio of the focal length f1 of the first lens group, the focal length f2 of the second lens group, the focal length f3 of the third lens group, the focal length f4 of the fourth lens group, the focal length f5 of the fifth lens group and the focal length fw of the zoom lens at the wide-angle end sequentially satisfies the following ranges:
f1:fw=1.5~10,f2:fw=-3~-0.7,f3:fw=1~6,f4:fw=1.5~5.5,f5:fw=2~8。
according to an aspect of the present invention, the first lens group includes a first lens having a negative power, a second lens having a positive power, and a third lens having a positive power;
the first lens is a convex-concave lens.
According to an aspect of the present invention, the second lens group includes a fourth lens having a negative power, a fifth lens having a negative power, a sixth lens having a positive power, and a seventh lens having a negative power;
the fifth lens is a biconcave lens.
According to an aspect of the present invention, the third lens group includes an eighth lens having a positive power, a ninth lens having a negative power, a tenth lens having a positive power, an eleventh lens having a negative power, a twelfth lens having a positive power, and a thirteenth lens having a negative power;
the eighth lens and the twelfth lens are biconvex lenses;
the thirteenth lens is a biconcave lens.
According to an aspect of the present invention, the fourth lens group includes a fourteenth lens having a positive power, a fifteenth lens having a positive power, and a sixteenth lens having a negative power;
the fourteenth lens and the fifteenth lens are double-convex lenses;
the sixteenth lens is a biconcave lens.
According to an aspect of the present invention, the fifth lens group includes a seventeenth lens having a positive optical power and an eighteenth lens having a negative optical power;
the seventeenth lens is a biconvex lens.
According to one aspect of the invention, an optical length BFL of the eighteenth lens from an image plane of the zoom lens satisfies: BFL is more than 2 and less than 13.
According to one aspect of the invention, the refractive index of the material of the seventh lens ranges from 1.35 to 1.65.
According to one aspect of the invention, the refractive index of the material of each of the eighth lens and the ninth lens ranges from 1.35 to 1.65.
According to an aspect of the present invention, the first lens and the second lens constitute a double cemented lens.
According to an aspect of the present invention, the ninth lens, the tenth lens, and the eleventh lens constitute a triple cemented lens, and the twelfth lens and the thirteenth lens constitute a double cemented lens.
According to an aspect of the present invention, the fifteenth lens and the sixteenth lens constitute a cemented doublet.
According to an aspect of the present invention, an absolute value a of an abbe number difference between adjacent two lenses in each cemented lens satisfies: a is more than 15 and less than 80.
According to an aspect of the present invention, at least one of the second lens group, the third lens group, and the fourth lens group includes an aspherical lens.
According to an aspect of the present invention, a distance D between the second lens group moving from the wide angle end to the telephoto end of the zoom lens and a total length TTL of the zoom lens satisfies: 0.15 < D/TTL < 0.536.
According to one aspect of the present invention, a diameter d of a largest lens of the first lens group and a total length TTL of the zoom lens satisfy: d/TTL is more than 0.3 and less than 2.
According to the zoom lens, through reasonable lens group focal power collocation, the tolerance sensitivity of the optical element is greatly reduced, and the requirement of common process for mass production can be met;
the aperture of the zoom lens is constant and can reach FNO 1.2 to the maximum extent, and the zoom lens has a black-light-level night vision effect through matched image processing;
the zoom lens corrects the position chromatic aberration and the magnification chromatic aberration between 420 and 940nm through specific material selection, meets the 4K resolution of a full-focus section, realizes infrared confocal of the full-focus section, and simultaneously can achieve the purposes that the full-focus section does not have virtual focus under the environment of-40 to 80 ℃ and the use occasion of the lens is widened to the greatest extent.
Drawings
Fig. 1 is a view schematically showing a zoom lens structure according to a first embodiment of the present invention;
fig. 2 is an MTF chart at the wide-angle end at normal temperature of 20 degrees and under visible light in the zoom lens according to the first embodiment of the present invention;
FIG. 3 is a MTF chart of a zoom lens according to a first embodiment of the present invention at room temperature of 20 ℃ and at a night infrared angle of 850 nm;
fig. 4 is an MTF chart of a zoom lens according to the first embodiment of the present invention at a telephoto end at a normal temperature of 20 degrees under visible light;
FIG. 5 is a MTF chart of a zoom lens according to a first embodiment of the present invention at a telephoto end of infrared rays of 850nm at room temperature and 20 degrees at night;
FIG. 6 is an MTF chart at the wide-angle end at low temperature of-40 degrees and under visible light in the zoom lens according to the first embodiment of the present invention;
fig. 7 is an MTF chart at the wide-angle end at a high temperature of 80 degrees and under visible light in the zoom lens according to the first embodiment of the present invention;
FIG. 8 is a graph showing an MTF at a telephoto end at a temperature of-40 ℃ under visible light in a zoom lens according to a first embodiment of the present invention;
fig. 9 is an MTF graph of the zoom lens according to the first embodiment of the present invention at a telephoto end at a high temperature of 80 degrees under visible light.
Fig. 10 is a view schematically showing a configuration of a zoom lens according to a second embodiment of the present invention;
fig. 11 is an MTF chart at the wide-angle end at normal temperature of 20 degrees and under visible light in a zoom lens according to a second embodiment of the present invention;
FIG. 12 is an MTF chart of a zoom lens system according to a second embodiment of the present invention at room temperature of 20 ℃ and at a night infrared angle of 850 nm;
fig. 13 is an MTF chart of a zoom lens system according to a second embodiment of the present invention at a telephoto end at a normal temperature of 20 degrees under visible light;
FIG. 14 is a MTF chart of a zoom lens system according to a second embodiment of the present invention at a telephoto end of infrared rays of 850nm at room temperature and 20 degrees at night;
FIG. 15 is an MTF chart at the wide-angle end at low temperature of-40 degrees and under visible light in a zoom lens according to a second embodiment of the present invention;
fig. 16 is an MTF chart at the wide-angle end at a high temperature of 80 degrees and under visible light in a zoom lens according to a second embodiment of the present invention;
FIG. 17 is a chart showing an MTF at a telephoto end at low temperature of-40 ℃ under visible light in a zoom lens according to a second embodiment of the present invention;
fig. 18 is an MTF chart of a zoom lens according to a second embodiment of the present invention at a telephoto end at a high temperature of 80 degrees under visible light.
Fig. 19 is a view schematically showing a configuration of a zoom lens according to a third embodiment of the present invention;
fig. 20 is an MTF chart at the wide-angle end at normal temperature of 20 degrees and under visible light in a zoom lens according to a third embodiment of the present invention;
FIG. 21 is an MTF chart of a zoom lens system according to a third embodiment of the present invention at room temperature of 20 ℃ and at a night infrared angle of 850 nm;
fig. 22 is an MTF chart of a telephoto end of a zoom lens according to a third embodiment of the present invention at room temperature and 20 degrees in visible light;
FIG. 23 is a MTF chart of a zoom lens system according to a third embodiment of the present invention at a telephoto end of infrared rays of 850nm at room temperature and 20 degrees at night;
fig. 24 is an MTF chart at the wide-angle end at low temperature of-40 degrees and under visible light in a zoom lens according to a third embodiment of the present invention;
fig. 25 is an MTF chart at the wide-angle end at a high temperature of 80 degrees and under visible light in a zoom lens according to a third embodiment of the present invention;
FIG. 26 is a MTF chart of a telephoto end in visible light at low temperature of-40 degrees in a zoom lens according to a third embodiment of the present invention;
fig. 27 is an MTF chart of a zoom lens according to the third embodiment of the present invention at a telephoto end at a high temperature of 80 degrees under visible light.
Detailed Description
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments will be briefly described below. It is obvious that the drawings in the following description are only some embodiments of the invention, and that for a person skilled in the art, other drawings can be derived from them without inventive effort.
In describing embodiments of the present invention, the terms "longitudinal," "lateral," "upper," "lower," "front," "rear," "left," "right," "vertical," "horizontal," "top," "bottom," "inner," "outer," and the like are used in an orientation or positional relationship that is based on the orientation or positional relationship shown in the associated drawings, which is for convenience and simplicity of description only, and does not indicate or imply that the referenced device or element must have a particular orientation, be constructed and operated in a particular orientation, and thus, the above-described terms should not be construed as limiting the present invention.
The present invention is described in detail below with reference to the drawings and the specific embodiments, which are not repeated herein, but the embodiments of the present invention are not limited to the following embodiments.
Fig. 1 schematically shows a configuration diagram of a zoom lens according to an embodiment of the present invention. As shown in fig. 1, the zoom lens of the present invention includes, in order from the object side to the image side along the optical axis, a first lens group G1 having positive optical power, a second lens group G2 having negative optical power, a stop S, a third lens group G3 having positive optical power, a fourth lens group G4 having positive optical power, a fifth lens group G5 having positive optical power, and a protective glass CG. In the present invention, the first lens group G1, the third lens group G3, and the fifth lens group G5 are fixed lens groups, the second lens group G2 is a zoom group, and the fourth lens group G4 is a focus group.
In the present invention, when the second lens group G2 moves along the optical axis, magnification variation from the wide-angle end to the telephoto end is achieved. When the fourth lens group G4 moves along the optical axis, correction of image plane variation and focusing accompanying magnification change are realized.
In the present invention, the ratio of the focal length f1 of the first lens group G1, the focal length f2 of the second lens group G2, the focal length f3 of the third lens group G3, the focal length f4 of the fourth lens group G4, and the focal length f5 of the fifth lens group G5 to the focal length fw at the wide-angle end of the zoom lens satisfies the following ranges in order:
f1:fw=1.5~10,f2:fw=-3~-0.7,f3:fw=1~6,f4:fw=1.5~5.5,f5:fw=2~8。
in the present invention, the first lens group G1 includes a first lens L1 having negative optical power, a second lens L2 having positive optical power, and a third lens L3 having positive optical power. Among them, the first lens L1 is a convex-concave lens.
The second lens group G2 includes a fourth lens L4 having negative power, a fifth lens L5 having negative power, a sixth lens L6 having positive power, and a seventh lens L7 having negative power. Among them, the fifth lens L5 is a biconcave lens.
The third lens group G3 includes an eighth lens L8 having positive power, a ninth lens L9 having negative power, a tenth lens L10 having positive power, an eleventh lens L11 having negative power, a twelfth lens L12 having positive power, and a thirteenth lens L13 having negative power. Among them, the eighth lens L8 and the twelfth lens L12 are double convex lenses, and the thirteenth lens L13 is a double concave lens.
The fourth lens group G4 includes a fourteenth lens L14 having positive optical power, a fifteenth lens L15 having positive optical power, and a sixteenth lens L16 having negative optical power. Among them, the fourteenth lens L14 and the fifteenth lens L15 are double convex lenses, and the sixteenth lens L16 is a double concave lens.
The fifth lens group L5 includes a seventeenth lens L17 having a positive power and an eighteenth lens L18 having a negative power. The seventeenth lens L17 is a biconvex lens, and the optical length BFL of the eighteenth lens L18 from the image plane of the zoom lens satisfies 2 < BFL < 13.
In the invention, the refractive index ranges of the materials of the seventh lens L7, the eighth lens L8 and the ninth lens L9 are all 1.35-1.65.
Preferably, the first lens L1 and the second lens L2 constitute a double cemented lens, the ninth lens L9, the tenth lens L10 and the eleventh lens L11 constitute a triple cemented lens, the twelfth lens L12 and the thirteenth lens L13 constitute a double cemented lens, and the fifteenth lens L15 and the sixteenth lens L16 constitute a double cemented lens. And, an absolute value a of an abbe number difference between two adjacent lenses of the cemented lenses satisfies: a is more than 15 and less than 80.
In the present invention, at least one of the second lens group G2, the third lens group G3, and the fourth lens group G4 includes an aspherical lens, preferably a glass aspherical lens. And the aspheric surface satisfies the following formula:
Figure BDA0002331711760000071
wherein z is the axial distance from the curved surface to the vertex at the position with the height h perpendicular to the optical axis along the direction of the optical axis; c represents the curvature at the apex of the aspherical surface; k is a conic coefficient; a4, a6, A8, a10 and a12 respectively represent aspheric coefficients of fourth, sixth, eighth and twelfth orders.
The distance D between the second lens group G2 moving from the wide angle end to the telephoto end of the zoom lens and the total length TTL of the zoom lens satisfy: 0.15 < D/TTL < 0.536. The diameter d of the largest lens in the first lens group G1 and the total length TTL of the zoom lens satisfy the following condition: d/TTL is more than 0.3 and less than 2.
According to the arrangement of the zoom lens, the tolerance sensitivity of the optical element is greatly reduced through reasonable lens group focal power collocation, and the requirement of common process for mass production can be met;
the aperture of the zoom lens is constant and can reach FNO 1.2 to the maximum extent, and the zoom lens has a black-light-level night vision effect through matched image processing;
the zoom lens corrects the position chromatic aberration and the magnification chromatic aberration between 420 and 940nm through specific material selection, meets the 4K resolution of a full-focus section, realizes infrared confocal of the full-focus section, and simultaneously can achieve the purposes that the full-focus section does not have virtual focus under the environment of-40 to 80 ℃ and the use occasion of the lens is widened to the greatest extent.
The zoom lens according to the present invention is specifically described below by giving three specific embodiments according to the above-described arrangement of the present invention. Since the zoom lens according to the present invention has 18 lenses in total, in the first to third embodiments, the first lens L1 and the second lens L2 constitute a double cemented lens, the ninth lens L9, the tenth lens L10 and the eleventh lens L11 constitute a triple cemented lens, the twelfth lens L12 and the thirteenth lens L13 constitute a double cemented lens, and the fifteenth lens L15 and the sixteenth lens L16 constitute a double cemented lens. The diaphragm S and the imaging surface IMA of the lens are added, and the total number is 35. For convenience of description, the respective face numbers are designated as S1 to S35.
The first implementation mode comprises the following steps:
fig. 1 is a schematic diagram showing a zoom lens structure according to a first embodiment of the present invention.
The aperture FNO in the first embodiment is 1.38.
Table 1 below lists relevant parameters of each lens of the present embodiment, including surface type, radius of curvature, thickness, refractive index of material, abbe number:
Figure BDA0002331711760000081
Figure BDA0002331711760000091
TABLE 1
In this embodiment, the aspheric data is shown in table 2 below, where K is the conic constant of the surface, and A, B, C, D, E are aspheric coefficients of fourth, sixth, eighth, tenth, and twelfth orders, respectively:
number of noodles K A B C D E
S15 0.354 -3.87E-06 3.34E-08 -9.75E-10 1.58E-11 -1.87E-13
S16 -1 1.20E-05 1.54E-08 -7.02E-10 1.18E-11 -1.73E-13
TABLE 2
In the present embodiment, the wide-angle end and telephoto end magnification variation data of the zoom lens are as shown in table 3 below:
wide angle end Long coke end
T1 1.1508 24.0511
T2 24.145 2.092
T3 8.20135 7.5503
T4 1.82 2.446
TABLE 3
In this embodiment, the ratio of the focal length f1 of the first lens group G1, the focal length f2 of the second lens group G2, the focal length f3 of the third lens group G3, the focal length f4 of the fourth lens group G4, and the focal length f5 of the fifth lens group G5 to the focal length fw of the zoom lens at the wide-angle end is, in order: 3.83, -0.96, 2.937, 2.153 and 5.404.
The eighth lens L8 of the third lens group G3 is an aspherical lens;
the distance D between the second lens group G2 moving from the wide angle end to the telephoto end of the zoom lens and the total length TTL of the zoom lens meets the condition that D/TTL is 0.245;
the diameter d of the largest lens in the first lens group G1 and the total length TTL of the zoom lens satisfy the following condition: d/TTL is 0.425;
the refractive index of the seventh lens L7 is 1.52, the refractive index of the eighth lens L8 is 1.62, and the refractive index of the ninth lens L9 is 1.62;
the optical length BFL of the eighteenth lens L18 from the image plane is 6 mm.
Fig. 2 to 9 are MTF charts at the normal temperature of 20 degrees and at the wide-angle end under visible light, respectively, of a zoom lens according to a first embodiment of the present invention; MTF graph of infrared 850nm long wide angle at normal temperature of 20 deg.C and night; MTF graph of long focal length under visible light at normal temperature of 20 ℃; MTF graph of infrared 850nm long focus end at normal temperature of 20 deg.C and night; MTF graph at the wide-angle end at low temperature of 40 ℃ below zero and under visible light; MTF plot at high temperature 80 ℃ under visible light at wide angle end; MTF graph of tele end at low temperature-40 deg.C under visible light; MTF plot of tele end at 80 deg.C under visible light.
As can be seen from fig. 2 to 9, according to the arrangement of the zoom lens of the present embodiment, positional chromatic aberration and magnification chromatic aberration between 420 nm and 940nm are corrected, a full-focus segment with a resolution of 4K is satisfied, and a full-focus segment with infrared confocal is satisfied, and meanwhile, the lens can achieve the characteristics that the full-focus segment is not virtual focus and the optical element sensitivity is low under an environment of-40 ℃ to 80 ℃.
The second embodiment:
fig. 10 is a block diagram schematically showing a zoom lens according to a second embodiment of the present invention.
The aperture FNO in the second embodiment is 1.2.
Table 4 below lists relevant parameters of each lens of the present embodiment, including surface type, radius of curvature, thickness, refractive index of material, abbe number:
Figure BDA0002331711760000101
Figure BDA0002331711760000111
TABLE 4
In this embodiment, the aspheric data is shown in table 5 below, where K is the conic constant of the surface, and A, B, C, D, E are aspheric coefficients of fourth, sixth, eighth, tenth, and twelfth orders, respectively:
number of noodles K A B C D E
S12 1.000 -8.51E-06 7.35E-08 -2.15E-09 3.48E-11 -4.12E-13
S13 -1.00 2.65E-05 3.38E-08 -1.54E-09 2.59E-11 -3.80E-13
S15 0.389 -4.25E-06 3.67E-08 -1.07E-09 1.74E-11 -2.06E-13
S16 -1.15 1.32E-05 1.69E-08 -7.72E-10 1.29E-11 -1.90E-13
TABLE 5
In the present embodiment, the wide-angle end and telephoto end magnification variation data of the zoom lens are as shown in table 6 below:
wide angle end Long coke end
T1 2 17.5
T2 18 2.5
T3 8.20135 5.0453
T4 1.82 4.951
TABLE 6
In this embodiment, the ratio of the focal length f1 of the first lens group G1, the focal length f2 of the second lens group G2, the focal length f3 of the third lens group G3, the focal length f4 of the fourth lens group G4, and the focal length f5 of the fifth lens group G5 to the focal length fw of the zoom lens at the wide-angle end is, in order: 3.74, -0.808, 3.415, 1.778, and 2.483.
The distance D between the second lens group G2 moving from the wide angle end to the telephoto end of the zoom lens and the total length TTL of the zoom lens meets the condition that D/TTL is 0.171;
the diameter d of the largest lens in the first lens group G1 and the total length TTL of the zoom lens satisfy the following condition: d/TTL is 0.383;
the refractive index of the seventh lens L7 is 1.53, the refractive index of the eighth lens L8 is 1.62, and the refractive index of the ninth lens L9 is 1.62;
the optical length BFL of the eighteenth lens L18 from the image plane is 10.3 mm.
Fig. 11 to 18 are MTF charts of a zoom lens according to a second embodiment of the present invention at a normal temperature of 20 degrees and at a wide-angle end under visible light, respectively; MTF graph of infrared 850nm long wide angle at normal temperature of 20 deg.C and night; MTF graph of long focal length under visible light at normal temperature of 20 ℃; MTF graph of infrared 850nm long focus end at normal temperature of 20 deg.C and night; MTF graph at the wide-angle end at low temperature of 40 ℃ below zero and under visible light; MTF plot at high temperature 80 ℃ under visible light at wide angle end; MTF graph of tele end at low temperature-40 deg.C under visible light; MTF plot of tele end at 80 deg.C under visible light.
As can be seen from fig. 11 to 18, according to the arrangement of the zoom lens of the present embodiment, positional chromatic aberration and magnification chromatic aberration between 420 nm and 940nm are corrected, a full-focus segment with a resolution of 4K is satisfied, and a full-focus segment with infrared confocal is satisfied, and meanwhile, the lens can achieve the characteristics that the full-focus segment is not virtual focus and the optical element sensitivity is low in an environment of-40 ℃ to 80 ℃.
The third embodiment is as follows:
fig. 19 is a schematic diagram showing a zoom lens structure according to a third embodiment of the present invention.
The aperture FNO in the second embodiment is 1.62.
Table 7 below lists relevant parameters of each lens of the present embodiment, including surface type, radius of curvature, thickness, refractive index of material, abbe number:
Figure BDA0002331711760000131
Figure BDA0002331711760000141
TABLE 7
In this embodiment, the aspheric data is shown in table 8 below, where K is the conic constant of the surface, and A, B, C, D, E are aspheric coefficients of fourth, sixth, eighth, tenth, and twelfth orders, respectively:
Figure BDA0002331711760000142
Figure BDA0002331711760000151
TABLE 8
In the present embodiment, the wide-angle end and telephoto end magnification variation data of the zoom lens are as shown in table 9 below:
wide angle end Long coke end
T1 3.15 20.925
T2 19 1.225
T3 8 6.7993
T4 2.022 3.197
TABLE 9
In this embodiment, the ratio of the focal length f1 of the first lens group G1, the focal length f2 of the second lens group G2, the focal length f3 of the third lens group G3, the focal length f4 of the fourth lens group G4, and the focal length f5 of the fifth lens group G5 to the focal length fw of the zoom lens at the wide-angle end is, in order: 2.11, -0.53, 3.133, 1.192, and 7.9.
The distance D between the second lens group G2 moving from the wide angle end to the telephoto end of the zoom lens and the total length TTL of the zoom lens meets the condition that D/TTL is 0.203;
the diameter d of the largest lens in the first lens group G1 and the total length TTL of the zoom lens satisfy the following condition: d/TTL is 0.335;
the refractive index of the seventh lens L7 is 1.53, the refractive index of the eighth lens L8 is 1.66, and the refractive index of the ninth lens L9 is 1.66;
the optical length BFL of the eighteenth lens L18 from the image plane is 5 mm.
Fig. 20 to 27 are MTF charts of a zoom lens according to a third embodiment of the present invention at a normal temperature of 20 degrees and at a wide-angle end under visible light, respectively; MTF graph of infrared 850nm long wide angle at normal temperature of 20 deg.C and night; MTF graph of long focal length under visible light at normal temperature of 20 ℃; MTF graph of infrared 850nm long focus end at normal temperature of 20 deg.C and night; MTF graph at the wide-angle end at low temperature of 40 ℃ below zero and under visible light; MTF plot at high temperature 80 ℃ under visible light at wide angle end; MTF graph of tele end at low temperature-40 deg.C under visible light; MTF plot of tele end at 80 deg.C under visible light.
As can be seen from fig. 20 to 27, according to the arrangement of the zoom lens of the present embodiment, positional chromatic aberration and magnification chromatic aberration between 420 nm and 940nm are corrected, a full-focus segment with a resolution of 4K is satisfied, and a full-focus segment with infrared confocal is satisfied, and meanwhile, the lens can achieve the characteristics that the full-focus segment is not virtual focus and the optical element sensitivity is low in an environment of-40 ℃ to 80 ℃.
The above description is only one embodiment of the present invention, and is not intended to limit the present invention, and it is apparent to those skilled in the art that various modifications and variations can be made in the present invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (16)

1. A zoom lens, comprising: a first lens group (G1) having positive optical power, a second lens group (G2) having negative optical power, a diaphragm (S), a third lens group (G3) having positive optical power, a fourth lens group (G4) having positive optical power, and a fifth lens group (G5) having positive optical power, which are arranged in order from the object side to the image side along the optical axis, wherein the first lens group (G1), the third lens group (G3), and the fifth lens group (G5) are fixed lens groups, the second lens group (G2) is a zoom group, and the fourth lens group (G4) is a focus group;
the second lens group (G2) realizes magnification variation from the wide-angle end to the telephoto end when moving along the optical axis;
when the fourth lens group (G4) moves along the optical axis, the correction and focusing of image surface variation along with zooming are realized;
wherein, the ratio of the focal length f1 of the first lens group (G1), the focal length f2 of the second lens group (G2), the focal length f3 of the third lens group (G3), the focal length f4 of the fourth lens group (G4), and the focal length f5 of the fifth lens group (G5) to the focal length fw at the wide angle end of the zoom lens satisfies the following ranges in order:
f1:fw=1.5~10,f2:fw=-3~-0.7,f3:fw=1~6,f4:fw=1.5~5.5,f5:fw=2~8。
2. the zoom lens according to claim 1, wherein the first lens group (G1) includes a first lens (L1) having negative optical power, a second lens (L2) having positive optical power, and a third lens (L3) having positive optical power;
the first lens (L1) is a convex-concave lens.
3. The zoom lens according to claim 1, wherein the second lens group (G2) includes a fourth lens (L4) having a negative optical power, a fifth lens (L5) having a negative optical power, a sixth lens (L6) having a positive optical power, and a seventh lens (L7) having a negative optical power;
the fifth lens (L5) is a biconcave lens.
4. The zoom lens according to claim 1, wherein the third lens group (G3) includes an eighth lens (L8) having positive optical power, a ninth lens (L9) having negative optical power, a tenth lens (L10) having positive optical power, an eleventh lens (L11) having negative optical power, a twelfth lens (L12) having positive optical power, and a thirteenth lens (L13) having negative optical power;
the eighth lens (L8) and the twelfth lens (L12) are double convex lenses;
the thirteenth lens (L13) is a biconcave lens.
5. The zoom lens according to claim 1, wherein the fourth lens group (G4) includes a fourteenth lens (L14) having positive optical power, a fifteenth lens (L15) having positive optical power, and a sixteenth lens (L16) having negative optical power;
the fourteenth lens (L14) and the fifteenth lens (L15) are double-convex lenses;
the sixteenth lens (L16) is a biconcave lens.
6. The zoom lens according to claim 1, wherein the fifth lens group (L5) includes a seventeenth lens (L17) having a positive optical power and an eighteenth lens (L18) having a negative optical power;
the seventeenth lens (L17) is a biconvex lens.
7. The zoom lens according to claim 6, wherein an optical length BFL of the eighteenth lens (L18) from an image plane of the zoom lens satisfies: BFL is more than 2 and less than 13.
8. The zoom lens according to claim 3, wherein the refractive index of the material of the seventh lens (L7) is in a range of 1.35-1.65.
9. The zoom lens according to claim 4, wherein the refractive indices of the materials of the eighth lens (L8) and the ninth lens (L9) are in the range of 1.35 to 1.65.
10. A zoom lens according to claim 2, wherein the first lens (L1) and the second lens (L2) constitute a double cemented lens.
11. The zoom lens according to claim 4, wherein the ninth lens (L9), the tenth lens (L10) and the eleventh lens (L11) constitute a triple cemented lens, and the twelfth lens (L12) and the thirteenth lens (L13) constitute a double cemented lens.
12. The zoom lens according to claim 5, wherein the fifteenth lens (L15) and the sixteenth lens (L16) constitute a double cemented lens.
13. The zoom lens according to any one of claims 10 to 12, wherein an absolute value a of an abbe number difference between adjacent two lenses in each cemented lens satisfies: a is more than 15 and less than 80.
14. The zoom lens according to any one of claims 1 to 12, wherein at least one of the second lens group (G2), the third lens group (G3), and the fourth lens group (G4) includes an aspherical lens.
15. A zoom lens according to any one of claims 1 to 12, wherein a distance D by which the second lens group (G2) is moved from a wide angle end to a telephoto end of the zoom lens and a total length TTL of the zoom lens satisfy: 0.15 < D/TTL < 0.536.
16. The zoom lens according to any one of claims 1 to 12, wherein a diameter d of a largest lens of the first lens group (G1) and a total length TTL of the zoom lens satisfy: d/TTL is more than 0.3 and less than 2.
CN201911338900.6A 2019-12-23 2019-12-23 Zoom lens Pending CN110955035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911338900.6A CN110955035A (en) 2019-12-23 2019-12-23 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911338900.6A CN110955035A (en) 2019-12-23 2019-12-23 Zoom lens

Publications (1)

Publication Number Publication Date
CN110955035A true CN110955035A (en) 2020-04-03

Family

ID=69983474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911338900.6A Pending CN110955035A (en) 2019-12-23 2019-12-23 Zoom lens

Country Status (1)

Country Link
CN (1) CN110955035A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305730A (en) * 2020-10-21 2021-02-02 舜宇光学(中山)有限公司 Zoom lens
CN113805323A (en) * 2021-10-13 2021-12-17 舜宇光学(中山)有限公司 Zoom lens
CN113885184A (en) * 2021-10-08 2022-01-04 嘉兴中润光学科技股份有限公司 Long-focus zoom lens and image pickup device
CN114089520A (en) * 2021-12-08 2022-02-25 舜宇光学(中山)有限公司 Zoom lens
CN114236795A (en) * 2021-12-30 2022-03-25 福建福特科光电股份有限公司 Large-magnification zoom lens

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112305730A (en) * 2020-10-21 2021-02-02 舜宇光学(中山)有限公司 Zoom lens
CN113885184A (en) * 2021-10-08 2022-01-04 嘉兴中润光学科技股份有限公司 Long-focus zoom lens and image pickup device
CN113885184B (en) * 2021-10-08 2022-04-22 嘉兴中润光学科技股份有限公司 Long-focus zoom lens and image pickup device
CN113805323A (en) * 2021-10-13 2021-12-17 舜宇光学(中山)有限公司 Zoom lens
CN114089520A (en) * 2021-12-08 2022-02-25 舜宇光学(中山)有限公司 Zoom lens
CN114236795A (en) * 2021-12-30 2022-03-25 福建福特科光电股份有限公司 Large-magnification zoom lens
CN114236795B (en) * 2021-12-30 2023-08-08 福建福特科光电股份有限公司 High magnification zoom lens

Similar Documents

Publication Publication Date Title
CN110955035A (en) Zoom lens
CN109116532B (en) Zoom lens
CN107272163B (en) Wide-angle lens
CN112835187A (en) Zoom lens
CN110488473B (en) Miniaturized large-aperture large-target-surface high-resolution zoom lens
CN113126267A (en) Zoom lens
CN214225569U (en) Zoom lens
CN218497250U (en) Zoom lens
US9025255B2 (en) Zoom lens and imaging apparatus
CN114265189A (en) Zoom lens and imaging device
CN216927244U (en) Zoom lens
CN211014817U (en) Zoom lens
CN113589505B (en) Zoom lens and imaging device
CN113238366A (en) Zoom lens
CN100397136C (en) Zoom lens
CN112346225A (en) Zoom lens
CN110346920B (en) Fish-eye lens
CN112083561A (en) Zoom lens
CN111913284A (en) Wide-angle lens with large image surface
CN218158534U (en) Zoom lens
CN111722384A (en) Zoom lens
CN217879799U (en) Zoom lens
CN114895443B (en) Zoom lens
CN217739599U (en) Zoom lens
CN216927241U (en) Zoom lens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination