CN110951797A - 消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用 - Google Patents

消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用 Download PDF

Info

Publication number
CN110951797A
CN110951797A CN201911236047.7A CN201911236047A CN110951797A CN 110951797 A CN110951797 A CN 110951797A CN 201911236047 A CN201911236047 A CN 201911236047A CN 110951797 A CN110951797 A CN 110951797A
Authority
CN
China
Prior art keywords
bacillus licheniformis
glutamic acid
gamma
poly
glutamate dehydrogenase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911236047.7A
Other languages
English (en)
Other versions
CN110951797B (zh
Inventor
陈守文
杨帆
蔡冬波
陈耀中
张清
马昕
陈建刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201911236047.7A priority Critical patent/CN110951797B/zh
Publication of CN110951797A publication Critical patent/CN110951797A/zh
Application granted granted Critical
Publication of CN110951797B publication Critical patent/CN110951797B/zh
Priority to US17/037,671 priority patent/US11952596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01002Glutamate dehydrogenase (1.4.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01003Glutamate dehydrogenase (NAD(P)+)(1.4.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01004Glutamate dehydrogenase (NADP+) (1.4.1.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/10Bacillus licheniformis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明属于基因工程和酶工程技术领域,公开了消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ‑谷氨酸产量中的应用。本发明通过同源重组的方式,将来源于消化链球菌(Peptostreptococcus asaccharolyticus)中的谷氨酸脱氢酶GdhA替换地衣芽胞杆菌WX‑02(Baclicus lincheniformis)自身的谷氨酸脱氢酶,显著提高了地衣芽胞杆菌聚γ‑谷氨酸合成水平,获得菌株聚γ‑谷氨酸产量相较于对照菌株至少提高了20%以上。本发明为聚γ‑谷氨酸的高效生产提供了一种新策略。

Description

消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷 氨酸产量中的应用
技术领域
本发明属于酶工程和基因工程技术领域,具体涉及消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用。
背景技术
聚γ-谷氨酸是由α-氨基和γ-羧酸基团之间的酰胺键连接的D/L-型谷氨酸残基构成的阴离子多肽。因其生物结构特征,使它具有很多优良的性质。聚γ-谷氨酸作为水溶性、生物可降解性、生物相容性、可食用性、无毒性的生物可降解材料,可广泛用于食品、农业、医药、化妆品、环保等领域。因此,聚γ-谷氨酸具有广泛的应用前景。
目前,聚γ-谷氨酸的商业化生产主要依赖于微生物发酵法,但是由于需要添加聚γ-谷氨酸合成前体物和发酵副产物过多,导致葡萄糖向聚γ-谷氨酸的转化率偏低。从目前报道看,聚γ-谷氨酸的商业生产菌株几乎完全依赖于芽胞杆菌属,如枯草芽胞杆菌、解淀粉芽胞杆菌、地衣芽胞杆菌等。根据营养要求,这些聚γ-谷氨酸生产菌株可分为L-谷氨酸依赖型和L-谷氨酸非依赖型。L-谷氨酸依赖型菌株在商业生产上增加了生产成本。L-谷氨酸非依赖型菌株虽然是潜在的低生产成本的细胞工厂,但是其生产力却受到了极大的限制。谷氨酸脱氢酶是聚γ-谷氨酸合成途径中关键酶,负责催化α-酮戊二酸形成谷氨酸,随后通过聚γ-谷氨酸合成酶进一步反应生成终产物聚γ-谷氨酸。由于胞内谷氨酸的合成积累是聚γ-谷氨酸高效合成的必要条件,因此谷氨酸脱氢酶也是聚γ-谷氨酸生物合成的关键酶。目前,尚未有研究对影响聚γ-谷氨酸高产的谷氨酸脱氢酶进行分析和研究。消化链球菌是人体口腔、上呼吸道及肠道的正常菌群,尚未有研究表明其具有聚γ-谷氨酸的合成能力,也没有研究对其谷氨酸脱氢酶进行研究及与芽胞杆菌谷氨酸脱氢酶进行比较。本研究通过将来源于消化链球菌的谷氨酸脱氢酶替换了地衣芽胞杆菌自身的谷氨酸脱氢酶,显著提高了地衣芽胞杆菌聚γ-谷氨酸的合成水平,取得了聚γ-谷氨酸产量提高的技术效果。本研究表明,消化链球菌中谷氨酸脱氢酶对于地衣芽胞杆菌聚γ-谷氨酸高效合成意义重大,本研究为聚γ-谷氨酸的高效生物合成提供了一种新策略。
发明内容
本发明的目的在于提供了来源于消化链球菌的谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用,所述的谷氨酸脱氢酶GdhA的氨基酸序列为SEQ ID NO.1所示。
为了达到上述目的,本发明采取以下技术措施:
消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用,包括将编码消化链球菌谷氨酸脱氢酶gdhA的基因替换地衣芽胞杆菌中的谷氨酸脱氢酶基因,将得到的重组菌株用于发酵生产聚γ-谷氨酸,所述的谷氨酸脱氢酶gdhA的氨基酸序列为SEQ ID NO.1所示;或是利用本领域的常规方案,将消化链球菌谷氨酸脱氢酶GdhA在地衣芽胞杆菌中表达,从而促进聚γ-谷氨酸的合成。
以上所述的应用中,优选的,编码SEQ ID NO.1所示氨基酸序列的核苷酸序列为SEQ ID NO.2所示。
以上所述的应用中,优选的,所述的地衣芽胞杆菌为能生产聚γ-谷氨酸的地衣芽胞杆菌。
以上所述的应用中,优选的,所述的地衣芽胞杆菌为地衣芽胞杆菌(Bacilluslicheniformis)WX-02。
以上所述的应用中,在应用过程中,发酵时,使用的发酵培养基配方为:
葡萄糖30-90g/L,谷氨酸钠0~30g/L,柠檬酸钠0~10g/L,NaNO3 5~10g/L,NH4Cl0-10g/L,K2HPO4·3H2O 0.5-1g/L,MgSO4·7H2O 0.8-1.2g/L,ZnSO4·7H2O 0.8-1.2g/L,MnSO4·H2O 0.1-0.2g/L,CaCl2 0.8-1.2g/L,所述的谷氨酸钠,柠檬酸钠和氯化铵,最多只能有一个含量可取0;
或甘油18-22g/L,谷氨酸钠25-35g/L,柠檬酸钠8-13g/L,NaNO3 7-12g/L,NH4Cl 8-12g/L,K2HPO4·3H2O 0.8-1.2g/L,MgSO4·7H2O 0.9-1.2g/L,ZnSO4·7H2O 0.8-1.2g/L,MnSO4·H2O 0.1-0.25g/L,CaCl2 0.5-1.5g/L。
以上所述的应用中,在应用过程中,发酵时,使用的发酵培养基配方为:
葡萄糖30-90g/L,谷氨酸钠0~30g/L,柠檬酸钠9-10g/L,NaNO3 9-10g/L,NH4Cl9-10g/L,K2HPO4·3H2O 0.8-1g/L,MgSO4·7H2O 0.8-1g/L,ZnSO4·7H2O 0.8-1g/L,MnSO4·H2O 0.1-0.2g/L,CaCl2 0.8-1.2g/L,所述的谷氨酸钠,柠檬酸钠不能同时取0。
与现有技术相比,本发明具有以下优点:
本发明通过同源重组的方式,将来源于消化链球菌(Peptostreptococcusasaccharolyticus)中的谷氨酸脱氢酶GdhA替换地衣芽胞杆菌WX-02(Baclicuslincheniformis)自身的谷氨酸脱氢酶,解决了目前聚γ-谷氨酸合成过程中谷氨酸供应不足的问题,改造后的菌株合成聚γ-谷氨酸显著提高,其聚γ-谷氨酸合成水平相较于对照菌株至少提高了20%。
具体实施方式
以下实施例是对本发明的进一步说明,而不是对本发明的限制。本发明所述技术方案,如未特别说明,为本领域的常规方案;所述试剂或材料,如未特别说明,均来源于商业渠道。
实验材料和试剂
1、菌株:地衣芽胞杆菌(Bacillus licheniformis)WX-02,保藏号为CCTCCNO.M208065,菌株E.coli DH5α购自于北京全式金生物技术有限公司。
2、酶类及其它生化试剂:高保真Taq酶购自武汉擎科生物技术有限公司公司。细菌基因组DNA提取试剂盒购自Tiangen公司,T4 DNA连接酶、限制性内切酶等分子生物学试剂购自南京诺唯赞生物科技有限公司,其它均为国产试剂(均可从普通生化试剂公司购买得到)。
3、培养基:
LB培养基配方为:10g/L胰蛋白胨,5g/L酵母粉,10g/L氯化钠,pH 7.0~7.2,121℃灭菌20min后使用。
实施例1:
消化链球菌谷氨酸脱氢酶替换菌株地衣芽胞杆菌WX-gdhA的构建:
1、根据消化链球菌(Peptostreptococcus asaccharolyticus)DSM 20463基因组DNA序列通过基因合成gdhA基因(基因扩增引物为T2-F2和T2-R2)(SEQ ID NO.2所示);以地衣芽胞杆菌Bacillus licheniformis WX-02基因组DNA为模板,PCR扩增出地衣芽胞杆菌自身谷氨酸脱氢酶基因rocG的上游同源臂(引物为T2-F1和T2-R1)和基因rocG的下游同源臂(引物为T2-F3和T2-R3);
T2-F1:GCTCTAAGAGCGGCTGATGAAGGT
T2-R1:ACGGATTAAGTGTATCTGTCATTAACAGGCACGCCAAAAG
T2-F2:CTTTTGGCGTGCCTGTTAATGACAGATACACTTAATCCGT
T2-R2:CGCTAAGACTTCCAGGTGATTAATACCATCCTCTTAATTTC
T2-F3:GAAATTAAGAGGATGGTATTAA TCACCTGGAAGTCTTAGCG
T2-R3:CGAGCT ATCAAAAACAGAAGGGGGAGGA
2、通过重叠延伸PCR将基因rocG的上游同源臂、扩增出的gdhA基因和基因rocG的下游同源臂连接到一起,构成目的基因片段,该目的基因片段的排列顺序为:基因rocG的上游同源臂-扩增出的gdhA基因-基因rocG的下游同源臂;
3、采用SacI和XbaI限制性内切酶对目的基因片段进行双酶切得到酶切基因片段,同时,采用SacI和XbaI限制性内切酶对质粒T2(2)-Ori进行双酶切得到线性质粒片段;
4、将步骤3得到的酶切目的片段和步骤3得到的线性质粒片段经T4-DNA连接酶连接,验证正确后得到质粒T2(2)-gdhA;
5、将质粒T2(2)-gdhA转入地衣芽胞杆菌Bacillus licheniformis WX-02中,经含有卡那青霉素抗性的培养基进行筛选,筛选得到转化子,对转化子挑质粒进行菌落PCR验证;
6、将步骤4得到的阳性转化子在45℃条件下、含有卡那青霉素抗性的培养基上转接培养3次,每次培养12h,并以T2-F和gdhA-R为引物进行菌落PCR检测单交换菌株;
T2-F:ATGTGATAACTCGGCGTA
gdhA-R:CGCTAAGACTTCCAGGTGATTAATACCATCCTCTTAATTTC
7、将步骤5得到的菌株和步骤6得到的单交换菌株混合接种培养,在37℃、不含有卡那青霉素的培养基中经过数次转接培养,挑转化子进行菌落PCR验证(引物为T2-KYF和T2-KYR)。得到阳性转化子。随后针对阳性转化子进行DNA测序进一步验证,得到双交换成功的gdhA菌株(即地衣芽胞杆菌WX-gdhA)。
T2-KYF:GAGATTATTCGTAAAGCCGAGATG
T2-KYR:CTGTCTCCCGTGTCTTTACCCG
实施例2:
地衣芽胞杆菌WX-gdhA在提高聚γ-谷氨酸发酵产量中的应用:
发酵产物产量分析
将实施例1获得的重组菌株接种到LB培养基中,37℃,培养14h;向500mL三角瓶中装入50mL的聚γ-谷氨酸发酵培养基(表1),然后将种子培养的菌液以接种量为3%(体积百分比)接种至发酵培养基中。培养条件为转速230r/min,温度37℃,发酵周期36小时。
本实施例,针对不同的发酵培养基配方,考察了地衣芽胞杆菌WX-gdhA对聚γ-谷氨酸合成水平的影响(同时也在这24种培养基中以相同接种量接种地衣芽胞杆菌WX-02作为对照),24组培养基配方具体如表1所示:
表1发酵培养基配方
Figure BDA0002304912150000041
Figure BDA0002304912150000051
以上培养基成分单位均为g/L,发酵培养基的pH为6.5~7.2,115℃灭菌20min后使用。
采用干重法测量聚γ-谷氨酸产量,具体操作步骤如下:取一定体积的发酵液样品,使用6mol/L HCl将pH调至3.0,12000r/min离心10min,菌体沉淀80℃烘箱烘干,测菌体干重。取上清,用6mol/L NaOH将上清液pH调至中性,加入3倍体积乙醇沉淀聚γ-谷氨酸,离心收集聚γ-谷氨酸絮状沉淀,将沉淀在80℃烘箱烘干,测干重。根据干重法计算生产发酵的菌液中聚γ-谷氨酸产量(见表2)。
表2发酵试验聚γ-谷氨酸的产量
Figure BDA0002304912150000061
序列表
<110> 湖北大学
<120> 消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 421
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Met Thr Asp Thr Leu Asn Pro Leu Val Ala Ala Gln Glu Lys Val Arg
1 5 10 15
Ile Ala Cys Glu Lys Leu Gly Cys Asp Pro Ala Val Tyr Glu Leu Leu
20 25 30
Lys Glu Pro Gln Arg Val Ile Glu Ile Ser Ile Pro Val Lys Met Asp
35 40 45
Asp Gly Thr Val Lys Val Phe Lys Gly Trp Arg Ser Ala His Ser Ser
50 55 60
Ala Val Gly Pro Ser Lys Gly Gly Val Arg Phe His Pro Asn Val Asn
65 70 75 80
Met Asp Glu Val Lys Ala Leu Ser Leu Trp Met Thr Phe Lys Gly Gly
85 90 95
Ala Leu Gly Leu Pro Tyr Gly Gly Gly Lys Gly Gly Ile Cys Val Asp
100 105 110
Pro Ala Glu Leu Ser Glu Arg Glu Leu Glu Gln Leu Ser Arg Gly Trp
115 120 125
Val Arg Gly Leu Tyr Lys Tyr Leu Gly Asp Arg Ile Asp Ile Pro Ala
130 135 140
Pro Asp Val Asn Thr Asn Gly Gln Ile Met Ser Trp Phe Val Asp Glu
145 150 155 160
Tyr Val Lys Leu Asn Gly Glu Arg Met Asp Ile Gly Thr Phe Thr Gly
165 170 175
Lys Pro Val Ala Phe Gly Gly Ser Glu Gly Arg Asn Glu Ala Thr Gly
180 185 190
Phe Gly Val Ala Val Val Val Arg Glu Ser Ala Lys Arg Phe Gly Ile
195 200 205
Lys Met Glu Asp Ala Lys Ile Ala Val Gln Gly Phe Gly Asn Val Gly
210 215 220
Thr Phe Thr Val Lys Asn Ile Glu Arg Gln Gly Gly Lys Val Cys Ala
225 230 235 240
Ile Ala Glu Trp Asp Arg Asn Glu Gly Asn Tyr Ala Leu Tyr Asn Glu
245 250 255
Asn Gly Ile Asp Phe Lys Glu Leu Leu Ala Tyr Lys Glu Ala Asn Lys
260 265 270
Thr Leu Ile Gly Phe Pro Gly Ala Glu Arg Ile Thr Asp Glu Glu Phe
275 280 285
Trp Thr Lys Glu Tyr Asp Ile Ile Val Pro Ala Ala Leu Glu Asn Val
290 295 300
Ile Thr Gly Glu Arg Ala Lys Thr Ile Asn Ala Lys Leu Val Cys Glu
305 310 315 320
Ala Ala Asn Gly Pro Thr Thr Pro Glu Gly Asp Lys Val Leu Thr Glu
325 330 335
Arg Gly Ile Asn Leu Thr Pro Asp Ile Leu Thr Asn Ser Gly Gly Val
340 345 350
Leu Val Ser Tyr Tyr Glu Trp Val Gln Asn Gln Tyr Gly Tyr Tyr Trp
355 360 365
Thr Glu Ala Glu Val Glu Glu Lys Gln Glu Ala Asp Met Met Lys Ala
370 375 380
Ile Lys Gly Val Phe Ala Val Ala Asp Glu Tyr Asn Val Thr Leu Arg
385 390 395 400
Glu Ala Val Tyr Met Tyr Ala Ile Lys Ser Ile Asp Val Ala Met Lys
405 410 415
Leu Arg Gly Trp Tyr
420
<210> 2
<211> 1266
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgacagata cacttaatcc gttagtagcg gcacaagaaa aagtaagaat agcatgcgaa 60
aaattaggat gcgatccagc agtatatgaa ctattaaaag aaccacaaag agtaattgaa 120
atctcaattc cagtaaaaat ggatgatggt acagttaaag tgttcaaagg atggagaagt 180
gctcactcaa gcgctgtagg tccatcaaaa ggtggagtta gattccatcc aaatgtaaac 240
atggatgaag ttaaagctct ttctctatgg atgacattca aaggtggagc actaggctta 300
ccatacggcg gaggaaaagg tggaatctgc gtagatccag cagaactatc agaaagagaa 360
ttagaacaat tatcaagagg atgggtaaga ggtctttata aatatcttgg agacagaatc 420
gatatcccag caccagacgt aaacactaac ggacaaatca tgagctggtt cgttgatgaa 480
tatgtaaaat taaacggcga aagaatggac atcggaactt tcacaggaaa gccagtagca 540
tttggcggaa gtgaaggaag aaacgaagca actggattcg gagtagctgt agtagttaga 600
gaatctgcta agagattcgg aatcaaaatg gaagatgcta aaatagctgt tcaaggtttc 660
ggaaacgtag gtactttcac tgttaagaac attgaaagac aaggcggaaa agtttgtgct 720
atcgctgaat gggatagaaa cgaaggaaac tatgctctat acaatgaaaa tggaatcgac 780
ttcaaagaat tattagctta caaagaagct aacaaaactc ttatcggatt cccaggagca 840
gaaagaatta ctgatgaaga attctggaca aaagaatatg atatcatagt accagcagca 900
ttagaaaatg taatcacagg cgaaagagct aaaacaataa acgctaaatt agtttgtgaa 960
gcagctaatg gtcctacaac tccagaagga gacaaagtat taactgaaag aggaatcaac 1020
ttaacaccag atatcttaac taactcaggt ggagttctag tatcttacta tgaatgggta 1080
caaaatcaat atggatacta ctggacagaa gcagaagtag aagaaaaaca agaagcagac 1140
atgatgaaag ctatcaaagg cgtattcgca gttgctgatg aatacaatgt aactctaaga 1200
gaagctgttt acatgtatgc aatcaaatca atagatgtag ctatgaaatt aagaggatgg 1260
tattaa 1266
<210> 3
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
gctctaagag cggctgatga aggt 24
<210> 4
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
acggattaag tgtatctgtc attaacaggc acgccaaaag 40
<210> 5
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
cttttggcgt gcctgttaat gacagataca cttaatccgt 40
<210> 6
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
cgctaagact tccaggtgat taataccatc ctcttaattt c 41
<210> 7
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
gaaattaaga ggatggtatt aatcacctgg aagtcttagc g 41
<210> 8
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
cgagctatca aaaacagaag ggggagga 28
<210> 9
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
atgtgataac tcggcgta 18
<210> 10
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
cgctaagact tccaggtgat taataccatc ctcttaattt c 41
<210> 11
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gagattattc gtaaagccga gatg 24
<210> 12
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
ctgtctcccg tgtctttacc cg 22

Claims (6)

1.消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用,所述的谷氨酸脱氢酶GdhA的氨基酸序列为SEQ ID NO.1所示。
2.根据权利要求1所述的应用,编码SEQ ID NO.1所示氨基酸序列的核苷酸序列为SEQID NO.2所示。
3.根据权利要求1所述的应用,所述的地衣芽胞杆菌为能生产聚γ-谷氨酸的地衣芽胞杆菌。
4.根据权利要求1所述的应用,所述的地衣芽胞杆菌为地衣芽胞杆菌(Bacilluslicheniformis) WX-02。
5.根据权利要求1所述的应用,在应用过程中,发酵时,使用的发酵培养基配方为:
葡萄糖30-90 g/L,谷氨酸钠0~30 g/L,柠檬酸钠0~10 g/L,NaNO3 5~10 g/L,NH4Cl0-10g/L,K2HPO4·3H2O 0.5-1 g/L,MgSO4·7H2O 0.8-1.2 g/L,ZnSO4·7H2O 0.8-1.2 g/L,MnSO4·H2O 0.1-0.2 g/L,CaCl2 0.8-1.2 g/L,所述的谷氨酸钠,柠檬酸钠和氯化铵,最多只能有一个含量可取0;
或甘油18-22 g/L,谷氨酸钠25-35 g/L,柠檬酸钠8-13g/L,NaNO3 7-12 g/L,NH4Cl 8-12g/L,K2HPO4·3H2O 0.8-1.2 g/L,MgSO4·7H2O 0.9-1.2 g/L,ZnSO4·7H2O 0.8-1.2g/L,MnSO4·H2O 0.1-0.25 g/L,CaCl2 0.5-1.5g/L。
6.根据权利要求5所述的应用,其特征在于:
葡萄糖30-90 g/L,谷氨酸钠0~30 g/L,柠檬酸钠9-10 g/L,NaNO3 9-10 g/L,NH4Cl9-10g/L,K2HPO4·3H2O 0.8-1 g/L,MgSO4·7H2O 0.8-1g/L,ZnSO4·7H2O 0.8-1g/L,MnSO4·H2O0.1-0.2 g/L,CaCl2 0.8-1.2 g/L,所述的谷氨酸钠,柠檬酸钠不能同时取0。
CN201911236047.7A 2019-12-05 2019-12-05 消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用 Active CN110951797B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911236047.7A CN110951797B (zh) 2019-12-05 2019-12-05 消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用
US17/037,671 US11952596B2 (en) 2019-12-05 2020-09-30 Application of glutamate dehydrogenase GDHA of Peptostreptococcus asaccharolyticus in increasing yield of poly-r-glutamic acid from Bacillus licheniformis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911236047.7A CN110951797B (zh) 2019-12-05 2019-12-05 消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用

Publications (2)

Publication Number Publication Date
CN110951797A true CN110951797A (zh) 2020-04-03
CN110951797B CN110951797B (zh) 2020-08-25

Family

ID=69980173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911236047.7A Active CN110951797B (zh) 2019-12-05 2019-12-05 消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用

Country Status (2)

Country Link
US (1) US11952596B2 (zh)
CN (1) CN110951797B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891820A (zh) * 2022-05-28 2022-08-12 湖北大学 一种高效合成羟基酪醇的地衣芽胞杆菌、构建方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097086A1 (fr) * 2001-05-29 2002-12-05 Kyowa Hakko Kogyo Co., Ltd. Micro-organismes utiles a echelle industrielle
WO2012061653A2 (en) * 2010-11-03 2012-05-10 The Regents Of The University Of California Biofuel and chemical production by recombinant microorganisms via fermentation of proteinacious biomass
CN108410789A (zh) * 2018-05-07 2018-08-17 湖北大学 产聚γ-谷氨酸的微生物及其构建方法与应用
CN108611308A (zh) * 2018-05-02 2018-10-02 湖北大学 一种高产聚γ-谷氨酸的地衣芽胞杆菌的制备方法及应用
CN110121336A (zh) * 2017-01-05 2019-08-13 弗莱德哈钦森癌症研究中心 改善疫苗功效的***和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097086A1 (fr) * 2001-05-29 2002-12-05 Kyowa Hakko Kogyo Co., Ltd. Micro-organismes utiles a echelle industrielle
WO2012061653A2 (en) * 2010-11-03 2012-05-10 The Regents Of The University Of California Biofuel and chemical production by recombinant microorganisms via fermentation of proteinacious biomass
CN110121336A (zh) * 2017-01-05 2019-08-13 弗莱德哈钦森癌症研究中心 改善疫苗功效的***和方法
CN108611308A (zh) * 2018-05-02 2018-10-02 湖北大学 一种高产聚γ-谷氨酸的地衣芽胞杆菌的制备方法及应用
CN108410789A (zh) * 2018-05-07 2018-08-17 湖北大学 产聚γ-谷氨酸的微生物及其构建方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891820A (zh) * 2022-05-28 2022-08-12 湖北大学 一种高效合成羟基酪醇的地衣芽胞杆菌、构建方法及应用
CN114891820B (zh) * 2022-05-28 2023-05-23 湖北大学 一种高效合成羟基酪醇的地衣芽胞杆菌、构建方法及应用

Also Published As

Publication number Publication date
US20210171918A1 (en) 2021-06-10
US11952596B2 (en) 2024-04-09
CN110951797B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN112322565B (zh) 提高重组大肠杆菌中2’-岩藻糖基乳糖产量的方法
CN113122490B (zh) 双基因缺陷型工程菌及其在提高n-乙酰氨基葡萄糖产量的应用
CN109022396B (zh) 一种酶活提高的α-淀粉酶突变体及其应用
CN108611308B (zh) 一种高产聚γ-谷氨酸的地衣芽胞杆菌的制备方法及应用
CN112322594B (zh) 高产谷氨酸的谷氨酸棒杆菌及其应用
CN110951797B (zh) 消化链球菌谷氨酸脱氢酶GdhA在提高地衣芽胞杆菌聚γ-谷氨酸产量中的应用
CN111849848B (zh) 一种抗噬菌体的大肠杆菌底盘细胞的构建及应用
CN111154748B (zh) 一种提高l-异亮氨酸合成纯度的乙酰羟酸合酶突变体
CN114181288B (zh) 制备l-缬氨酸的方法及其所用的基因与该基因编码的蛋白质
CN113699087B (zh) 一种转化乳糖生成乳果糖的植物乳杆菌工程菌株及其构建方法与应用
CN110862952B (zh) 5-氨基乙酰丙酸生产菌株及其构建方法和应用
CN111850063B (zh) 去饱和酶Des在提高芽胞杆菌聚γ-谷氨酸产量中的应用
CN110643647B (zh) 地衣芽胞杆菌谷氨酸脱氢酶突变体S277W在聚γ-谷氨酸合成中的应用
CN110656100A (zh) 一种解淀粉芽胞杆菌来源的耐热酸性β-甘露聚糖酶及其编码基因
CN110846290B (zh) 二氢硫辛酸脱氢酶突变体P213R及其在地衣芽胞杆菌的聚γ-谷氨酸合成中的应用
CN113308426A (zh) 一种改造tk基因5′端序列的重组棒状杆菌及其应用
CN116286575B (zh) 一种利用枯草芽孢杆菌高效表达生淀粉α-淀粉酶的方法
CN116814514B (zh) 提高大肠杆菌l-赖氨酸发酵产量的方法
CN116875522B (zh) 含有醇脱氢酶突变体基因的工程菌及其应用
CN109266635B (zh) 一种酶活提高的l-天冬酰胺酶突变体及其构建方法
CN116262780A (zh) 苏氨酸外排蛋白突变体及其应用
CN117720629A (zh) 一种转录终止蛋白的突变体及其应用
CN116004496A (zh) 一种生产透明质酸的基因工程菌及其应用
CN117143900A (zh) 敲除amtR基因的产杆菌肽工程菌及其制备方法和应用
CN114315998A (zh) Cey17_rs00300基因突变体及其在制备l-缬氨酸中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant