CN110941027B - Method and system for calculating carbonate karst etching hole type geothermal energy reserves - Google Patents

Method and system for calculating carbonate karst etching hole type geothermal energy reserves Download PDF

Info

Publication number
CN110941027B
CN110941027B CN201811109629.4A CN201811109629A CN110941027B CN 110941027 B CN110941027 B CN 110941027B CN 201811109629 A CN201811109629 A CN 201811109629A CN 110941027 B CN110941027 B CN 110941027B
Authority
CN
China
Prior art keywords
information
geothermal energy
well
seismic
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811109629.4A
Other languages
Chinese (zh)
Other versions
CN110941027A (en
Inventor
周锦明
周永仙
于金星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sino Geophysical Co ltd
Original Assignee
Sino Geophysical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sino Geophysical Co ltd filed Critical Sino Geophysical Co ltd
Priority to CN201811109629.4A priority Critical patent/CN110941027B/en
Publication of CN110941027A publication Critical patent/CN110941027A/en
Application granted granted Critical
Publication of CN110941027B publication Critical patent/CN110941027B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/307Analysis for determining seismic attributes, e.g. amplitude, instantaneous phase or frequency, reflection strength or polarity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/63Seismic attributes, e.g. amplitude, polarity, instant phase

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

A method for calculating carbonate karst etching hole type geothermal energy reserves comprises a first step of obtaining seismic wave data, and processing the seismic wave data to obtain position information of a geothermal energy reservoir as first information; a second step of acquiring information of a well communicated with the geothermal energy reservoir as second information; a third step of acquiring the top and bottom boundary information of the carbonate rock erosion hole as third information according to the first information and the second information; and a fourth step of obtaining the volume of the carbonate rock erosion hole according to the third information, and further obtaining the geothermal energy storage capacity of the carbonate rock erosion hole. The method combines the seismic data with the well drilling information, and correlates the information such as the position and the volume of the geothermal energy storage layer with the actual geothermal energy storage amount aiming at the carbonate karst etching hole type geothermal energy storage layer, so that the determination of the geothermal energy storage amount is more accurate and convenient.

Description

Method and system for calculating carbonate karst etching hole type geothermal energy reserves
Technical Field
The invention relates to the field of geothermal reservoir exploration in general, and in particular relates to a method and a system for determining the geothermal reserves of a carbonate karst etching hole type geothermal energy reservoir.
Background
At present, a precise description method for a mature carbonate karst-etching hole-type geothermal energy reservoir is not available, and complex well conditions such as target layer deviation and the like are often encountered in the actual exploration, development and drilling processes of a carbonate fracture-hole type oil-gas reservoir, and the method is especially important for the design of a vertical well and a target layer. How to ensure that a drilling target point can be well determined, a better drilling effect can be kept, the aim of efficient exploration and development is achieved, a carbonate karst cave reservoir development area with higher reliability is selected, and the definition of a high-quality reservoir development point is the key for solving the problem.
The application of a spectral decomposition tuning body technology in quantitative pre-drilling of a thin reservoir (Weishiping. oil geophysical exploration, 2009, 44(3): 337-340) discloses the application of the spectral decomposition tuning body technology in quantitative pre-drilling of the thin reservoir, and the spectral decomposition tuning body technology is a technology for converting seismic data from a time domain to a frequency domain by methods such as discrete Fourier transform or maximum entropy and the like and performing geological interpretation on the seismic data in the frequency domain by using an amplitude spectrum and a phase spectrum. The spectrum decomposition tuning body technology is used for quantitative study of the thickness of the thin reservoir, the pre-drilling precision of the thickness of the thin reservoir is equivalent to that of the reservoir subjected to seismic inversion, the thickness variation characteristic of the thin reservoir can be objectively revealed, and meanwhile, the spectrum decomposition tuning body technology has the characteristics of high calculation speed, low dependence degree on drilling data and the like and is suitable for pre-drilling the reservoir in a exploration area with less drilling data.
The application of the frequency division interpretation technology in the characterization of the reservoir (mineral rock volume 23, 3 rd, page 104-108, 2003) adopts a unique frequency spectrum decomposition and interpretation technology, namely the frequency division interpretation technology, of short-time window discrete Fourier transform and maximum entropy method, so that the reservoir transverse change rule is researched by tuning the corresponding relation of the amplitude in a frequency domain, and the seismic interpretation can obtain a time resolution result which is higher than the conventional seismic dominant frequency and corresponds to 1/4 wavelengths. The application of the frequency division interpretation technology solves the problem that the interpreter is puzzled for a long time to divide and determine the lithologic reservoir boundary only by depending on the drilling data.
The prior art respectively processes the seismic data by using a frequency division interpretation technology, when the technology is applied to the exploration and drilling of the carbonate karst cavern type geothermal energy reservoir, the positions of zero amplitude of reflected waves are corresponding to the upper and lower interfaces of a karst cavern in the original form of the seismic data, and when the seismic data are converted from a time domain to a frequency domain, the upper and lower boundaries of the karst cavern are defined to be unclear, so that the position of the carbonate karst cavern type geothermal energy reservoir cannot be accurately determined.
Disclosure of Invention
The invention aims to provide a method and a system for accurately determining the geothermal energy storage capacity of a carbonate karst etching hole type geothermal energy reservoir.
The invention provides a method for calculating carbonate karst-etching hole type geothermal energy reserves, which comprises a first step S1 of obtaining seismic wave data and processing the seismic wave data to obtain position information of a geothermal energy reservoir as first information; a second step S2 of acquiring information of a well bore communicated with the geothermal energy reservoir as second information; a third step S3 of obtaining the top and bottom boundary information of the carbonate rock erosion hole as third information according to the first information and the second information; and a fourth step S4, obtaining the volume of the carbonate rock erosion hole according to the third information, and further obtaining the geothermal energy storage capacity of the carbonate rock erosion hole.
According to one embodiment of the invention, processing the seismic wave data comprises one or more of trace integration, Fourier transform, and coherent analysis of the seismic wave data.
According to one embodiment of the invention, processing the seismic wave data comprises performing seismic trace integration on the seismic wave data, and then performing fourier transform and coherence analysis processing.
According to one embodiment of the invention, the first information is position information of a horizontal distribution of the geothermal energy reservoir.
According to one embodiment of the invention, obtaining information about a well in communication with the geothermal energy reservoir comprises sampling a well that is in communication with the geothermal energy reservoir.
According to one embodiment of the invention, the drilled well is one or more.
According to an embodiment of the invention, the obtaining of information about a well in communication with the geothermal energy reservoir comprises sampling a new well based on the first information, and obtaining the information about the well as the second information.
According to one embodiment of the invention, the new well is one or more.
According to one embodiment of the invention, the information of the borehole comprises lithology, physical properties and fluid property information of a target layer of the geothermal energy reservoir obtained by measuring gamma rays, electric resistance and sound waves.
According to an embodiment of the present invention, the third step S3 further includes converting the third information into a data volume with time as an axis in the vertical direction, and converting the third information into a data volume with depth as an axis in the vertical direction:
screening a group of optimal seismic characteristic parameters from the seismic data by combining with known well point information, normalizing the seismic data and the well point interval velocity, setting the mean value of the seismic data and the well point interval velocity as 0 and the variance as 1, and determining the interval velocity VsWith n seismic parameters SiThe following linear relationship is present: :
Vs=a0+a1S1+a2S2+…+anSnwherein a isiIs a undetermined constant, i ═ 0, 1.., n;
a can be obtained by using known well point dataiI.e. to minimize the following:
M=∑(Vwi-Vsi)2 i=1,2,...,m
in the formula VwiIs the actual interval velocity, V, of the ith wellsiAnd m is the stratum speed of the ith well pre-drilled, and the number of available wells.
According to an embodiment of the present invention, the fourth step S4 further includes combining the third information and the first information to obtain the volume of the entire geothermal reservoir, and thus the geothermal reservoir.
According to another aspect of the invention, the system for calculating the carbonate karst cave type geothermal energy reserves comprises a seismic information processing module 1, a well drilling information acquisition module 2, a karst cave boundary calculation module 3, a geothermal energy reserve calculation module 4, and the seismic information processing module 1, wherein the seismic information processing module is used for acquiring seismic wave data and processing the seismic wave data to obtain the position information of the geothermal energy reserves as first information; the drilling information acquisition module 2 is used for acquiring drilling information communicated with the geothermal energy reservoir layer as second information; the eroded cave boundary calculation module 3 is used for acquiring carbonate rock eroded cave boundary information as third information according to the first information and the second information; and the geothermal storage capacity calculation module 4 is used for obtaining the volume of the carbonate rock corrosion hole according to the third information, and further obtaining the geothermal storage capacity of the carbonate rock corrosion hole.
The method converts the seismic data of the reaction hole boundary from the axis position to the display by utilizing the wave crests and the wave troughs, and ensures that the boundary description is more accurate after the corresponding Fourier transform is carried out; the top and bottom boundaries of the single carbonate corrosion hole are determined by combining the drilling information and the seismic data, and the volume of the overall geothermal energy reservoir is obtained by the corresponding relation between the drilling information and the seismic data, so that the geothermal energy reserve is accurately obtained.
Drawings
FIG. 1 is a schematic diagram of a system for calculating carbonate karst cavern-type geothermal energy reserves;
FIG. 2 is a schematic view of the plan position of the erosion hole;
FIG. 3 is a schematic illustration of a borehole and an erosion hole;
FIG. 4 is a schematic representation of the three-dimensional spatial location of an erosion hole;
FIG. 5 is a schematic illustration of the effective porosity of an erosion hole;
FIG. 6 is a schematic illustration of erosion hole volume; and
FIG. 7 is a schematic representation of the steps of a method of calculating carbonate karst cavern-type geothermal energy reserves.
Detailed Description
In the following detailed description of the preferred embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, specific features of the invention, such that the advantages and features of the invention may be more readily understood and appreciated. The following description is an embodiment of the claimed invention, and other embodiments related to the claims not specifically described also fall within the scope of the claims.
Figure 1 shows a schematic diagram of a system for calculating carbonate karst cavern-type geothermal energy reserves.
As shown in fig. 1, a system for calculating carbonate karst cave type geothermal energy reserves comprises a seismic information processing module 1, a drilling information acquisition module 2, a karst cave boundary calculation module 3, a geothermal energy storage calculation module 4, and the seismic information processing module 1, configured to acquire seismic wave data, process the seismic wave data, and obtain position information of the geothermal energy reservoir as first information; the well drilling information acquisition module 2 is used for performing well drilling sampling according to the first information and acquiring well drilling information as second information; the eroded cave boundary calculation module 3 is used for acquiring carbonate rock eroded cave boundary information as third information according to the first information and the second information; and the geothermal energy storage calculation module 4 is used for obtaining the geothermal energy storage according to the third information.
Fig. 2 shows a schematic diagram of the planar position of the erosion holes.
As shown in fig. 2, the first information includes the planar position of the erosion hole, including the center point, the shape, and other information. The first information is obtained by performing filtering and denoising procedures on original seismic data and then performing technical processing such as seismic trace integration, Fourier transform, coherent analysis and the like.
Fig. 3 shows a schematic view of a drilled and eroded cavity.
As shown in fig. 3, the drilling information module is configured to obtain drilling information, where the drilling is a drilling capable of communicating with the thermal energy reservoir, and may be a drilling already performed in the process of obtaining the first information, or a new drilling well in which a location corresponding to an erosion hole is specially selected for obtaining the drilling information based on the first information.
And measuring the drilled well, respectively measuring natural gamma rays, sound waves, lithology, density and the like by sampling the drilled well in the depth direction, comprehensively interpreting the information to obtain the top and bottom positions of the erosion hole, wherein the different development conditions of the erosion hole may cause various conditions of emptying, blowout, leakage and the like of the drilled well in the drilling process.
The synthetic record of the well is formed by the seismic record which is converted by artificial synthesis by using acoustic logging or vertical seismic profile data. And through the synthetic record of the drilled well, corresponding the seismic section of the first information to the actual drilled well, and determining the specific position of the top and the bottom of the erosion hole in the seismic section of the first information and the value corresponding to the top and the bottom position in the first information, namely the erosion hole boundary reference value.
Selecting different well bores, obtaining a series of boundary reference values of the erosion cavities, and carrying out normalization processing on the reference values to obtain the boundary values of the erosion cavities as third information.
The third information is a data volume taking time as an axis in the vertical direction, and needs to be converted into a data volume taking depth as an axis in the vertical direction:
screening a group of optimal seismic characteristic parameters from the seismic data by combining with known well point information, normalizing the seismic data and the well point interval velocity, setting the mean value of the seismic data and the well point interval velocity as 0 and the variance as 1, and determining the interval velocity VsWith n seismic parameters SiThe following linear relationship is present:
Vs=a0+a1S1+a2S2+…+anSnwherein a isiIs a undetermined constant, i ═ 0, 1.., n;
a can be obtained by using known well point dataiI.e. to minimize the following:
M=∑(Vwi-Vsi)2 i=1,2,...,m
in the formula VwiIs the actual interval velocity, V, of the ith wellsiAnd m is the stratum speed of the ith well pre-drilled, and the number of available wells.
The velocity body was obtained by the above method.
Fig. 4 shows a schematic diagram of the three-dimensional spatial position of the erosion holes.
As shown in fig. 4, the three-dimensional spatial position of the erosion hole is determined by the above-mentioned velocity volume in combination with the third information.
Fig. 5 shows a schematic diagram of the effective porosity of the erosion holes.
Fig. 6 shows a schematic of the volume of the erosion holes.
As shown in fig. 5 and 6, the darker the color, the larger the numerical value. And obtaining the volume of the erosion hole through the third information. And determining the average effective porosity of the erosion holes according to the information of sound wave, lithology, density and the like of the drilled well. And finally obtaining the underground hot water reserve by combining the analysis of the core sample in the drilled well and the third information.
FIG. 7 shows a schematic of the steps of a method of calculating carbonate karst cavern-type geothermal energy reserves.
As shown in fig. 7, a method for calculating carbonate karst-eroded cavern-type geothermal energy reserves includes a first step S1 of obtaining seismic wave data, and processing the seismic wave data to obtain location information of the geothermal energy reservoir as first information; a second step S2 of acquiring information of a well bore communicated with the geothermal energy reservoir as second information; a third step S3 of obtaining the top and bottom boundary information of the carbonate rock erosion hole as third information according to the first information and the second information; and a fourth step S4, obtaining the volume of the carbonate rock erosion hole according to the third information, and further obtaining the geothermal energy storage capacity of the carbonate rock erosion hole.
According to one embodiment of the invention, processing the seismic wave data comprises one or more of trace integration, Fourier transform, and coherent analysis of the seismic wave data.
According to one embodiment of the invention, the first information is position information of a horizontal distribution of the geothermal energy reservoir.
According to one embodiment of the invention, obtaining information about a well in communication with the geothermal energy reservoir comprises sampling a well that is in communication with the geothermal energy reservoir.
According to one embodiment of the invention, the drilled well is one or more.
According to an embodiment of the invention, the obtaining of information about a well in communication with the geothermal energy reservoir comprises sampling a new well based on the first information, and obtaining the information about the well as the second information.
According to one embodiment of the invention, the new well is one or more.
According to one embodiment of the invention, the information of the borehole comprises lithology, physical properties and fluid property information of a target layer of the geothermal energy reservoir obtained by measuring gamma rays, electric resistance and sound waves.
According to an embodiment of the present invention, the third step S3 further includes converting the third information into a data volume with time as an axis in the vertical direction, and converting the third information into a data volume with depth as an axis in the vertical direction:
screening a group of optimal seismic characteristic parameters from the seismic data by combining with known well point information, normalizing the seismic data and the well point interval velocity, setting the mean value of the seismic data and the well point interval velocity as 0 and the variance as 1, and determining the interval velocity VsWith n seismic parameters SiThe following linear relationship is present:
Vs=a0+a1S1+a2S2+…+anSnwherein a isiIs a undetermined constant, i ═ 0, 1.., n;
a can be obtained by using known well point dataiI.e. to minimize the following:
M=∑(Vwi-Vsi)2 i=1,2,...,m
in the formula VwiIs the actual interval velocity, V, of the ith wellsiAnd m is the stratum speed of the ith well pre-drilled, and the number of available wells.
According to an embodiment of the present invention, the fourth step S4 further includes combining the third information and the first information to obtain the volume of the entire geothermal reservoir, and thus the geothermal reservoir.
According to another aspect of the invention, the system for calculating the carbonate karst cave type geothermal energy reserves comprises a seismic information processing module 1, a well drilling information acquisition module 2, a karst cave boundary calculation module 3, a geothermal energy reserve calculation module 4 and a seismic information processing module 1, wherein the seismic information processing module 1 is used for acquiring seismic wave data and processing the seismic wave data to obtain the position information of the geothermal energy reserves as first information; the drilling information acquisition module 2 is used for acquiring drilling information communicated with the geothermal energy reservoir layer as second information; the eroded cave boundary calculation module 3 is used for acquiring carbonate rock eroded cave boundary information as third information according to the first information and the second information; and the geothermal storage capacity calculation module 4 is used for obtaining the volume of the carbonate rock corrosion hole according to the third information, and further obtaining the geothermal storage capacity of the carbonate rock corrosion hole.
The method converts the seismic data of the reaction hole boundary from the axis position to the display by utilizing the wave crests and the wave troughs, and ensures that the boundary description is more accurate after the corresponding Fourier transform is carried out; the top and bottom boundaries of the single carbonate corrosion hole are determined by combining the drilling information and the seismic data, and the volume of the overall geothermal energy reservoir is obtained by the corresponding relation between the drilling information and the seismic data, so that the geothermal energy reserve is accurately obtained.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim.

Claims (10)

1. A method for calculating the geothermal energy storage of carbonate karst etching holes comprises,
a first step (S1) of acquiring seismic wave data, and processing the seismic wave data to obtain location information of the geothermal energy reservoir as first information, the first information being location information of horizontal distribution of the geothermal energy reservoir;
a second step (S2) of acquiring information of a drilling well communicated with the geothermal energy reservoir as second information, wherein the second information is an erosion hole boundary reference value obtained by measuring and comprehensively interpreting the drilling well;
a third step (S3) of obtaining carbonate rock erosion cavern top and bottom boundary information as third information according to the first information and the second information, wherein the third information is obtained by selecting different well bores and normalizing the obtained erosion cavern boundary reference values of the different well bores to obtain the boundary value of the erosion cavern;
and a fourth step (S4) of obtaining the volume of the carbonate rock erosion hole according to the third information, and further obtaining the geothermal energy storage capacity of the carbonate rock erosion hole.
2. The method of claim 1, wherein processing the seismic wave data comprises performing seismic trace integration, fourier transform, and coherent analysis on the seismic wave data.
3. The method of claim 1, wherein obtaining information of a well in communication with the geothermal energy reservoir comprises sampling a well that is in communication with the geothermal energy reservoir.
4. The method of claim 1, the drilled well being one or more.
5. The method of claim 1, wherein obtaining information about a well in communication with the geothermal energy reservoir comprises, based on the first information, taking a sample of a new well, obtaining information about the well as the second information.
6. The method of claim 5, the new well being one or more.
7. The method of claim 1, wherein the information of the borehole comprises lithology and physical and fluid property information of a formation of interest of a geothermal energy reservoir obtained by measuring gamma rays or electrical resistance or acoustic waves.
8. The method of claim 1, wherein the third step (S3) further comprises converting the third information into a vertical time-axis data volume into a vertical depth-axis data volume:
screening a set of maxima from the seismic data in combination with known well point informationAnd optimizing seismic characteristic parameters, normalizing the seismic data and the interval velocity of the well point, setting the mean value of the seismic data and the interval velocity of the well point to be 0 and setting the variance to be 1, and determining the interval velocity VsWith n seismic parameters SiThe following linear relationship is present:
Vs=a0+a1S1+a2S2+…+aiSi+…+anSnwherein a isiIs undetermined constant, i is 0,1, …, n;
a can be obtained by using known well point dataiI.e. to minimize the following:
M=∑(Vwj-Vsj)2 j=1,2,...,m
in the formula VwjIs the actual interval velocity, V, of the jth wellsjAnd m is the number of available wells, wherein the interval is the interval velocity of the pre-drilling of the jth well.
9. The method of claim 1, wherein the fourth step (S4) further comprises combining the third information with the first information to derive a volume of the entire geothermal reservoir, and thus a geothermal reservoir.
10. A system for calculating carbonate karst cave type geothermal energy reserves comprises a seismic information processing module (1), a drilling information acquisition module (2), a karst cave boundary calculation module (3) and a geothermal energy reserve calculation module (4),
the earthquake information processing module (1) is used for acquiring earthquake wave data and processing the earthquake wave data to obtain position information of the geothermal energy reservoir, and the position information is used as first information;
the drilling information acquisition module (2) is used for acquiring drilling information communicated with the geothermal energy reservoir layer as second information;
the erosion hole boundary calculation module (3) is used for acquiring carbonate rock erosion hole boundary information as third information according to the first information and the second information;
and the geothermal reserve calculation module (4) is used for obtaining the volume of the carbonate rock corrosion hole according to the third information and further obtaining the geothermal reserve of the carbonate rock corrosion hole.
CN201811109629.4A 2018-09-21 2018-09-21 Method and system for calculating carbonate karst etching hole type geothermal energy reserves Active CN110941027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811109629.4A CN110941027B (en) 2018-09-21 2018-09-21 Method and system for calculating carbonate karst etching hole type geothermal energy reserves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811109629.4A CN110941027B (en) 2018-09-21 2018-09-21 Method and system for calculating carbonate karst etching hole type geothermal energy reserves

Publications (2)

Publication Number Publication Date
CN110941027A CN110941027A (en) 2020-03-31
CN110941027B true CN110941027B (en) 2022-03-22

Family

ID=69905465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811109629.4A Active CN110941027B (en) 2018-09-21 2018-09-21 Method and system for calculating carbonate karst etching hole type geothermal energy reserves

Country Status (1)

Country Link
CN (1) CN110941027B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847015B (en) * 2021-09-30 2023-12-22 中核坤华能源发展有限公司 Real-time judging method for thermal reservoir position in high-temperature geothermal drilling process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975674A (en) * 1972-09-29 1976-08-17 Mceuen Robert B Geothermal exploration method utilizing electrical resistivity and seismic velocity
US5321612A (en) * 1991-02-26 1994-06-14 Swift Energy Company Method for exploring for hydrocarbons utilizing three dimensional modeling of thermal anomalies
CN102269820A (en) * 2010-06-01 2011-12-07 潜能恒信能源技术股份有限公司 Three-dimensional seismic pre-stack reverse-time migration imaging method based on GPU (graphics processing unit) staggered grid with small memory capacity
CN104634295A (en) * 2015-02-10 2015-05-20 西南石油大学 Carbonate rocks cave-type reservoir active volume estimation method
CN104834008A (en) * 2015-05-04 2015-08-12 中国石油天然气股份有限公司 Method for calculating filling degrees of carbonate fracture-cave reservoir
CN104914470A (en) * 2014-03-14 2015-09-16 恒泰艾普石油天然气技术服务股份有限公司 Carbonate rock fracture-cavity reservoir reserve correction method
CN105572746A (en) * 2015-12-11 2016-05-11 中国石油天然气股份有限公司 Method and device for determining position of drilling well
CN105735978A (en) * 2016-02-19 2016-07-06 中国石油集团川庆钻探工程有限公司 Well spacing method for carbonate interlayer karst-type reservoir
CN105785443A (en) * 2016-05-11 2016-07-20 中国科学院地质与地球物理研究所 Method for calculating relative wave impedance in high-precision manner by using trace integration
CN106707365A (en) * 2016-12-06 2017-05-24 中国石油大学(华东) Method for monitoring geothermal reservoir temperature and fracture distribution and device thereof
KR101881802B1 (en) * 2017-11-03 2018-07-26 (주)지지케이 Geothermal systems with earthquake detection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110080806A1 (en) * 2009-12-08 2011-04-07 Randy Allen Normann System and method for geothermal acoustic interface
US9581710B2 (en) * 2014-10-24 2017-02-28 Westerngeco L.L.C. Three-dimensional rock properties using cross well seismic
CN105572739B (en) * 2016-02-19 2019-03-12 中国石油集团川庆钻探工程有限公司 Carbonate rock hole crack gonadal development characteristic judgment method
CN107728203A (en) * 2016-08-11 2018-02-23 中国石油天然气股份有限公司 The determination method and device of carbonate reservoir development degree
CN107632319B (en) * 2017-07-31 2019-02-15 成都理工大学 Solution cavity identifies scaling method in carbonate rock heterogeneous reservoir based on GST

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975674A (en) * 1972-09-29 1976-08-17 Mceuen Robert B Geothermal exploration method utilizing electrical resistivity and seismic velocity
US5321612A (en) * 1991-02-26 1994-06-14 Swift Energy Company Method for exploring for hydrocarbons utilizing three dimensional modeling of thermal anomalies
CN102269820A (en) * 2010-06-01 2011-12-07 潜能恒信能源技术股份有限公司 Three-dimensional seismic pre-stack reverse-time migration imaging method based on GPU (graphics processing unit) staggered grid with small memory capacity
CN104914470A (en) * 2014-03-14 2015-09-16 恒泰艾普石油天然气技术服务股份有限公司 Carbonate rock fracture-cavity reservoir reserve correction method
CN104634295A (en) * 2015-02-10 2015-05-20 西南石油大学 Carbonate rocks cave-type reservoir active volume estimation method
CN104834008A (en) * 2015-05-04 2015-08-12 中国石油天然气股份有限公司 Method for calculating filling degrees of carbonate fracture-cave reservoir
CN105572746A (en) * 2015-12-11 2016-05-11 中国石油天然气股份有限公司 Method and device for determining position of drilling well
CN105735978A (en) * 2016-02-19 2016-07-06 中国石油集团川庆钻探工程有限公司 Well spacing method for carbonate interlayer karst-type reservoir
CN105785443A (en) * 2016-05-11 2016-07-20 中国科学院地质与地球物理研究所 Method for calculating relative wave impedance in high-precision manner by using trace integration
CN106707365A (en) * 2016-12-06 2017-05-24 中国石油大学(华东) Method for monitoring geothermal reservoir temperature and fracture distribution and device thereof
KR101881802B1 (en) * 2017-11-03 2018-07-26 (주)지지케이 Geothermal systems with earthquake detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"道积分属性理论诠释及其在薄河道砂体预测中的应用";张军华 等;《地球物理学进展》;20180228;第33卷(第1期);第326-333页 *

Also Published As

Publication number Publication date
CN110941027A (en) 2020-03-31

Similar Documents

Publication Publication Date Title
CN113759425B (en) Method and system for evaluating filling characteristics of deep paleo-karst reservoir stratum by well-seismic combination
CN107121699B (en) A kind of sedimentary facies identification method under earthquake phase control
CN103233727B (en) Inversion method of stratum shear wave velocity radial sections
CN109061765B (en) Trap evaluation method for heterogeneous thin sandstone interbed reservoir
CN113759424B (en) Karst reservoir filling analysis method and system based on spectral decomposition and machine learning
Yanhu et al. A method of seismic meme inversion and its application
CN108680951A (en) A method of judging that Enriching Coalbed Methane depositional control acts on based on earthquake information
CN109541685B (en) River channel sand body identification method
CN108490491A (en) A kind of beach body prediction technique indicating inverting based on waveform
CN110941027B (en) Method and system for calculating carbonate karst etching hole type geothermal energy reserves
CN101899973B (en) Method for measuring formation water resistivity and device thereof
CN104516019B (en) A kind of oil gas forecasting method based on spectral shape
CN114152985B (en) Method for determining boundary of underground ancient river channel and thickness of thin sand body in boundary
CN109283577B (en) Seismic horizon calibration method
CN112180464B (en) Reservoir physical property identification method
CN113534263B (en) Oil-gas saturation prediction method independent of logging information
CN113589365B (en) Reservoir pinch-out line description method based on time-frequency domain information
CN110941028B (en) Method and system for positioning carbonate karst etching hole type geothermal energy reservoir
Xu et al. Frequency trend attribute analysis for stratigraphic division and correlation
CN112764100B (en) Reservoir oil gas range detection method and device
Li et al. A Novel Method for Evaluating Formation Fracturing Effect Utilizing Acoustic Logging
RU2201606C1 (en) Method of typification and correlation of oil and gas productive rocks by borehole spectral-time parameters
CN118131320A (en) Inversion method, system and storage medium based on karst phase control
Dai et al. Application of Well-Loging Curves preprocessing in Reservoir Prediction
CN110221358A (en) Delta deposit parfacies digitizes method of discrimination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhou Jinming

Inventor after: Zhou Yongxian

Inventor after: Yu Jinxing

Inventor before: Zhou Jinming

Inventor before: Zhou Zilong

Inventor before: Yu Jinxing

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant