CN110932301B - 一种基于电池储能参与的提高风电接纳能力方法 - Google Patents

一种基于电池储能参与的提高风电接纳能力方法 Download PDF

Info

Publication number
CN110932301B
CN110932301B CN201911322354.7A CN201911322354A CN110932301B CN 110932301 B CN110932301 B CN 110932301B CN 201911322354 A CN201911322354 A CN 201911322354A CN 110932301 B CN110932301 B CN 110932301B
Authority
CN
China
Prior art keywords
energy storage
power
battery energy
soc
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911322354.7A
Other languages
English (en)
Other versions
CN110932301A (zh
Inventor
滕云
刘硕
左浩
孙鹏
王泽镝
袁元缘
张俊久
弓玮
吴磊
钟磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN201911322354.7A priority Critical patent/CN110932301B/zh
Publication of CN110932301A publication Critical patent/CN110932301A/zh
Application granted granted Critical
Publication of CN110932301B publication Critical patent/CN110932301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开一种基于电池储能参与的提高风电接纳能力方法,属于电网能源控制技术领域,该方法通过对当前时刻电池储能装置整体的荷电状态SOC参数准确计算,提前对电池储能装置充放电能力进行判断,然后通过计算配电网风电波动时的不平衡功率,对电池储能装置的每个储能单元的充放电功率进行分配,使得电池储能装置中的每个储能单元都以最大充放电能力接纳风电。再在对电池储能单元的充放电功率及荷电状态SOC进行约束的前提下,引入充电优化系数和放电优化系数,对配电网风电波动时整个电池储能装置的充放电功率进行优化,得到配电网风电波动时电池储能装置最优充放电功率,以提高整个电池储能装置的风电接纳能力。

Description

一种基于电池储能参与的提高风电接纳能力方法
技术领域
本发明涉及电网能源控制技术领域,尤其涉及一种基于电池储能参与的提高风电接纳能力方法。
背景技术
随着能源资源短缺和对环境要求的提高,开发利用清洁能源发电成为目前研究的热点。其中,作为目前可再生清洁能源开发利用之中技术较为成熟的风力发电,风力发电具有最大的可再生能源开发应用前景。我国的风机主要分布于风力资源丰富的“三北”地区(西北、东北、华北),但由于风电出力具有不确定性、随机性、间歇性等特点,对配电网电压、电流、频率及电能质量等产生了干扰,造成了严重的弃风问题,配电网对风电的接纳能力降低。
针对风力发电的上述问题,现有技术中通过配置大容量的电池储能装置、建设支流输送通道、储氢技术和抽水蓄能技术等技术方法来提高风电接纳能力,对于通过电池储能技术来提高风电接纳能力,主要有①改善***电源结构,如新建灵活调节电源、抽水蓄能电站等;②采用智能电网技术,提高电网中电池储能装置运行水平;③开展风电功率预测、负荷需求侧管理对电池储能装置进行联合规划、优化配置。改善***电源结构的方法,会增加电力***投资成本和运行成本,消耗大量的资源,增加电里***运行难度;采用智能电网技术,对于智能电网技术配置不健全的电力***,产生技术限制弊端,无法全方位的调动电池储能资源;风功率预测和需求侧管理无法准确地做到风电波动时的电池储能装置风电全接纳,且风功率预测存在较大的无法,负荷需求侧管理存在较大的不确定性。
本发明提出的基于电池储能参与的提高风电接纳能力方法,可以在现有电池储能装置地基础上,对现有的电池储能装置进行优化,既不会增加投资费用和运行费用,又不会改变现有的电网结构,增加***运行调度难度,也不会有技术瓶颈的限制。对于风电波动时,本方法中通过对风电波动不平衡功率计算,避免因风功率误差导致的影响,可以更好地提升风电接纳能力。本方法可以很好地解决上述弊端。
发明内容
针对上述现有技术的不足,本申请提供一种基于电池储能参与的提高风电接纳能力方法。
为解决上述技术问题,本发明所采取的技术方案是:一种基于电池储能参与的提高风电接纳能力方法,其流程如图1所示,包括如下步骤:
步骤1:通过计算电池储能单元的荷电状态SOC参数,得到整个电池储能装置整体的SOC值,判断风电波动时电池储能装置的充放电能力;
步骤1.1:计算每个储能单元的荷电状态SOC值:
Figure BDA0002327476320000021
其中,SOCBi(t)表示电池储能中第i个单元在t时刻进行充放电时的SOC值,t=0时可通过测量装置测定电池储能装置中第i个单元的SOC值;fBich和fBif分别表示第i个电池储能单元充放电标志位,充电时fBich=1、fBif=0,放电时fBich=0、fBif=1;PBi(t)表示第i个电池储能单元t时刻的充放电功率;EBi表示第i个电池储能单元的容量;ηch、ηf、ηtrans分别表示电池储能单元的充电效率、放电效率及电池储能变换器效率;Δt为电池储能充放电时长;
步骤1.2:计算整个电池储能装置整体的SOC值为:
Figure BDA0002327476320000022
其中,SOCB(t)表示整个电池储能装置t时刻整体的SOC值;N表示整个电池储能装置包含的储能单元数;wi为单个储能单元SOC值计算加权值。
步骤2:通过计算配电网风电波动时的风电波动不平衡功率,对电池储能装置的每个储能单元的充放电功率进行分配计算;
步骤2.1:计算风电波动不平衡功率ΔP(t):
ΔP(t)=PF(t)-PG(t)-PL(t)
其中,PF(t)表示风力发电输出功率;PG(t)表示配电网交换电能功率;PL(t)表示常规负荷用电功率;
步骤2.2:将计算得到的不平衡功率ΔP(t)进行电池储能装置充放电功率分配计算:
ΔPi(t)=Kh(fBich(SOCBi,max-SOCBi(t))+fBif(SOCBi(t)-SOCBi,min))ΔPhi
Figure BDA0002327476320000023
Figure BDA0002327476320000024
Figure BDA0002327476320000025
其中,ΔPi(t)为含风电配电网不平衡功率分配到第i个储能单元的功率;Kh为分配比例系数;SOCBi,max和SOCBi,min分别表示第i个电池储能单元SOC值最大值、最小值;ΔPhi为各储能单元功率分配参考值;Eimin和Eimax分别为第i个电池储能单元允许剩余的最小和最大电量。
步骤3:计算电池储能随风电波动时的最大充放电功率,对电池储能单元的充放电功率及荷电状态SOC进行约束;
步骤3.1:计算电池储能装置第i个单元最大充、放电功率:
Figure BDA0002327476320000031
其中,Pich,max(t)和Pif,max(t)分别为t时刻第i个电池储能单元的最大充电功率和最大放电功率;EBi(t-1)为第i个电池储能单元充放电前一刻即t-1时刻的剩余电量;
步骤3.2:t时刻第i个电池储能单元的充电功率Pich(t)、放电功率Pif(t)和储能单元SOCBi(t)须满足的约束条件:
Figure BDA0002327476320000032
Figure BDA0002327476320000033
其中,Pich(t)和Pif(t)分别为t时刻第i个电池储能单元的充电功率和放电功率,SOCBi(t)为t时刻第i个电池储能单元的SOC值。
步骤4:引入充电优化系数sch和放电优化系数sf,以电池储能装置各单元所分配到的风电不平衡分配功率为基础,计算电池储能装置优化后的充放电功率,优化电池储能装置充放电功率以提高风电接纳能力。
步骤4.1:计算充电优化系数sch和放电优化系数sf
Figure BDA0002327476320000034
步骤4.2:在满足步骤3所述约束条件下,引入电池随机优化系数M对时间t进行一个随机滑动,对时间t进行一个随机滑动的方法为对t加上或减去
Figure BDA0002327476320000041
然后对M-1时间段内的电池储能装置的风电不平衡功率进行优化,电池储能装置优化后的充放电功率为:
Figure BDA0002327476320000042
其中,PBS(t)为电池储能装置优化后的充放电功率;ΔPi(t)为第i个电池储能单元所分配到的含风电配电网不平衡功率;M为电池随机优化系数,其取值为大于1的奇数。
步骤5:计算配电网风电接纳能力:
Figure BDA0002327476320000043
ΔP'(t)=PF(t)-PG(t)-PL(t)-PBS(t)
ΔP*(t)=PF(t)-PG(t)-PL(t)-PB(t)
其中,Δ'表示采用上述方法的电池储能用于风电接纳充放电后功率的差值占风电功率的比例;Δ*表示未采用上述方法的电池储能用于风电接纳充放电功率的差值占风电功率的比例,ΔP'(t)和ΔP*(t)分别表示采用上述方法的电池储能用于风电接纳充放电后功率的差值和未采用上述方法电池储能用于风电接纳充放电后功率的差值。
采用上述技术方案所产生的有益效果在于:
1、本发明提供的步骤1中整个电池储能装置整体的荷电状态SOC参数计算方法,通过对当前时刻电池储能装置整体的荷电状态SOC参数准确计算,可以提前对用于提高风电接纳能力的电池储能装置充放电能力进行判断,更好地对配电网风电波动时的风电波动不平衡功率进行分配计算;
2、本发明提供的步骤2中整个电池储能装置在配电网风电波动时的风电波动不平衡功率分配计算方法,通过计算配电网风电波动时的风电波动不平衡功率,再根据各个电池储能单元的充放电能力判断对计算得到的风电波动不平衡功率进行分配计算,这样使得电池储能装置中的每个储能单元都可以以最大充放电能力接纳风电;
3、本发明提供的步骤3中整个电池储能装置的最大充放电功率及荷电状态SOC参数约束计算方法,通过计算电池储能装置每个单元最大充、放电功率和最大、最小SOC参数值,对配电网风电波动时整个电池储能装置充放电能力进行约束,使每个储能单元都可以更好地接纳风电,进而为实现整个电池储能装置最优风电接纳奠定基础;
4、本发明提供的步骤4中配电网风电波动时整个电池储能装置优化后的充放电功率计算方法,通过引入充电优化系数和放电优化系数,对配电网风电波动时整个电池储能装置的充放电功率进行优化,得到配电网风电波动时电池储能装置最优充放电功率,以提高整个电池储能装置的风电接纳能力;
5、本发明提供的步骤5中配电网风电波动时整个电池储能装置风电接纳能力计算方法,通过计算对比采用和未采用上述方法的电池储能用于风电接纳充放电后功率的差值占风电功率的比例,判断基于电池储能参与的提高风电接纳能力程度,以用于说明本方法对于提升风电接纳能力具有显著效果。
附图说明
图1为本发明一种基于电池储能参与的提高风电接纳能力方法的流程图;
图2为本发明实施例中电池储能接纳风电功率优化前后对比图;
图3为本发明实施例中电池储能接纳风电功率差值占比优化前后对比图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例选取某地区采用额定容量为2.5MW的风力发电、配电网交换电能功率实测数据及常规负荷实测数据,配电网***配置的电池储能装置的4个储能单元额定功率和额定容量为1.5MW和6MWh。设电池储能变换器效率ηtrans=95%,电池储能装置各储能单元充电效率ηch=85%、放电效率ηf=85%。设定电池储能装置开始时刻处于充电状态,Kh=0.8,M=3。
设定电池储能装置开始时刻处于充电状态,即fBich=1、fBif=0。电池储能充放电时长Δt=0.1h。同时通过测量装置检测0h各电池储能单元SOC值为SOCB1(0)=0.3、SOCB2(0)=0.4、SOCB3(0)=0.5、SOCB4(0)=0.6。
如图1所示,本实施例的方法如下所述。
步骤1:通过计算电池储能单元的荷电状态SOC参数,得到整个电池储能装置整体的SOC值,判断风电波动时电池储能装置的充放电能力;
步骤1.1:计算t=0.1h时每个储能单元的荷电状态SOC值:
Figure BDA0002327476320000061
得出SOCB1(0.1)=0.51,SOCB2(0.1)=0.43,SOCB3(0.1)=0.56,SOCB4(0.1)=0.61
步骤1.2:计算t=0.1h时整个电池储能装置整体的SOC值为:
Figure BDA0002327476320000062
其中,SOCB(t)表示整个电池储能装置t时刻整体的SOC值;N=4表示整个电池储能装置包含的储能单元数;wi为单个储能单元SOC值计算加权值。
步骤2:通过计算配电网风电波动时的风电波动不平衡功率,对电池储能装置的每个储能单元的充放电功率进行分配计算;
步骤2.1:计算t=0.1h时风电波动不平衡功率ΔP(t):
ΔP(t)=PF(t)-PG(t)-PL(t)
其中,PF(t)表示风力发电输出功率;PG(t)表示配电网交换电能功率;PL(t)表示常规负荷用电功率;
步骤2.2:将计算得到的不平衡功率ΔP(0.1)进行电池储能装置充放电功率分配计算:
ΔPi(t)=Kh(fBich(SOCBi,max-SOCBi(t))+fBif(SOCBi(t)-SOCBi,min))ΔPhi
Figure BDA0002327476320000063
Figure BDA0002327476320000064
Figure BDA0002327476320000065
其中,ΔPi(t)为含风电配电网不平衡功率分配到第i个储能单元的功率;Kh为分配比例系数;SOCBi,max和SOCBi,min分别表示第i个电池储能单元SOC值最大值、最小值;ΔPhi为各储能单元功率分配参考值;Eimin和Eimax分别为第i个电池储能单元允许剩余的最小和最大电量。
步骤3:计算t=0.1h时电池储能随风电波动时的最大充放电功率,对电池储能单元的充放电功率及荷电状态SOC进行约束;
步骤3.1:计算电池储能装置第i个单元最大充、放电功率:
Figure BDA0002327476320000071
其中,Pich,max(t)和Pif,max(t)分别为t时刻第i个电池储能单元的最大充电功率和最大放电功率;EBi(t-1)为第i个电池储能单元充放电前一刻即t-1时刻的剩余电量;
步骤3.2:t=0.1h时刻第i个电池储能单元的充电功率Pich(t)、放电功率Pif(t)和储能单元SOCBi(t)须满足的约束条件:
Figure BDA0002327476320000072
Figure BDA0002327476320000073
其中,Pich(t)和Pif(t)分别为t时刻第i个电池储能单元的充电功率和放电功率,SOCBi(t)为t时刻第i个电池储能单元的SOC值。
步骤4:引入充电优化系数sch和放电优化系数sf,以电池储能装置各单元所分配到的风电不平衡分配功率为基础,计算电池储能装置优化后的充放电功率,优化电池储能装置充放电功率以提高风电接纳能力。
步骤4.1:计算t=0.1h时充电优化系数sch和放电优化系数sf
Figure BDA0002327476320000074
步骤4.2:在满足步骤3所述约束条件下,引入电池随机优化系数M=3对时间t=0.1h进行一个随机滑动,对时间t进行一个随机滑动的方法为对t加上或减去
Figure BDA0002327476320000081
然后对M-1时间段内的电池储能装置的风电不平衡功率进行优化,电池储能装置优化后的充放电功率为:
Figure BDA0002327476320000082
sch=SOCBi,max-SOCBi(0)
其中,PBS(t)为电池储能装置优化后的充放电功率;ΔPi(t)为第i个电池储能单元所分配到的含风电配电网不平衡功率;M为电池随机优化系数,其取值为大于1的奇数。
步骤5:计算t=0.1h时配电网风电接纳能力:
Figure BDA0002327476320000083
Figure BDA0002327476320000084
按照上述步骤依次计算t=0.2,0.3,0.4,…,24h的电池储能装置优化后充放电功率PBS(t)(t=0.2,0.3,0.4,…,24),同时计算配电网风电接纳能力,得:
Figure BDA0002327476320000085
Figure BDA0002327476320000086
Figure BDA0002327476320000087
上述计算过程使用Mtalab软件编写程序进行仿真,将优化前后的结果进行对比如图2、3所示,采用本发明的方法对电池储能进行新的充放电量化改进后,电池储能的充放电功率更接近于***风电的不平衡功率,且配电网接纳风电的比例明显提高,优化后功率差值比例明显低于未优化时的比例,本发明的方法提高了配电网***风电接纳能力。

Claims (2)

1.一种基于电池储能参与的提高风电接纳能力方法,其特征在于包括如下步骤:
步骤1:通过计算电池储能单元的荷电状态SOC参数,得到整个电池储能装置整体的SOC值,判断风电波动时电池储能装置的充放电能力,过程如下;
步骤1.1:计算每个储能单元的荷电状态SOC值:
Figure FDA0003254564590000011
其中,SOCBi(t)表示电池储能中第i个单元在t时刻进行充放电时的SOC值;fBich和fBif分别表示第i个电池储能单元充放电标志位,充电时fBich=1、fBif=0,放电时fBich=0、fBif=1;PBi(t)表示第i个电池储能单元t时刻的充放电功率;EBi表示第i个电池储能单元的容量;ηch、ηf、ηtrans分别表示电池储能单元的充电效率、放电效率及电池储能变换器效率;△t为电池储能充放电时长;
步骤1.2:计算整个电池储能装置整体的SOC值为:
Figure FDA0003254564590000012
其中,SOCB(t)表示整个电池储能装置t时刻整体的SOC值;N表示整个电池储能装置包含的储能单元数;wi为单个储能单元SOC值计算加权值;
步骤2:通过计算配电网风电波动时的风电波动不平衡功率,对电池储能装置的每个储能单元的充放电功率进行分配计算,过程如下;
步骤2.1:计算风电波动不平衡功率△P(t):
△P(t)=PF(t)-PG(t)-PL(t)
其中,PF(t)表示风力发电输出功率;PG(t)表示配电网交换电能功率;PL(t)表示常规负荷用电功率;
步骤2.2:将计算得到的不平衡功率△P(t)进行电池储能装置充放电功率分配计算:
△Pi(t)=Kh(fBich(SOCBi,max-SOCBi(t))+fBif(SOCBi(t)-SOCBi,min))△Phi
Figure FDA0003254564590000013
Figure FDA0003254564590000021
Figure FDA0003254564590000022
其中,△Pi(t)为含风电配电网不平衡功率分配到第i个储能单元的功率;Kh为分配比例系数;SOCBi,max和SOCBi,min分别表示第i个电池储能单元SOC值最大值、最小值;△Phi为各储能单元功率分配参考值;Eimin和Eimax分别为第i个电池储能单元允许剩余的最小和最大电量;
步骤3:计算电池储能随风电波动时的最大充放电功率,对电池储能单元的充放电功率及荷电状态SOC进行约束,过程如下;
步骤3.1:计算电池储能装置第i个单元最大充、放电功率:
Figure FDA0003254564590000023
其中,Pich,max(t)和Pif,max(t)分别为t时刻第i个电池储能单元的最大充电功率和最大放电功率;EBi(t-1)为第i个电池储能单元充放电前一刻即t-1时刻的剩余电量;
步骤3.2:t时刻第i个电池储能单元的充电功率Pich(t)、放电功率Pif(t)和储能单元SOCBi(t)须满足的约束条件:
Figure FDA0003254564590000024
Figure FDA0003254564590000025
其中,Pich(t)和Pif(t)分别为t时刻第i个电池储能单元的充电功率和放电功率,SOCBi(t)为t时刻第i个电池储能单元的SOC值;
步骤4:引入充电优化系数sch和放电优化系数sf,以电池储能装置各单元所分配到的风电不平衡分配功率为基础,计算电池储能装置优化后的充放电功率,优化电池储能装置充放电功率以提高风电接纳能力,过程如下:
步骤4.1:计算充电优化系数sch和放电优化系数sf
Figure FDA0003254564590000031
步骤4.2:在满足步骤3所述约束条件下,引入电池随机优化系数M对时间t进行一个随机滑动,然后对M-1时间段内的电池储能装置的风电不平衡功率进行优化,电池储能装置优化后的充放电功率为:
Figure FDA0003254564590000032
其中,PBS(t)为电池储能装置优化后的充放电功率;△Pi(t)为含风电配电网不平衡功率分配到第i个储能单元的功率;M为电池随机优化系数,其取值为大于1的奇数。
2.根据权利要求1所述的一种基于电池储能参与的提高风电接纳能力方法,其特征在于:所述对时间t进行一个随机滑动的方法为对t加上或减去
Figure FDA0003254564590000033
CN201911322354.7A 2019-12-20 2019-12-20 一种基于电池储能参与的提高风电接纳能力方法 Active CN110932301B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911322354.7A CN110932301B (zh) 2019-12-20 2019-12-20 一种基于电池储能参与的提高风电接纳能力方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911322354.7A CN110932301B (zh) 2019-12-20 2019-12-20 一种基于电池储能参与的提高风电接纳能力方法

Publications (2)

Publication Number Publication Date
CN110932301A CN110932301A (zh) 2020-03-27
CN110932301B true CN110932301B (zh) 2021-11-16

Family

ID=69864473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911322354.7A Active CN110932301B (zh) 2019-12-20 2019-12-20 一种基于电池储能参与的提高风电接纳能力方法

Country Status (1)

Country Link
CN (1) CN110932301B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612272B (zh) * 2021-07-19 2024-01-02 科华数据股份有限公司 针对新能源发电***的不间断电源的充电控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167928A1 (ja) * 2013-04-12 2014-10-16 三菱電機株式会社 蓄電池の充放電制御装置および蓄電池の充放電制御方法
CN104882897A (zh) * 2015-06-18 2015-09-02 中国电力科学研究院 一种平抑光伏功率波动的有功功率优化调度方法
CN105262117A (zh) * 2015-11-12 2016-01-20 四川大学 一种风电爬坡优化控制方法
CN107465204A (zh) * 2017-08-31 2017-12-12 中国电力科学研究院 一种储能电站中多电池组功率优化分配方法和装置
CN109888874A (zh) * 2019-03-14 2019-06-14 珠海吉瓦科技有限公司 一种基于可用容量的储能***功率分配优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167928A1 (ja) * 2013-04-12 2014-10-16 三菱電機株式会社 蓄電池の充放電制御装置および蓄電池の充放電制御方法
CN104882897A (zh) * 2015-06-18 2015-09-02 中国电力科学研究院 一种平抑光伏功率波动的有功功率优化调度方法
CN105262117A (zh) * 2015-11-12 2016-01-20 四川大学 一种风电爬坡优化控制方法
CN107465204A (zh) * 2017-08-31 2017-12-12 中国电力科学研究院 一种储能电站中多电池组功率优化分配方法和装置
CN109888874A (zh) * 2019-03-14 2019-06-14 珠海吉瓦科技有限公司 一种基于可用容量的储能***功率分配优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于风电消纳时序场景的电池储能***配置策略;蔡霁霖 等;《高电压技术》;20190331;第45卷(第3期);全文 *
电池储能***用于风电功率部分"削峰填谷"控制及容量配置;靳文涛 等;《中国电力》;20130831;第46卷(第8期);全文 *

Also Published As

Publication number Publication date
CN110932301A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
CN108667052B (zh) 一种面向虚拟电厂优化运行的多类型储能***规划配置方法及***
CN112163700A (zh) 一种考虑储能电池循环寿命的电化学储能电站规划方法
CN113326467B (zh) 基于多重不确定性的多站融合综合能源***多目标优化方法、存储介质及优化***
CN115498698B (zh) 一种基于调频服务的新型光-储电站容量规划方法
CN112736952A (zh) 考虑日历寿命的海上风电配置储能***容量优化方法
CN111313444A (zh) 一种面向高密度光伏配网台区侧的储能***优化配置方法
CN114123280A (zh) 一种考虑***效率的电池储能电站能量管理方法
CN114362153A (zh) 一种并网型风光储***多目标容量优化配置方法及***
CN110932301B (zh) 一种基于电池储能参与的提高风电接纳能力方法
CN109245143B (zh) 一种考虑锂离子电池寿命的储能调峰电站优化运行方法
CN111525597A (zh) 一种风储联合***中双电池不平衡状态优化方法
CN115940284B (zh) 一种考虑分时电价的新能源制氢***的运行控制策略
CN116885761A (zh) 一种功率型-能量型混合储能***容量优化方法
CN117114281A (zh) 一种灵活资源多阶段规划方案的确定方法
CN114188980B (zh) 一种考虑储能装置的透明微网群经济运行域生成方法
Gaetani-Liseo et al. Identification of ESS Degradations Related to their Uses in Micro-Grids: application to a building lighting network with VRLA batteries
CN115642620A (zh) 一种储能参与低碳灵活调峰的双层优化方法
CN115001053A (zh) 主动抑制电池老化的v2g最优调频方法
CN112039057B (zh) 一种基于两阶段调度的低电压治理方法
CN108183498B (zh) 一种含风光储配电网背景下的车储混合配置方法
CN112861376A (zh) 一种基于单元调度模型的评估方法及装置
Shi et al. Optimal Configuration of Battery Energy Storage System in Bus Charging Station Considering Load Uncertainty
CN114019382B (zh) 一种锂离子电池储能电站寿命衰减确定方法及***
CN116896096B (zh) 一种含储能设备的配电网低碳优化运行方法及***
Gao et al. Optimal configuration of industrial user-side energy storage considering power demand income in life cycle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant