CN110918085A - 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法 - Google Patents

一种多孔wo3/c纳米片介孔复合光催化剂的制备方法 Download PDF

Info

Publication number
CN110918085A
CN110918085A CN201911289926.6A CN201911289926A CN110918085A CN 110918085 A CN110918085 A CN 110918085A CN 201911289926 A CN201911289926 A CN 201911289926A CN 110918085 A CN110918085 A CN 110918085A
Authority
CN
China
Prior art keywords
porous
nanosheet
composite photocatalyst
mesoporous composite
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911289926.6A
Other languages
English (en)
Inventor
吕慧丹
陈丹杨
刘勇平
米喜红
李时庆
班如静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201911289926.6A priority Critical patent/CN110918085A/zh
Publication of CN110918085A publication Critical patent/CN110918085A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • B01J35/39
    • B01J35/612
    • B01J35/64
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon

Abstract

本发明提供了一种多孔WO3/C纳米片介孔复合光催化剂的制备方法,将有机胺插层WO3·2H2O的杂化物加入瓷舟中,然后放入管式炉中,通入氮气,加热升温,保温反应,反应完后自然冷却至室温,即得到多孔WO3/C纳米片介孔复合光催化剂材料。本发明方法制备的多孔WO3/C纳米片介孔复合光催化剂由C与多孔的WO3纳米片形成的介孔结构的复合材料,具有良好的光吸收性能和较大的比表面积,在光照下能够高效的转化氮气成硝酸根,具有较好的光催化氧化活性。

Description

一种多孔WO3/C纳米片介孔复合光催化剂的制备方法
技术领域
本发明所属技术领域为光催化、光电化学材料技术领域,特别涉及多孔WO3/C纳米片介孔复合光催化剂的制备方法。
背景技术
三氧化钨为一种宽禁带的n型半导体材料,室温下的禁带宽度为2.63eV,可吸收500nm以下的可见光及紫外光,在电致变色、气敏传感器、光催化与光电转换领域具有重要的应用价值。纳米三氧化钨与传统的半导体材料相比,禁带宽度较窄,在可见光条件下具有良好的光电响应性能,并且价格低廉、性能稳定、无害、无毒,可作为光催化剂,利用太阳光降解水中的有机污染物和空气中的废气,高效节能、清洁、无污染。然而,WO3的性能和实际应用与它的晶相、形态、尺寸、形貌、晶体缺陷以及表面性能紧密相关,而这些又主要取决于WO3的制备方法及制备条件。其中,多孔纳米片是一种带有空洞的二维结构,它具有较高的比表面积,表现出高度的各向异性和量子限域效应。当多孔纳米片形成介孔结构时,有利于介质的扩散,提高光催化效率。基于此,本发明提供了一种多孔WO3/C纳米片介孔复合光催化剂的制备方法。
发明内容
本发明目的在于提供一种多孔WO3/C纳米片介孔复合光催化剂的制备方法,解决现有WO3纳米片阵列材料光电性能不足,光催化效率低的技术问题。
本发明目的是通过以下技术方案来实现的:
一种多孔WO3/C纳米片介孔复合光催化剂的制备方法,将有机胺插层WO3·2H2O的杂化物加入瓷舟中,然后放入管式炉中,通入氮气,加热升温,保温反应,反应完后自然冷却至室温,即得到多孔WO3/C纳米片介孔复合光催化剂材料。
本发明多孔WO3/C纳米片介孔复合光催化剂的制备方法,通过在氮气中煅烧有机胺插层WO3·2H2O的无机/有机层状杂化物,在多孔WO3纳米片表面原位引入碳,构建多孔WO3/C纳米片介孔材料,,增加了比表面积和对气体的吸附能力,提高了可见光吸收、光致电荷分离效率,结果有利于电子与空穴的分离,提高反应效率和分离效率,从而增强了光催化性能。
本发明中,有机胺插层WO3·2H2O的杂化物为WO3·2H2O/正丙胺无机/有机层状杂化物、WO3·2H2O/正丁胺无机/有机层状杂化物、WO3·2H2O/正辛胺无机/有机层状杂化物和WO3·2H2O/十二胺无机/有机层状杂化物中的一种。
本发明中,加热升温速率为10℃-25℃/min,加热至400-600℃,反应时间为2-4h。
与现有技术相比,本发明具有以下有益效果:
(1)本发明方法制备的多孔WO3/C纳米片介孔复合光催化剂由C与多孔的WO3纳米片形成的介孔结构的复合材料,具有良好的光吸收性能和较大的比表面积,在光照下能够高效的转化氮气成硝酸根,具有较好的光催化氧化活性。
(2)本发明制备的多孔WO3/C纳米片介孔复合光催化剂光催化氧化氮气成为硝酸根的能力明显高于纯的多孔WO3纳米片介孔结构,可以作为一种可见光响应材料,在光催化转化氮方面具有很大的应用潜能。
(3)本发明多孔WO3/C纳米片介孔复合光催化剂的制备方法操作简便、条件温和、产率高,制备的材料具有较好的光催化分解水的性能,在光电转化方面具有很大的应用价值。
附图说明
图1为实施例1制备的多孔WO3/C纳米片介孔复合光催化剂材料的XRD图;
图2为本发明实施例1制备的多孔WO3/C纳米片介孔复合光催化剂材料的TEM图;
图3为本发明实施例1制备的多孔WO3/C纳米片介孔复合光催化剂材料SEM图;
图4为本发明实施例1制备的多孔WO3/C纳米片介孔复合光催化剂材料的紫外-可见漫反射光谱图;
图5为本发明实施例1制备的多孔WO3/C纳米片介孔复合光催化剂材料的吸附-解吸图;
图6为本发明实施例1制备的多孔WO3/C纳米片介孔复合光催化剂材料的光催化氧化N2成NO3 -的曲线图。
具体实施方式
以下结合具体的实施例对本发明作进一步的说明,以便本领域技术人员更好理解和实施本发明的技术方案。
实施例1
一种多孔WO3/C纳米片介孔复合光催化剂的制备方法,包括以下步骤:
将0.1gWO3·2H2O/正丙胺无机/有机层状杂化物加入瓷舟中,然后将瓷舟放入管式炉中,通入氮气。设定加热速率为10℃/min,加热时间为40min,加热至400℃,保温时间为2h。反应结束后让其自然冷却至室温,取出得到多孔WO3/C纳米片介孔复合光催化剂材料。
本实施例中多孔WO3/C纳米片介孔复合光催化剂材料的XRD图,如图1所示;多孔WO3/C纳米片介孔复合光催化剂材料的TEM图,如图2所示;多孔WO3/C纳米片介孔复合光催化剂材料在不同放大倍率下的SEM图,如图3所示,其中(a)60000倍(b)30000倍(c)10000倍(d)5000倍;多孔WO3/C纳米片介孔复合光催化剂材料的紫外-可见漫反射光谱图,如图4所示;多孔WO3/C纳米片介孔复合光催化剂材料的吸附-解吸图,如图5所示。
实施例2
一种多孔WO3/C纳米片介孔复合光催化剂的制备方法,包括以下步骤:
将0.5gWO3·2H2O/正丁胺无机/有机层状杂化物加入瓷舟中,然后将瓷舟放入管式炉中,通入氮气。设定加热速率为25℃/min,加热时间为40min,加热至600℃,,保温时间为4h。反应结束后让其自然冷却至室温,取出得到多孔WO3/C纳米片介孔复合光催化剂材料。
实施例3
一种多孔WO3/C纳米片介孔复合光催化剂的制备方法,包括以下步骤:
将0.2gWO3·2H2O/正辛胺无机/有机层状杂化物加入瓷舟中,然后将瓷舟放入管式炉中,通入氮气。设定加热速率为15℃/min,加热时间为40min,加热至500℃,保温时间为3h。反应结束后让其自然冷却至室温,取出得到多孔WO3/C纳米片介孔复合光催化剂材料。
实施例4
一种多孔WO3/C纳米片介孔复合光催化剂的制备方法,包括以下步骤:
将0.3gWO3·2H2O/十二胺无机/有机层状杂化物加入瓷舟中,然后将瓷舟放入管式炉中,通入氮气。设定加热速率为20℃/min,加热时间为40min,加热至600℃,保温时间为4h。反应结束后让其自然冷却至室温,取出得到多孔WO3/C纳米片介孔复合光催化剂材料。
称取实施例1制备的多孔WO3/C纳米片介孔复合光催化剂材料样品20mg倒入烧杯中,向其中加入120mL超纯水,超声30min。检查装置的气密性,将超声好的样品倒入气密性良好光反应器中,再次密封并检查气密性。用真空泵将反应器抽真空,然后用针管把氮气和氧气注入反应器中(比例为3:1),静置1h,打开氙灯稳流电源,把光反应器放到磁力搅拌机上搅拌,调整光源使光反应器置于光照中心。每隔半个小时取一次样,每次取8mL注入取样管中,在每次取样的时候适量补充氮气和氧气,保证光反应器中氮气与氧气的量充足,反应时间为3h。反应结束后将取出的液体样品送去离子色谱仪检测是否含有硝酸根离子。由标准溶液测定硝酸根浓度与峰面积的拟合曲线,测定样品的峰面积算出硝酸根浓度,最后作出时间与浓度的曲线,结果如图6所示。
由图1可见,b在23.08°、23.71°、24.09°、33.33°、34.02°处都有明显的衍射峰,分别对应WO3/C标准卡片(JCPDFCardNo.53-0433)中的(001)、(020)、(200)、(021)、(220),说明生成了WO3/C复合物。a是用作对照的纯的多孔WO3纳米介孔材料。
由图2可以看出WO3纳米片上有许多的孔洞,黑色的颗粒是碳,它与多孔WO3纳米片结合在一起形成了WO3/C复合物。
由图3中可见WO3·2H2O/丙胺无机/有机层状杂化物在氮气中烧结后产生WO3纳米片,纳米片与纳米片之间形成丰富的介孔结构,这种结构将具有较大的比表面积和孔隙率,能够提高光催化性能。
由图4可见WO3/正丙胺前驱体在300-500nm之间没有吸收,WO3粉末小于500nm范围有较大吸收,多孔WO3纳米片介孔结构吸收范围在450nm以下。多孔WO3/C纳米片介孔复合材料不但在紫外去有较大吸收,在整个可见光区均有较强吸收,这是由于碳修饰在多孔WO3/C纳米片上的结果。碳修饰增强了可见光区吸收,能够提高可见光的利用率,增强光催化活性。
由图5可见多孔WO3/C纳米片介孔结构具有较大的比表面积(5.5855m2/g),可能产生更多的活性位点,从而有利于提高复合材料的光催化性能。
由图6可见以多孔WO3/C纳米片介孔复合材料为催化剂,所产生的硝酸银产率持续上升,且在相同的反应时间内,硝酸银的产率始终高于纯的多孔WO3纳米片介孔材料,特别是反应到1.5h以后,多孔WO3/C纳米片介孔复合材料的催化效率还在上升且显著高于纯的多孔WO3纳米片介孔材料。这说明复合材料的光催化性能更好。
以上实施实例对本发明不同的实施过程进行了详细的阐述,但是本发明的实施方式并不仅限于此,所属技术领域的普通技术人员依据本发明中公开的内容,均可实现本发明的目的,任何基于本发明构思基础上做出的改进和变形均落入本发明的保护范围之内,具体保护范围以权利要求书记载的为准。

Claims (3)

1.一种多孔WO3/C纳米片介孔复合光催化剂的制备方法,其特征在于,将有机胺插层WO3·2H2O的杂化物加入瓷舟中,然后放入管式炉中,通入氮气,加热升温,保温反应,反应完后自然冷却至室温,即得到多孔WO3/C纳米片介孔复合光催化剂材料。
2.根据权利要求1所述多孔WO3/C纳米片介孔复合光催化剂的制备方法,其特征在于,有机胺插层WO3·2H2O的杂化物为WO3·2H2O/正丙胺无机/有机层状杂化物、WO3·2H2O/正丁胺无机/有机层状杂化物、WO3·2H2O/正辛胺无机/有机层状杂化物和WO3·2H2O/十二胺无机/有机层状杂化物中的一种。
3.根据权利要求1或2所述多孔WO3/C纳米片介孔复合光催化剂的制备方法,其特征在于,加热升温速率为10℃-25℃/min,加热至400-600℃,反应时间为2-4h。
CN201911289926.6A 2019-12-16 2019-12-16 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法 Pending CN110918085A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911289926.6A CN110918085A (zh) 2019-12-16 2019-12-16 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911289926.6A CN110918085A (zh) 2019-12-16 2019-12-16 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN110918085A true CN110918085A (zh) 2020-03-27

Family

ID=69863717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911289926.6A Pending CN110918085A (zh) 2019-12-16 2019-12-16 一种多孔wo3/c纳米片介孔复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110918085A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514911A (zh) * 2020-05-08 2020-08-11 桂林理工大学 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN112604697A (zh) * 2020-12-20 2021-04-06 桂林理工大学 一种铜离子掺杂的氧化锌/硫化镉高性能分解水产氢光催化剂及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130023328A (ko) * 2013-02-18 2013-03-07 전남대학교산학협력단 광촉매-그래핀-탄소나노섬유복합체 및 상기 복합체를 포함하는 필터
CN106311217A (zh) * 2016-08-19 2017-01-11 浙江师范大学 一种活性炭功能化氧化钨的制备方法
CN106563442A (zh) * 2016-11-02 2017-04-19 桂林理工大学 一种超薄二水三氧化钨纳米片的制备方法及其应用
CN108313993A (zh) * 2017-01-17 2018-07-24 中国科学技术大学 一种硝酸的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130023328A (ko) * 2013-02-18 2013-03-07 전남대학교산학협력단 광촉매-그래핀-탄소나노섬유복합체 및 상기 복합체를 포함하는 필터
CN106311217A (zh) * 2016-08-19 2017-01-11 浙江师范大学 一种活性炭功能化氧化钨的制备方法
CN106563442A (zh) * 2016-11-02 2017-04-19 桂林理工大学 一种超薄二水三氧化钨纳米片的制备方法及其应用
CN108313993A (zh) * 2017-01-17 2018-07-24 中国科学技术大学 一种硝酸的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王超 等: "WO3纳米片:基于无机-有机杂化前驱物的制备及光催化性能", 《无机化学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514911A (zh) * 2020-05-08 2020-08-11 桂林理工大学 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN111514911B (zh) * 2020-05-08 2023-04-07 桂林理工大学 一种具有介孔结构的碳掺杂wp纳米片电催化剂及其制备方法
CN112604697A (zh) * 2020-12-20 2021-04-06 桂林理工大学 一种铜离子掺杂的氧化锌/硫化镉高性能分解水产氢光催化剂及制备方法
CN112604697B (zh) * 2020-12-20 2022-06-17 桂林理工大学 一种铜离子掺杂的氧化锌/硫化镉高性能分解水产氢光催化剂及制备方法

Similar Documents

Publication Publication Date Title
Hou et al. Variable dimensional structure and interface design of g-C3N4/BiOI composites with oxygen vacancy for improving visible-light photocatalytic properties
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Zhang et al. Fabrication of Ag decorated g-C3N4/LaFeO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for degradation of methylene blue and tetracycline hydrochloride
Tian et al. Facile assembly and excellent elimination behavior of porous BiOBr-g-C3N4 heterojunctions for organic pollutants
Ke et al. Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: a review
Zinatloo-Ajabshir et al. Facile synthesis of Nd2Sn2O7-SnO2 nanostructures by novel and environment-friendly approach for the photodegradation and removal of organic pollutants in water
Irfan et al. Enhanced photocatalytic H2 production under visible light on composite photocatalyst (CdS/NiSe nanorods) synthesized in aqueous solution
Li et al. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis
Wang et al. Synergy of Ti-O-based heterojunction and hierarchical 1D nanobelt/3D microflower heteroarchitectures for enhanced photocatalytic tetracycline degradation and photoelectrochemical water splitting
CN107456991B (zh) 一种g-C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
CN106964339B (zh) 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法
Ma et al. Co3O4/CeO2 pn heterojunction construction and application for efficient photocatalytic hydrogen evolution
Jiang et al. Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity
Sun et al. Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties
Dai et al. Magnetic ZnFe2O4@ ZnSe hollow nanospheres for photocatalytic hydrogen production application
WO2021212923A1 (zh) 负载于泡沫镍表面的 p-n 异质结复合材料及其制备方法与应用
Xu et al. MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2
CN103240073B (zh) 一种Zn2+掺杂BiVO4可见光催化剂及其制备方法
Wang et al. Photocatalytic removal of MB and hydrogen evolution in water by (Sr0. 6Bi0. 305) 2Bi2O7/TiO2 heterostructures under visible-light irradiation
Wang et al. In-situ preparation of mossy tile-like ZnIn2S4/Cu2MoS4 S-scheme heterojunction for efficient photocatalytic H2 evolution under visible light
Li et al. Z-scheme bismuth-rich bismuth oxide iodide/bismuth oxide bromide hybrids with novel spatial structure: Efficient photocatalytic degradation of phenolic contaminants accelerated by in situ generated redox mediators
Feng et al. Effective H2O2-Free photo-Fenton processes over ZnSe nanosheets for photocatalytic degradation of dyes and antibiotics
Yang et al. Advanced strategies for promoting the photocatalytic performance of FeVO4 based photocatalysts: A review of recent progress
CN105195131A (zh) 一种石墨烯量子点/钒掺杂介孔二氧化钛复合光催剂的制备方法
Cheng et al. Lollipop-shaped Co9S8/CdS nanocomposite derived from zeolitic imidazolate framework-67 for the photocatalytic hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200327

RJ01 Rejection of invention patent application after publication