CN110911506A - 稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法 - Google Patents

稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法 Download PDF

Info

Publication number
CN110911506A
CN110911506A CN201911197505.0A CN201911197505A CN110911506A CN 110911506 A CN110911506 A CN 110911506A CN 201911197505 A CN201911197505 A CN 201911197505A CN 110911506 A CN110911506 A CN 110911506A
Authority
CN
China
Prior art keywords
solar cell
perovskite
inorganic
layer
perovskite solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911197505.0A
Other languages
English (en)
Inventor
�金钟
毛凌云
夏雨人
赵培洋
赵铖
铁祚庥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuzhou Jixin New Energy Technology Co Ltd
Nanjing Qinghui New Energy Co Ltd
Suzhou Gold Carbon New Material Technology Co Ltd
Nanjing University
Original Assignee
Chuzhou Jixin New Energy Technology Co Ltd
Nanjing Qinghui New Energy Co Ltd
Suzhou Gold Carbon New Material Technology Co Ltd
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuzhou Jixin New Energy Technology Co Ltd, Nanjing Qinghui New Energy Co Ltd, Suzhou Gold Carbon New Material Technology Co Ltd, Nanjing University filed Critical Chuzhou Jixin New Energy Technology Co Ltd
Priority to CN201911197505.0A priority Critical patent/CN110911506A/zh
Publication of CN110911506A publication Critical patent/CN110911506A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种全无机钙钛矿太阳能电池,包括自下而上的基底层、全无机卤化物钙钛矿层和碳层,其中,构成钙钛矿层的钙钛矿包括稀土掺杂的全无机卤化物钙钛矿材料。本申请还公开了一种制备全无机钙钛矿太阳能电池的方法,所述方法包括以下步骤:1)获得基底层;2)制备前驱体溶液;3)在基底层表面涂覆前驱体溶液,制成卤化物钙钛矿薄膜;4)在卤化物钙钛矿薄膜上制备碳电极。5)采用盖玻片和热熔间隔物进行封装,得到的全无机钙钛矿太阳能电池产品。本发明的太阳能电池不含有易分解的有机成分,表现出优秀的热稳定性,这对钙钛矿太阳能电池的商业化应用具有重要意义。

Description

稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法
技术领域
本申请涉及太阳能电池领域,具体而言,涉及一种稀土掺杂的全无机钙钛矿太阳能电池及其制备方法。
背景技术
全无机钙钛矿太阳能电池由于比传统的有机无机杂化钙钛矿太阳能电池具有更好的稳定性,因此受到了广泛的关注。目前有机-无机杂化卤化物钙钛矿具有直接带隙合适、吸收系数高、载流子运输性能优异、缺陷容忍度高、成本低廉等优点,在能量转换效率上已经能与商业化的硅基电池相媲美,但是这种太阳能电池在空气中的不稳定性限制了其商业化进程。无机卤化物钙钛矿由Cs+或Rb+来代替钙钛矿结构中的A位基团,摒弃了甲基铵(MA+)和甲脒(FA+)这些不稳定的有机成分,使得其比传统的有机无机杂化钙钛矿太阳能电池具有更好的耐光性、耐湿性和耐热性,因此受到了广泛的关注。然而无机钙钛矿虽然稳定性高,但是由于存在带隙较宽(CsPbBr3的带隙~2.3eV,CsPbI2Br的带隙~1.92eV,CsPbI3的带隙~1.73eV)的缺点,使得其电光电转换效率始终无法赶超有机无机杂化钙钛矿太阳能电池。为了优化器性能,一种潜在的可行方法是进行金属掺杂,将过渡金属阳离子或稀土阳离子部分取代Pb元素,可以显著地稳定钙钛矿薄膜的晶格,调节能带结构,并增强光吸收能力,从而显著提升全无机钙钛矿太阳能电池的光电转换效率。这种通过掺杂金属离子来控制钙钛矿太阳能电池的电子和光学性能具有良好的商业应用前景。
发明内容
本申请的主要目的在于提供一种稀土掺杂的全无机钙钛矿太阳能电池,包括自下而上的基底层、钙钛矿层和碳层,其中,构成钙钛矿层的钙钛矿包括稀土离子掺杂的无机卤化物钙钛矿。
优选地,所述稀土掺杂的无机卤化物钙钛矿是ErCl3掺杂的CsPbIBr2
优选地,所述基底层包括自下至上的氟掺杂氧化锡层、致密TiO2层和介孔TiO2层。
优选地,所述方法包括以下步骤:
1)获得基底层;
2)制备前驱体溶液;
3)在基底层表面涂覆前驱体溶液,制成稀土掺杂的无机卤化物钙钛矿薄膜;
4)在钙钛矿薄膜上制备碳电极;
5)采用盖玻片和热熔间隔物进行封装,得到的全无机钙钛矿太阳能电池产品。
优选地,所述步骤1)中获得基底层的方法为:蚀刻FTO导电玻璃,在FTO导电玻璃上旋涂异丙醇钛和二乙醇胺乙醇溶液,烧结形成致密TiO2层,再在致密TiO2层上旋涂18NR-TTiO2/乙醇溶液,烧结形成介孔TiO2层。
优选地,所述步骤2)中制备前驱体溶液的过程包括:将摩尔比为(99-199):1的PbBr2和ErCl3溶于DMF溶液中,在60~100℃条件下搅拌溶解。
优选地,所述前驱体溶液的浓度为0.8-1.5M。
优选地,所述步骤3)中,将过滤后的前驱体溶液旋涂在基底表面,加热结晶,使用CsI的甲醇溶液浸泡FTO导电玻璃,后在高温下退火,得到钙钛矿薄膜。
优选地,所述加热结晶在70~90℃的条件下进行,结晶时间为20~40分钟;
优选地,所述退火在300~400℃下进行,退火时间为3~7分钟。
优选地,所述步骤5)中,采用盖玻片和热熔间隔物进行封装。
本发明提出用稀土化合物氯化铒(ErCl3)来掺杂无机钙钛矿CsPbIBr2,通过两步溶液法,将Er3+取代一部分Pb2+,并调节不同掺杂浓度,使得CsPbIBr2-x%ErCl3钙钛矿薄膜的带隙下降到1.79eV,器件采用廉价的碳电极作为对电极并充当一部分空穴传输层的作用,形成一个全无机型钙钛矿太阳能电池,这种电池的光电转换效率可达9.22%,并表现出良好的热稳定性,这对钙钛矿太阳能电池的商业化应用具有重要意义。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,使得本申请的其它特征、目的和优点变得更明显。本申请的示意性实施例附图及其说明用于解释本申请,并不构成对本申请的不当限定。
图1是根据本申请的全无机钙钛矿太阳能电池的结构示意图;
图2是不同掺杂浓度的CsPbIBr2-x%ErCl3全无机钙钛矿太阳能电池在标准太阳光照下的光电转换效率;
图3是不同ErCl3掺杂浓度的无机卤化物钙钛矿薄膜的紫外可见吸收光谱图;
图4是不同ErCl3掺杂比例的无机卤化物钙钛矿薄膜中Pb 4f的高分辨XPS图谱;
图5是基于CsPbIBr2-0.5%ErCl3全无机钙钛矿太阳能电池在100℃下的热稳定性测试结果。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
实施例1
按照如下方法制备稀土ErCl3掺杂的全无机钙钛矿太阳能电池
1.用锌粉和盐酸溶液刻蚀FTO导电玻璃,随后依次用丙酮、乙醇、去离子水超声后烘干。
2.在FTO导电玻璃上旋涂异丙醇钛和二乙醇胺乙醇溶液,并在马弗炉中500℃下烧结2小时形成致密TiO2
3.在致密TiO2层上旋涂18NR-T TiO2/乙醇溶液并在500℃下烧结2小时形成介孔TiO2
4.制备无机卤化物钙钛矿的前驱体溶液。称量一定量的PbBr2和ErCl3,摩尔比为0.995:0.005,并将药品溶解于DMF溶液中在80℃条件下进行搅拌溶解,最终形成浓度为1M的前驱体溶液。称量10毫克/毫升浓度的CsI/甲醇溶液,常温搅拌后备用。
5.无机卤化物钙钛矿薄膜制备。将前驱体溶液进行过滤,并旋涂于介孔TiO2上,在80℃条件下加热结晶30分钟。随后将导电玻璃浸泡在CsI/甲醇溶液中反应10分钟,反应完成后将薄膜在异丙醇溶液中冲洗甩干后在350℃下退火5分钟,最终形成CsPbIBr2-x%ErCl3黑色钙钛矿薄膜。
6.碳电极制备。在无机卤化物钙钛矿薄膜上刮涂一层导电碳浆,在70℃下烘干1小时形成全无机钙钛矿太阳能电池。
7.用载玻片与沙林膜对全无机钙钛矿太阳能电池的有效面积部分进行封装来隔绝空气。
实施例2
1.用锌粉和盐酸溶液刻蚀FTO导电玻璃,随后依次用丙酮、乙醇、去离子水超声后烘干。
2.在FTO导电玻璃上旋涂异丙醇钛和二乙醇胺乙醇溶液,并在马弗炉中500℃下烧结2小时形成致密TiO2
3.在致密TiO2层上旋涂18NR-T TiO2/乙醇溶液并在500℃下烧结2小时形成介孔TiO2
4.制备钙钛矿的前驱体溶液。称量一定量的PbBr2和ErCl3,摩尔比为0.99:0.01,并将药品溶解于DMF溶液中在60℃条件下进行搅拌溶解,最终形成浓度为1.5M的前驱体溶液。称量10毫克/毫升浓度的CsI/甲醇溶液,常温搅拌后备用。
5.无机卤化物钙钛矿薄膜制备。将前驱体溶液进行过滤,并旋涂于介孔TiO2上,在60℃条件下加热结晶40分钟。随后将FTO导电玻璃浸泡在CsI/甲醇溶液中反应10分钟,反应完成后将薄膜在异丙醇溶液中冲洗甩干后在300℃下退火7分钟,最终形成CsPbIBr2-x%ErCl3黑色钙钛矿薄膜。
6.碳电极制备。在无机卤化物钙钛矿薄膜上刮涂一层导电碳浆,在70℃下烘干1小时形成全无机钙钛矿太阳能电池。
7.用载玻片与沙林膜对全无机钙钛矿太阳能电池的有效面积部分进行封装来隔绝空气。
实施例3
1.用锌粉和盐酸溶液刻蚀FTO导电玻璃,随后依次用丙酮、乙醇、去离子水超声后烘干。
2.在FTO导电玻璃上旋涂异丙醇钛和二乙醇胺乙醇溶液,并在马弗炉中500℃下烧结2小时形成致密TiO2
3.在致密TiO2层上旋涂18NR-T TiO2/乙醇溶液并在500℃下烧结2小时形成介孔TiO2
4.制备钙钛矿的前驱体溶液。称量一定量的PbBr2和ErCl3,摩尔比为0.99:0.01,并将药品溶解于DMF溶液中在100℃条件下进行搅拌溶解,最终形成浓度为0.8M的前驱体溶液。称量10毫克/毫升浓度的CsI/甲醇溶液,常温搅拌后备用。
5.无机卤化物钙钛矿薄膜制备。将前驱体溶液进行过滤,并旋涂于介孔TiO2上,在100℃条件下加热结晶20分钟。随后将导电玻璃浸泡在CsI/甲醇溶液中反应10分钟,反应完成后将薄膜在异丙醇溶液中冲洗甩干后在400℃下退火3分钟,最终形成CsPbIBr2-x%ErCl3黑色钙钛矿薄膜。
6.碳电极制备。在钙钛矿薄膜上刮涂一层导电碳浆,在70℃下烘干1小时形成全无机钙钛矿太阳能电池。
7.用载玻片与沙林膜对无机卤化物钙钛矿太阳能电池的有效面积部分进行封装来隔绝空气。
实验例
光电转换效率测试
实验仪器:太阳光模拟器(100mW/cm2,NOWDATA SXDN-150E)、电学测量源表(Keithley 2400)
实验对象及过程:对CsPbIBr2-x%ErCl3基全无机钙钛矿太阳能电池进行光电转换测试,模拟太阳光强度为100mW/cm2,扫描范围为-1.0V~1.0V,其中有效活性区域为0.09cm2,正向和反向扫描速度均为200mV/s。
实验结果:图2是本发明一个实施例中的全无机钙钛矿太阳能电池的光电转换效率测试结果。电池的开路电压(VOC)为1.08V,短路电流密度为(JSC)13.39mA/cm2,填充因子(FF)为0.49,光电转换效率(PCE)为7.05%,当掺杂0.5%ErCl3后,开路电压提升到1.15V,短路电流密度提升到14.71mA/cm2,填充因子(FF)为0.54,光电转换效率(PCE)为9.22%。继续增大掺杂浓度,当掺杂1%ErCl3后,开路电压略有下降,下降至0.96V,而短路电流密度继续提升到15.22mA/cm2,填充因子(FF)为0.50,光电转换效率(PCE)为7.33%。
紫外-可见吸收光谱测试
实验仪器:紫外-可见吸收光谱仪(Shinadzu UV-2456)
实验对象及过程:对CsPbIBr2-x%ErCl3基钙钛矿太阳能电池进行紫外吸收测试,波长范围为300nm~800nm,速度为0.2nm/s。
实验结果:图3显示了不同ErCl3掺杂比例的无机钙钛矿薄膜的UV-vis吸收光谱图。图中可以看到随着ErCl3掺杂浓度的增大,UV-vis光谱出现红移,吸光度也随之增大,证明ErCl3的引入可以降低无机钙钛矿CsPbIBr2的带隙,根据图3的实验数据进行计算,可知CsPbIBr2薄膜的带隙为1.81eV,CsPbIBr2-0.5%ErCl3薄膜的带隙为1.80eV,CsPbIBr2-1%ErCl3薄膜的带隙为1.79eV。
X射线光电子能谱测试
实验仪器:X射线光电子能谱仪(PHI-5000 VersaProbe)
实验对象及过程:对不同掺杂比例的CsPbIBr2-x%ErCl3钙钛矿进行高分辨X射线光电子能谱分析,扫描范围为132~148eV,将谱图对照C1s(284.8eV)荷电校准后进行分析。
实验结果:图4显示了不同ErCl3掺杂比例的无机钙钛矿薄膜高分辨XPS图谱,随着ErCl3掺杂浓度的增大,钙钛矿中Pb 4f峰位置往结合能更高的方向位移,元素的化学环境发生变化,证明ErCl3成功引入钙钛矿结构中,同时进一步证实了UV-vis的吸光度增强这一现象。
热稳定性测试
实验仪器:太阳光模拟器(100mW/cm2,NOWDATA SXDN-150E)、、电学测量源表(Keithley 2400)
实验对象及过程:对CsPbIBr2-0.5%ErCl3全无机钙钛矿太阳能电池进行热稳定测试,加热温度为100℃,每隔72小时对电池进行光电转换效率的测试,测量持续432小时。
实验结果:图5显示了基于CsPbIBr2-0.5%ErCl3全无机钙钛矿太阳能电池在100℃下的热稳定性。由于太阳能电池工作条件下将长时间暴露在光照下,电池的温度将会升高,实例中将电池长时间处于100℃高温环境下加热432小时后,电池的光电转换效率仍能保持在原效率的98.5%以上,证明ErCl3掺杂后的全无机钙钛矿电池具有非常好的热稳定性。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种全无机钙钛矿太阳能电池,其特征在于,包括自下而上的基底层、钙钛矿层和碳电极层,其中,构成钙钛矿层的钙钛矿包括稀土掺杂的无机卤化物钙钛矿。
2.根据权利要求1所述的全无机钙钛矿太阳能电池,其特征在于,所述稀土掺杂的无机钙钛矿是ErCl3掺杂的CsPbIBr2
3.根据权利要求1所述的全无机钙钛矿太阳能电池,其特征在于,所述基底层包括自下至上的氟掺杂氧化锡层、致密TiO2层和介孔TiO2层。
4.一种制备全无机钙钛矿太阳能电池的方法,其特征在于,所述方法包括以下步骤:
1)获得基底层;
2)制备前驱体溶液;
3)在基底层表面涂覆前驱体溶液,制成卤化物钙钛矿薄膜;
4)在卤化物钙钛矿薄膜上制备碳电极;
5)采用盖玻片和热熔间隔物进行封装,得到全无机钙钛矿太阳能电池产品。
5.根据权利要求4所述的制备全无机钙钛矿太阳能电池的方法,其特征在于,所述步骤1)中获得基底层的方法为:蚀刻FTO导电玻璃,在FTO导电玻璃上旋涂异丙醇钛和二乙醇胺乙醇溶液,烧结形成致密TiO2层,再在致密TiO2层上旋涂18NR-T TiO2/乙醇溶液,烧结形成介孔TiO2层。
6.根据权利要求4所述的制备全无机钙钛矿太阳能电池的方法,其特征在于,所述步骤2)中制备前驱体溶液的过程包括:将摩尔比为(99-199):1的PbBr2和ErCl3溶于DMF溶液中,在60~100℃条件下搅拌溶解。
7.根据权利要求4所述的制备全无机钙钛矿太阳能电池的方法,其特征在于,所述前驱体溶液的浓度为0.8-1.5M。
8.根据权利要求4所述的制备全无机钙钛矿太阳能电池的方法,其特征在于,所述步骤3)中,将过滤后的前驱体溶液旋涂在基底表面,加热结晶,使用CsI的甲醇溶液浸泡FTO透明导电玻璃,后在高温下退火,得到钙钛矿薄膜。
9.根据权利要求8所述的制备全无机钙钛矿太阳能电池的方法,其特征在于,所述加热结晶在70~90℃的条件下进行,结晶时间为20~40分钟;
优选地,所述退火在300~400℃下进行,退火时间为3~7分钟。
10.根据权利要求4所述的制备全无机钙钛矿太阳能电池的方法,其特征在于,所述步骤5)中,采用盖玻片和热熔间隔物进行封装。
CN201911197505.0A 2019-11-28 2019-11-28 稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法 Pending CN110911506A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911197505.0A CN110911506A (zh) 2019-11-28 2019-11-28 稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911197505.0A CN110911506A (zh) 2019-11-28 2019-11-28 稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法

Publications (1)

Publication Number Publication Date
CN110911506A true CN110911506A (zh) 2020-03-24

Family

ID=69820443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911197505.0A Pending CN110911506A (zh) 2019-11-28 2019-11-28 稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法

Country Status (1)

Country Link
CN (1) CN110911506A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436091A (zh) * 2020-11-22 2021-03-02 河北工业大学 一种稀土离子掺杂的新型钙钛矿太阳能电池
CN114242824A (zh) * 2020-09-08 2022-03-25 广东工业大学 一种全无机钙钛矿太阳能电池及其制备方法
CN114988462A (zh) * 2022-05-25 2022-09-02 湖南大学 一种基于化学气相沉积法制备多波长发射的钙钛矿微米片的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887466A (zh) * 2017-12-01 2018-04-06 吉林大学 一种稀土掺杂无机钙钛矿量子点复合硅太阳能电池及其制备方法
CN108878554A (zh) * 2018-06-26 2018-11-23 暨南大学 基于镧系稀土离子掺杂CsPbBr3的全无机钙钛矿太阳能电池及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887466A (zh) * 2017-12-01 2018-04-06 吉林大学 一种稀土掺杂无机钙钛矿量子点复合硅太阳能电池及其制备方法
CN108878554A (zh) * 2018-06-26 2018-11-23 暨南大学 基于镧系稀土离子掺杂CsPbBr3的全无机钙钛矿太阳能电池及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242824A (zh) * 2020-09-08 2022-03-25 广东工业大学 一种全无机钙钛矿太阳能电池及其制备方法
CN112436091A (zh) * 2020-11-22 2021-03-02 河北工业大学 一种稀土离子掺杂的新型钙钛矿太阳能电池
CN114988462A (zh) * 2022-05-25 2022-09-02 湖南大学 一种基于化学气相沉积法制备多波长发射的钙钛矿微米片的方法

Similar Documents

Publication Publication Date Title
Li et al. PbCl2-tuned inorganic cubic CsPbBr3 (Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance
Bella et al. Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings
KR101060463B1 (ko) 그래핀을 전기영동법으로 증착시켜 제조하는 상대전극의 제조방법, 그 방법에 의하여 제조된 상대전극 및 이를 포함하는 염료감응형 태양전지
Juang et al. Energy harvesting under dim-light condition with dye-sensitized and perovskite solar cells
Im et al. Performance improvement of Sb 2 S 3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte
US20020170594A1 (en) --Metal Complex Having Beta-Diketonate, Process for Production Thereof, Photoelectric Conversion Element, and Photochemical Cell--
CN105731820A (zh) 一种原位电极二硫化钼的溶剂热制备方法
Li et al. Organic ionic plastic crystal-based electrolytes for solid-state dye-sensitized solar cells
Hočevar et al. A photoactive layer in photochromic glazing
CN110911506A (zh) 稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法
Rajeswari et al. Enhanced light harvesting with novel photon upconverted Y2CaZnO5: Er3+/Yb3+ nanophosphors for dye sensitized solar cells
JP2008186752A (ja) 光電変換素子及び太陽電池
Hwang et al. Quasi-solid state electrolyte for semi-transparent bifacial dye-sensitized solar cell with over 10% power conversion efficiency
TWI396778B (zh) 鐵酸鋅薄膜及其製備方法與運用
JP2006210102A (ja) 光電変換装置およびそれを用いた光発電装置
KR20150145010A (ko) 감광성 염료 용액, 이를 이용해서 제조된 염료감응 태양전지의 광전극, 및 이를 포함하는 염료감응 태양전지
CN113383436A (zh) 将卤化物钙钛矿表面转化为不溶性宽带隙铅氧盐以增强太阳能电池的稳定性
Guillén et al. Solvent-free ZnO dye-sensitised solar cells
Rao et al. Enhance the performance of quantum dot-sensitized solar cell by manganese-doped ZnS films as a passivation layer
Giannouli et al. Effects of using multi‐component electrolytes on the stability and properties of solar cells sensitized with simple organic dyes
Yue et al. CdTe quantum dots-sensitized solar cells featuring PCBM/P3HT as hole transport material and assistant sensitizer provide 3.40% efficiency
JP2012204275A (ja) 色素増感型太陽電池の製造方法、色素増感型太陽電池及び色素増感型太陽電池モジュール
KR101794988B1 (ko) 페로브스카이트 광흡수층 제조방법 및 이를 적용한 태양전지 제조방법
EP2442326A2 (en) Method for enhancing the conversion efficiency of CdSe-quantum dot sensitized solar cells
CN103280323A (zh) 锡掺杂染料敏化TiO2纳晶薄膜光电极及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200324